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Introduction

Abstract

Connections and fibre bundles A fibre bundle of fibre type F is a smooth mapping
π : M → B between manifolds, such that for every b ∈ B the inverse image π−1(b) is
isomorphic with F . A fibre bundle is often visualised as a map going downwards:

π. .
M

B
?

One may view the fibres then as hanging vertically above the base manifold B. We call the
tangent spaces to the fibre vertical. There is, however, no intrinsic way to determine the
horizontal direction. This leads to the notion of a connection. The idea of a connection on a
fibre bundle goes back to Ehresmann, who published his article in 1950, [10]. An Ehresmann
connection Γ on a fibration π : M → B is a distribution Hor on M , such that

1. for all x ∈ M the tangent a space TxM is decomposed in Horx and the tangent space
to the fibre Vertx.

2. for every piecewise smooth path γ : [0, 1] → B starting from b and for each x ∈ π−1(b)
there is a piecewise smooth path γ# : [0, 1] → M starting at x such that π ◦ γ# = γ,
and d

dt
γ#(t) ∈ Horγ#(t), for all t ∈ [0, 1], where it is defined.

γ# is called the horizontal lift of γ starting at x. This construction induces for every path γ
in B a diffeomorphism φγ : π−1(γ(0)) → π−1(γ(1)), called parallel transport. In this thesis
we study fibre bundles for which the fibre has a special structure, e.g. it is a symplectic
or Poisson manifold, and we study connections on them for which the parallel transport
preserves this structures. Parallel transport with respect to a loop γ based at b ∈ B is
a diffeomorphism from π−1(b) to itself. All diffeomorphisms which can be constructed in
this way form a group φ(b), called the holonomy group. An Ehresmann connection is a
distribution. The obstruction for being an integrable distribution is measured by the so
called curvature 2-form. One may see the curvature Ω as a map:

Ω : X(B)× X(B) → XVert(M).

A visualisable description of the curvature is the following: consider the parallel transport
along a contractible loop in B. If we contract such loop we get a vector field on the fibre.
Vector fields which can be obtained in this way are in the image of the curvature.
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Dirac structures A more recent development in mathematics is the introduction of Dirac
structures on manifolds by T.J. Courant in 1990 [6]. An almost Dirac structure on a manifold
M is a smooth subbundle L of the generalised tangent bundle of M :

L ⊂ TM = TM ⊕ T ∗M,

such that the rank of L is the dimension of M , and L is isotropic with respect to the natural
paring. In particular, graphs of 2-forms, and graphs of bivectors are almost Dirac structures.
An almost Dirac structure is called a Dirac structure if, moreover, the sections of L are closed
under the so called Courant bracket [, ]c. The graphs of 2-forms, and bivectors are Dirac if,
and only if they are respectively closed, and Poisson.

An almost Dirac structures of special type on the total space M of a fibration π : M → B
induces an Ehresmann connection. Moreover, such an almost Dirac structure induces a
horizontal 2-form, and a vertical bivector. If such an almost Dirac structure is really a Dirac
structure, then this 2-form is closed, and this vertical bivector is Poisson.

Conversely, all Ehresmann connections give rise to such an almost Dirac structure. It turns
out that an Ehresmann connection which can be described by a Dirac structure has a very
restrictive holonomy.

Connections in symplectic geometry A symplectic structure ω on a manifold M is a
nondegenerate closed 2-form. Not all manifolds admit symplectic structures. For instance,
symplectic manifolds must be orientable and even dimensional. Connections on fibrations of
fibre type a symplectic manifold, for which the parallel transport preserves this symplectic
structure, are called symplectic connections. A symplectic connection can be described by
an almost Dirac structure Lτ which is the graph of an compatible 2-form τ on the total
space. These are 2-forms which restriction to the fibres coincides with the given symplectic
structure on the fibres. A natural question to ask is whether we can find a compatible
symplectic structure on the total space. In particular, then Lτ is a Dirac structure. As said
before, this restricts the holonomy of the connection, even if we only ask τ to be closed.
The main theorem on connections in symplectic geometry comes down to is the following
equivalence: there exists a closed 2-form τ ∈ Ω2(M) such that the induced connection Γτ = Γ
is a symplectic connection, if and only if the holonomy group φ(b) of Γ around any contractible
loop in B is acts on the fibre π−1(b) in a Hamiltonian fashion.

Connections in Poisson geometry A Poisson structure on a manifold M is a Lie bracket
{., .} on C∞(M), which satisfies a Leibniz rule:

{f, gh} = {f, g}h+ g{f, h}.

Equivalently, a Poisson structure onM is a bivector π onM , for which the Schouten-Nijenhuis
bracket [π, π] vanishes. In particular, all symplectic manifolds are Poisson manifolds. A re-
markable property of Poisson manifolds is that they are foliated into symplectic manifolds.
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Meaning that there is a partition of (M,π) of immersed submanifolds i : L ↪→ M all car-
rying an induced symplectic structure. Connections on fibrations of fibre type a Poisson
manifold, for which the parallel transport preserves the Poisson structure, are called Poisson
connections. In particular, the total space of a Poisson fibration does always admit a Poisson
structure. One simply glues the Poisson structures on the fibres all together and obtains a
vertical Poisson bivector πV . Recall that fibre nondegenerate almost Dirac structures also
induce vertical bivectors. A fibre nondegenerate almost Dirac structure for which these bivec-
tors coincide is called a compatible almost Dirac structure. The main theorem on connections
in Poisson geometry comes down to is the following equivalence: there exists a compatible
Dirac structure for which the induced connection is a Poisson connection if and only if if
the holonomy group φ(b) with respect to this connection acts on the fibre in a Hamiltonian
fashion. Clearly, this is a generalisation of the main theorem for symplectic connections.

Principal bundles A special class of fibre bundles is formed by the principal bundles
π : P → M . The fibre type of these bundles are Lie groups G. Principal bundles are very
useful for several reasons. A principal connection is an Ehresmann connection for which
the diffeomorphisms obtained by parallel transport are group isomorphisms. They may be
described using a G-equivariant g-valued 1-form on the total space. Also the curvature may
be seen here as a g-valued 2-form on P . By the G-equivariance of the connection one can
describe the vector field in the image of the curvature here with a single element in g. The
holonomy group φ(u) of a connection based a point u ∈ P is a Lie subgroup of G. A theorem
of Ambrose and Singer [1] states that the Lie algebra of φ(u) is generated by curvature of
the connection.

The problem Another nice property of principal G-bundles is the following: if one has a
G-space F , i.e. a manifold F on which G acts from the left, one can attach F to P , such
that one gets a fibre bundle P ×G F of fibre type F . The other way round, we can construct
a principal G-bundle P → B of for any fibre bundle π : M → B. G is here a subgroup of
the group of diffeomorphisms of F , where F is the fibre type of the fibration. If we attach F
to P → B, then we get our old frame bundle back. Moreover, an Ehresmann connection on
π : M → B induces a principal connection on P → B, and vice versa. The main theorems for
the symplectic and the Poisson connections can be proved by using the theorem of Ambrose
and Singer for this new P → B. But here is a problem: in the prove of this theorem it is
explicitly used that G is a finite dimensional group, while nothing guarantees us that that
is the case here. Fortunately, we can do better. We can reduce P → B to a principal φ(u)-
bundle. It is not clear whether φ(u) is finite dimensional, and if we indeed can prove our
main theorems in full generality.

The structure of the thesis

This thesis contains four chapters. In the first chapter we give an introduction to symplectic,
and Poisson geometry. We give an exposition on Hamiltonian group actions, and we introduce
the concept of Lie algebroid. We show that Dirac as well as Poisson structures may be viewed
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as Lie algebroids. In the second chapter we explain Ehresmann connections and show how
(almost) Dirac structures can be used to obtain them. We finish the chapter with a short
excursion on Dirac gauging of the Dirac structures. In the third chapter we discuss vector
bundles and principal bundles. Connections on vector bundles may be viewed as covariant
derivatives. The fourth and the fifth chapter are devoted to the symplectic and the Poisson
fibrations.

Conventions

In this thesis all manifolds are second countable and finite dimensional.

Acknowledgments
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Chapter 1

Symplectic and Poisson geometry

Abstract In this thesis many of the concepts and the terminology of differential geometry,
symplectic geometry and Poisson geometry are used. The aim of this first chapter is to give a
short introduction in these fields, and at the same time to develop the notation. We restrict
ourself in this chapter to that material we will really use later. This chapter is divided in four
parts. In the first part, about differential geometry, we discuss the concepts of differential
forms, exterior derivatives, covariant and contravariant vector fields and Lie derivatives. Most
of the statements made here are well known results, and proofs are often omitted. The second
part gives a short introduction into symplectic geometry. It includes symplectic manifolds,
symplectomorphisms, Hamiltonian vector fields and Hamiltonian group actions. Also various
examples of symplectic manifolds are given like the symplectic structure on the cotangent
bundle of a manifold, the Fubini-Study structure, the orbit spaces of the coadjoint action of
a Lie group on the dual of its Lie algebra, are included. The latter is used in the part on
Poisson geometry, as an example of a symplectic foliation. Moreover we discuss the basics
of Dirac geometry. Dirac structures of a special type will turn out to be very usefull in the
study of connections.

1.1 Basic differential geometry

Fibre bundles

Definition 1.1.1. A fibre bundle π : M → B with fibretype a given manifold F is a smooth
mapping between two manifolds with the following property:there is an open covering {Ui}i
of B and for every i a diffeomorphism φi : π−1(Ui) → Ui × F , such that the composition of
φi with the projection on the first component Ui×F → Ui is the mapping π : π−1(Ui) → Ui.
These maps φi are called local trivialisations of the fibre bundle and the manifold B is called
the base space. We summarize this definition in a diagram:

M ⊃ π−1(Ui)
φi //

π

��

Ui × F

pr1

��
Ui ⊂ B

id // Ui ⊂ B.

7



For every b ∈ B we denote π−1({b}) by Fb and we call it the fibre of the fibration above
b. For each b ∈ Ui and all i, we obtain a diffeomorphism, Fb → {b} × F by restricting φi
to Fb. We conclude that all fibres are diffeomorphic with F . For all i, j we construct the
map φi,j : Ui ∩ Uj → Diff(F ) by b 7→ φj(b) ◦ φ−1

i (b), where φi(b), is the restriction of φi to
Fb followed by the projection to F . These maps are called the transition maps of the fibre
bundle.

Definition 1.1.2. A vector bundle is a fibre bundle of the fibretype F a vector space, and
where the transition maps are linear isomorphisms.

A trivial example of a vector bundle is the product space M ×Rn, with the projection on M .
Also the tangent bundle of a manifold is a vector bundle. Here is the fibre Fm the tangent
space of M at m. A section of a vector bundle is a map s : M → E such that π ◦ s is
the identity map on M. All sections together form a vector space which we will denote with
Γ(M,E), or, if the base is clear from the context over, with Γ(E).

Vector fields An intuitive way to describe a vector field is by drawing an arrow on every
point on your manifold, such that if one walks along the arrows with a speed proportional to
the length of the arrow, one is not required to make impossible moves. An exact definition is
that a vector field X is a smooth section of the tangent bundle. Indeed, X assigns to every
point m of the manifold M a vector in the tangent space TmM . These vectors are the arrows,
and the smoothness takes care that ’the impossible moves’ are excluded. The space of vector
fields on a manifold M is so important, that it deserves an own notation; X(M).

Differential forms There is a dual notion to vector fields, obtained by replacing the
tangent bundle with the cotangent bundle T ∗M . The fibre of the cotangent bundle over m
is the dual T ∗mM of the tangent space TmM . Smooth sections of the cotangent bundle are
called differential 1-forms, or shortly 1-forms. The space of 1-forms on the manifold M is
denoted with Ω1(M). A vector field X and a 1-form α can be combined to a smooth function
on M :

α(X) : M → R : m 7→ α(m)(X(m)).

Therefore a 1-form α can also be seen as a map:

α : X(M) → C∞(M),

where C∞(M) denotes the space of smooth functions on M . This map is C∞(M)-linear, that
means that for all f ∈ C∞(M), fα(X) = α(fX). Dually, a vector field X can be seen as a
C∞(M)-linear map:

X : Ω1(M) → C∞(M).
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The name 1-form for the sections of the cotangent bundle already suggest that there is a
notion of n-forms, where n is a natural number. An n-form is a section of

∧n T ∗M the
n-th exterior product of T ∗M . For a discussion on the notion in of the exterior product we
refer to [12] . The space with n-forms on M is denoted with Ωn(M). There dual notion
is that of n-vector fields, which are sections of the exterior product

∧n TM . The space of
n-vector fields are denoted with Xn(M). In particular Ωn(M) and Xn(M) are empty for all
n > dimM . Analogous to the contruction above we may see n-forms ω as C∞(M)-multilinear
antisymmetric maps:

ω : X(M)× ...× X(M)︸ ︷︷ ︸
n-times

→ C∞(M),

and n-vector fields π as C∞(M)-multilinear antisymmetric maps:

π : Ω1(M)× ...× Ω1(M)︸ ︷︷ ︸
n-times

→ C∞(M).

2-forms and bivectors, will be used frequently in this thesis.

The flow of a vector field Let M be a manifold, let X ∈ X(M), and m ∈ M . We
consider the following differential equation:

X(γ(t)) =
d

dt
(γ(t)), γ(0) = m. (∗)

γ is, a priori, a path in M . It follows from the general theory of ordinary differential equations
that this equation has an unique maximal solution, i.e. there is an open interval Im ⊂ R
containing 0, and a path γ : Im → R, being a solution of (∗), and all other solutions are
restrictions of γ to an interval J ⊂ Im. The path γ is called a integral curve of X through
m.

Definition 1.1.3. A vector field X on M is complete if for each m ∈ M the integral curve
through m is defined for all of R.

Remark 1.1.4. Vector fields on compact manifolds are always complete.

Definition 1.1.5. Let X be a complete vector field on a manifold M . Then the flow ϕX of
X, is a map

ϕX : R×M →M,

which satisfies the following properties:

1. ϕX(t,−) : M →M is a diffeomorphism for all t ∈ R.

2. For all m ∈M , ϕX(−,m) : R →M is the solution curve of X through m.

3. ϕX(t,−) ◦ ϕX(s,−) = ϕX(t+ s,−) = ϕX(s,−) ◦ ϕX(t,−), for any t, s ∈ R.

Such a maps are also called 1-parameter groups. Sometimes we denote the flow with ϕtX .
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Lie derivatives The idea behind Lie derivatives is to measure how functions, forms, and
vector fields change under the flow of a vector field. The Lie derivative of functions, forms and
vector field are still functions, forms and vector fields, respectively. We start with functions.
For f ∈ C∞(M), the Lie derivative of f with along a vector field X is defined by:

X(f)(p) = (LXf)(p) :=
d

dt
|t=0(f ◦ ϕtX(p)) = lim

h→0

f(ϕhX(p))− f(p)

h
.

For differential n-forms α ∈ Ωn(M), we define the Lie derivative along X ∈ X(M) by:

LXα(p) = lim
h→0

((ϕhX)∗α)(p)− α(p)

h
.

Here (ϕhX)∗α is the pull-back of α along fhX . And, finally, for a vector field Y ∈ X(M) we
define the Lie derivative with respect to X by:

(LXY )(p) = lim
h→0

Y (p)− (ϕhX∗Y )(p)

h
.

Here ϕhX∗Y is the push-forward of the vector field Y along ϕhX . One often uses the notation
[X, Y ] forLXY . [·, ·] is a Lie bracket on X(M), i.e. (X(M), [·.·]) is a Lie algebra.

Schouten-Nijenhuis bracket The bracket [·, ·] can be extended to multivector fields. It
is called Schouten-Nijenhuis bracket. We restrict ourself to the Schouten-Nijenhuis bracket,
between elements of X(M) and X2(M). Let π ∈ X2(M), then π =

∑
iAi ∧ Bi, for some

Ak, Bl ∈ X(M). The push forward of π under a homeomorphism φ : M → N , between
2-manifolds is defined by: φ∗π =

∑
ij φ∗Ai∧φ∗Bj. The Lie derivative of π along X is defined

by:

LXπ(p) = [X, π](p) := lim
h→0

π(p)− (φ∗π)(p)

h
.

Definition 1.1.6. For X, Y ∈ X(M), and ρ, π ∈ X2(M), and A,B ∈ X(M), such that
ρ = A ∧B, the Schouten-Nijenhuis bracket is defined by

[X,Y ] = LXY ∈ X(M),

[X, π] = [π,X] = LXπ ∈ X2(M),

[π, ρ] = [ρ, π] = A ∧ [B, π]−B ∧ [A, π] ∈ X3(M),

Projectable vector fields

Definition 1.1.7. Let π : M → N be a submersion between manifolds. A vector field
X ∈ X(M) is called projectable if there is a vector field V ∈ X(N), such that Txπ(X(x)) =
V (π(x)) for all x ∈M . It is also said that X descends to V .
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Lemma 1.1.8. Let π : M → N be a submersion between manifolds. Let X, Y ∈ X(M)
descend to V,W ∈ X(N) respectively, then [X, Y ] descends to [V,W ].

Proof.

Tpπ([X, Y ](p)) = Tpπ(lim
h→0

(
Y (p)− (ϕh∗X Y (p))

h
))

= lim
h→0

(W (π(p))− (π ◦ ϕhX)∗(W (π(p))

h
= LVW = [V,W ].

The exterior derivative An important tool in differential geometry is the exterior deriva-
tive. It is a map

d : Ωk(M) → Ωk+1(M),

which satisfies the following properties:

1. d ◦ d = 0

2. d(ω1 + ω2) = dω1 + dω2

3. If ω1 is a k-form then d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)kω1 ∧ dω2.

This maps exists and the properties above determine d uniquely. We define d here using the
Lie derivative.

Definition 1.1.9. Let M be a manifold. The exterior derivative dω of a k-form ω is defined
by:

(dω)(X1, ..., Xk+1) =
k+1∑
i=1

(−1)i+1Xi(ω(X1, ..., X̂i, ..., Xk+1)) +∑
1≤i<j≤k+1

(−1)i+j(ω([Xi, Xj], X1, ..., X̂i, ..., X̂j, ..., Xk+1)).

where X1, ..., Xk+1 ∈ X(M).

Another way to define the exterior derivative can be found in the appendix The explicit
formula for the exterior derivative of a one form will be used frequently;

(dω)(X, Y ) = X(ω(Y ))− Y (ω(X))− ω([X, Y ]).
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Foliations

Definition 1.1.10. A (regular) distribution D of rank r on a manifold M , is the assignment
to each p ∈M of an r-dimensional subspace Dp of TpM , in a smooth fashion in the following
sense: for every point p there is an open neighbourhood U , and there are vector fields
X1, ....Xr on U , such that they form a basis of Dq at every q ∈ U . In other words D ⊂ TM
is a smooth subbundle of rank r.

We look for connected submanifold P ⊂ M such that for all p ∈ P the tangent space TpP
coincides withDp. Such a submanifold is called an integral manifold of the distribution. More
exactly, if f : P → M is an imbedding of P into M , then is P called an integral manifold if
Tpf(TpP ) = Dp, whenever p ∈ P . P is called a leaf or a maximal integral manifold, if there
is no other integral manifold of D which contains M .

Definition 1.1.11. A distribution D on a manifold M is called integrable if through each
p ∈M there passes an integral manifold of D.

An important way to check if a differentiable distribution is integrable follows from the
theorem of Frobenius.

Theorem 1.1.12 (Frobenius). Let D be a regular k-dimensional distribution on a m-
dimensional manifold M , such that for all vector fields X, Y ∈ Γ(D), [X, Y ] ∈ Γ(D). Then
for every p ∈M there is a coordinate system (x, U) around p, such that

x(U) = (−ε, ε)× ...× (−ε, ε) ⊂ Rm,

for some ε ∈ R, and such that for all ak+1, ..., am, with all |ai| < ε, the set

{q ∈ U : xk+1(q) = ak+1, ..., xm(q) = am}

is an integral manifold of D. Moreover any connected integral manifold of the restriction D|U
is contained in one of these sets.

For a discussion and the proof of this theorem we refer to the book of Spivak, [14]. It follows
that we can equivalently define a distribution D on M to be integrable if Γ(D) is closed under
the Lie bracket, i.e. [X, Y ] ∈ Γ(D) for all X, Y ∈ Γ(D). Note that if we have a integrable
distribution on M , we get a partition of M in submanifolds. These submanifolds lie in some
sense smooth next to each other. This leads to the notion of a foliation.

Definition 1.1.13. A foliation F of a manifold M is a partition of M by immersed k-
dimensional connected submanifolds L ↪→ M , such that around every point m ∈ M there is
a coordinate system (x, U), with

x(U) = (−ε, ε)× ...× (−ε, ε) ⊂ Rm,

such that the connected components of L ∩ U , for L ∈ F are sets of the form
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{q ∈ U : xk+1(q) = ak+1, ..., xm(q) = am}, |ai| < ε.

The elements of F are called the leaves of the foliation.

Definition 1.1.14. Let F be a foliation of a manifold M . TF is the subbundle of TM ,
which is at the point m ∈ M the tangent space at m of the leaf containing m. Sections of
TF are vector fields which are tangent to the leaves of F . They are denoted with X(F ), and
they are called foliated vector fields. Similarly are foliated differential n-forms defined; these
are sections of

∧n T ∗F , and are denoted with Ωn(F).

Singular distributions and Lie algebroids

Definition 1.1.15. A singular distribution D on a manifold M , is the assignment to each
p ∈M of a subspace Dp of TpM .

The dimension of the vector spaces Dp in a singular distribution may vary with respect to
p. In the sequel we meet quite a few possibly singular distributions. The notions of integral
manifolds and leaves for singular distributions are defined as for regular distributions. We call
such a singular distribution integrable if through every point p ∈M , there passes an integral
manifold of D. Unfortunately, for singular distributions there is not such a nice theorem as
the one of Frobenius, which would make it easy to check if a distribution is integrable. A
class of singular foliations which are integrable can be studied using Lie algebroids.

Definition 1.1.16. A Lie algebroid A over a manifold M , is a vector bundle p : A → M ,
together with a bundle map ρA : A → TM , called the anchor map, and a Lie bracket [., .]A
on the space of sections Γ(M,A), which satisfies the following property:

[α, fβ]A = f [α, β]A + (LρA◦αf)β,

for all f ∈ C∞(M).

Remark 1.1.17. ρA induces a map Γ(A) → X(M), also denoted by ρA, where ρA(α)(x) =
ρA(α(x)). Note that ρA is C∞(M)-linear, i.e. ρA(f · α) = f · ρA(α), for all f ∈ C∞(M).

If confusion is unlikely, we sometimes omit the subscript A for the anchor map and the Lie
bracket.

Lemma 1.1.18. ρ : Γ(A) → X(M), is a Lie algebra homomorphism.

Proof. We use the Jacobi identity for [, ]A and the Leibniz rule. Take α, β, γ ∈ Γ(A), and
f ∈ C∞(M).

0 = [[α, β], fγ] + [[fγ, α], β] + [[β, fγ], α]

[[α, β], fγ] = f [[α, β], γ] + Lρ([α,β])(f)γ

[[fγ, α], β] = f [[γ, α], β] + Lρ(β)(f)[γ, α] + Lρ(α)(f)[γ, β] + Lρ(β)Lρ(α)(f)γ

[[β, fγ], α] = f [[β, γ], α]− Lρ(β)(f)[γ, α]− Lρ(α)(f)[γ, β]− Lρ(α)Lρ(β)(f)γ.
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If we add those last three expressions, and use the Jacobi identity another time, we are left
with

Lρ([α,β])(f)γ = L[ρ(α),ρ(β)](f)γ,

for all α, β, γ ∈ Γ(A), and f ∈ C∞(M). Which implies that ρ preserves the bracket.

The image of ρA is a distribution on M , which is not necessarily regular. We call a Lie
algebroid regular if this distribution is regular. For regular Lie algebroids the image of ρA
is integrable by Frobenius theorem, and the previous lemma. To make sense of integrability
for singular Lie algebroids we use the so called A-paths.

Definition 1.1.19. An A-path on a Lie algebroid over a manifold M is a pair (a, γ), where
a : [0, 1] → A is a path in A, and γ : [0, 1] →M is a path in M , such that

1. a lies over γ, in the sense that a(t) ∈ p−1(γ(t)) for all t ∈ [0, 1].

2. ρA(a(t)) = d
dt
γ(t), for all t ∈ [0, 1].

We interpret the a of an A-path as an ‘A derivative’ of the path γ, and one says that A-
derivative is related to the usual derivative by the anchor map. We find a equivalence relation
on M : x and y are equivalent if there is an A-path (a, γ), such that γ joins x and y. The
equivalence classes are called the orbits of A.

Proposition 1.1.20. The orbits of a Lie algebroid A over a manifold M are connected im-
mersed submanifolds of M , which integrate im ρ, i.e. any orbit O is an immersed submanifold,
and ρx(A) = TxO, for all x ∈M .

The proof is based on to the local forms of Lie algebroids.

Remark 1.1.21. By an immersed submanifold we mean that the inclusion map i : O ↪→M
is an injective immersion, but the image is not necessarily closed in M . What could happen
is that an orbit comes arbitrary close to itself.

Example 1.1.22. TM itself is a Lie algebroid over M , where the anchor map is the identity,
and the Lie bracket is the usual Lie bracket for vector fields. For any path γ joining two points
x and y, ( d

dt
γ(t), γ(t)) is a TM -path. Hence the orbits are the path-connected components

of M .

Integration over fibres Let π : M → B be a fibre bundle of fibre type a compact
orientable manifold F . We would like to make sense of integration over the fibre of a form
τ living on the total space. In this paragraph we set: dimM = m, dimB = b. Because F
is orientable, there are nondegenerate forms ω ∈ Ωm−b(F ). These forms are called volume
forms.
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Lemma 1.1.23. Let π : M → B be a fibre bundle and let U ⊂ B be a neighbourhood over
which the bundle is trivial. Differential forms τ ∈ Ωl(π−1(U)), with l ≥ m − b are linear
combinations of forms of the form;

1. τ = (π∗α)f(x, y)η, with η a differential form on F of degree less then m − b, and α a
differential form on U .

2. τ = (π∗α)f(x, y)ω, with ω a volume form on F , and α a differential form on U .

Now the integration map
∫
F

is defined by∫
F

τ = (π∗φ)f(x, y)η = 0

∫
F

(π∗φ)f(x, y)ω = φ

∫
F

f(x, y)ω.

1.2 Symplectic structures

1.2.1 Defintion, examples and obstructions

Symplectic vector spaces Let V be a n-dimensional vector space over R and let Ω :
V × V → R be a skew-symmetric (or anti-symmetric) bilinear form, i.e. satisfying

Ω(u, v) = −Ω(v, u) for all u, v ∈ V,

We call Ω nondegenerate if Ω(u, v) = 0 for a fixed u ∈ V and all v ∈ V implies that u = 0.

Definition 1.2.1. A symplectic vector space (V,Ω) is a vector space V equipped with a
nondegenerate skew-symmetric bilinear form Ω.

Ω is called the symplectic form of V . In a symplectic vector space one can always find a basis
{e1, ..., ek, f1, ..., fk}, such that

Ω(ei, ej) = Ω(fi, fj) = 0

Ω(ei, fj) = −Ω(fj, ei) = 1

Such a basis is called a symplectic basis. The existence of such a basis implies that a
symplectic vector space is always even dimensional. Given a symplectic form Ω, we find
immediately an isomorphism between V and its dual V ∗;

Ω# : V → V ∗, v 7→ Ω(v,−).

The nondegeneracy condition implies that Ω# is an isomorphism.
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Definition 1.2.2. Given a symplectic vector space (V,Ω), and W ⊂ V be a subspace, the
symplectic complement of Ω is defined as

WΩ = {u ∈ V : Ω(u,w) = 0 for all w ∈ W}.

One has:

dimV = dimW + dimWΩ.

We call a subspace W ⊂ V isotropic if Ω|W×W = 0 or equivalently if W ⊂ WΩ, and we call
it symplectic if Ω|W×W is nondegenerate or equivalently W ∩WΩ = {0}.

Symplectic manifolds

Definition 1.2.3. A symplectic manifold (M,ω) is a manifold equipped with a 2-form ω,
such that

• every tangent space TxM together with ωx is a symplectic vector space.

• ω is closed, i.e. dω = 0.

Definition 1.2.4. Let (M1, ω1) and (M2, ω2) be two symplectic manifolds. A diffeomorphism
φ : M1 →M2 is called a symplectomorphism if φ∗ω2 = ω1.

The most basic example of a symplectic manifold is the even dimensional Euclidean space,
R2n, with coordinates (x1, ..., xn, y1, ..., yn), and symplectic form ω =

∑n
i=1 dxi ∧ dyi. A

famous theorem of Darboux which says that all symplectic manifolds locally look like this.
The nondegeneracy of a symplectic form ω implies that the 2n-form

ωn := ω ∧ ... ∧ ω︸ ︷︷ ︸
n−times

is nowhere vanishing, i.e. it is a volume form. It follows that manifolds which admits a
symplectic structure must be orientable.

Example 1.2.5. An example of a symplectic manifold is the 2-dimensional sphere, S2 =
{x ∈ R3 : |x| = 1}, with ω = dh∧ dθ. Here h is the height function, and θ is the angle in the
xy-plane. One would maybe expect that all even dimensional spheres S2n are symplectic,
but that is not the case. If ω is a symplectic form for such a sphere, with n > 1, then ω must
be exact since H2

de Rham = 0. Hence then there is a 1-form ω = dα, and ωn is exact as well:
ωn = d(α ∧ (dα)n−1 := dθ. Using Stokes’ theorem we get:

The area of S2n =

∫
S2n

ωn =

∫
∂S2n

θ = 0,

which is clearly a contradiction. Therefore such a symplectic form does not exist. More gen-
erally we conclude that compact manifolds M , without boundary, and for which H2

de Rham(M)
is trivial, can not have a symplectic structure.
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Example 1.2.6. Another example is the torus T2 = S1 × S1. Let θ1, θ2 be the coordinate
on the both circles. The symplectic form on the torus is now, dθ1 ∧ dθ2.

Cotangent bundle The cotangent bundle of any manifold X carries a symplectic struc-
ture. To see this we first define a 1-form on it.

αtau : T ∗X → T ∗(T ∗X), (x, ξ) → ξ ◦ T(x,ξ)π.

Here π : T ∗X → X is the projection. This 1-form is called the tautological 1-form, and it
has the nice property that if τ ∈ Ω1(X), then τ ∗(αtau) = τ . We define a 2-form on T ∗X by
taking the exterior derivative.

ωcan = −dαtau.

It is possible to describe these forms locally in terms of the coordinates. Let U be a coor-
dinate neighbourhood on X, with coordinates {x1, ..., xn}. For every x ∈ U the differentials
{(dx1)x, ..., (dxn)x} form a basis for T ∗xX. Hence, for a ξ ∈ T ∗xX, we find real numbers
ξ1, ..., ξn such that ξ =

∑n
1 ξi(dxi)x. Now we have coordinates {x1, ..., xn, ξ1, ..., ξn}, for the

2n-dimensional manifold T ∗X. For the tautological 1-form we find

αtau =
n∑
i=1

ξidxi.

And hence,

ωcan =
n∑
i=1

dxi ∧ dξi.

The complex projective space Another example of a symplectic manifold is the complex
space Cn. Elements in this space are written as z = x+ iy, where x, y ∈ Rn. The symplectic
form is then

∑n
i=1 dxi ∧ dyi. There is also a less obvious way to define a symplectic structure

on Cn, the so called Fubini-Study structure. It has the nice property that it induces a
symplectic structure on the complex projective space CP n−1.

Definition 1.2.7. The projective complex space, CP n is de the space of all complex-1-
dimensional subspaces of Cn+1. It is obtained from Cn+1 − {0}, modulo the equivalence
relation (z0, ..., zn) ∼ λ(z0, ..., zn) for λ ∈ C−{0}. We denote the equivalence class ([z0, ..., zn)
with [z0, ..., zn].

Before we can introduce the Fubini-Study structure we have to introduce some more notation.

dzj = dxj + idyj and dz̄j = dxj − idyj
∂

∂zj
=

1

2

(
∂

∂xj
− i

∂

∂yj

)
and

∂

∂z̄j
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
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Note that with these definitions we can write the standard symplectic form on Cn as i
2

∑n
i=1 dzi∧

dz̄i.

A way to find a symplectic form ω which is compatible with the complex structure i.e.
ω(u, v) = ω(iu, iv), is by taking a so called strictly plurisubharmonic function ρ. Then

ω =
i

2
∂∂̄ρ,

is the form we were looking for.

Definition 1.2.8. Let M be a complex manifold. A function ρ ∈ C∞(M ; R) is strictly
plurisubharmonic if, on each local complex chart (U, z1, ..., zn), where n = dimC(M), the

matrix
(

∂2ρ
∂zj∂z̄k(p)

)
is positive definite at all p ∈ U .

A discussion about why such functions give rise to compatible symplectic forms can be found
on chapter 16 of [5]. To obtain the Fubini-Study metric we choose

ρ : Cn → R, z 7→ log(|z|2 + 1)

For this function we find (
∂2ρ

∂zj∂z̄k(z)

)
=
δjk(|z|2 + 1)− zkz̄j

(|z|2 + 1)

Recall that the unitary group U(n) acts transitively on S2n−1, and observe that ρ is invariant
under the action U(n); it depends only on the norm of z. Therefore, to check that the matrix
is positive definite, it is sufficient to check that the matrix is positive definite in our favorite
direction, which is given by the vector v = (1, 0, ..., 0)T . For this vector we have

v∗
(

∂2ρ

∂zj∂z̄k(z)

)
v =

|z|2 + 1− z1z̄1

(|z|2 + 1)2
> 0

So ρ is strictly plurisubharmonic. Let Ui be the open subset in Cn defined by zi 6= 0. To
come to the projective space we study the behaviour of ρ and its induced 2-form under the
biholomorphic bijective map

ϕi : Ui → Ui, (z1, ..., zn) 7→
1

zi
(z1, .., zi−1, 1, zi+1..., zn).

We take the pull-back of ρ along ϕ.

ϕ∗i ρ(z) = log(
1

zi
(|z|2 + 1)) = ρ(z)− log(zi)− log(z̄i).

Observe that the last two terms are holomorphic respectively anti-holomorphic. Hence
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∂∂̄(log(zi)− log(z̄i)) = 0.

And we get

ϕ∗1(∂∂̄ρ(z)) = ∂∂̄ϕ∗i ρ(z)

= ∂∂̄(ρ(z)− log(zi)− log(z̄i))

= ∂∂̄ρ(z)

Which implies the invariance under ϕi of the Fubini-Study structure on Cn.

Coadjoint orbits. Another important family of symplectic manifolds is given by the orbits
of the coadjoint action of a Lie group G, on the dual g∗ of its Lie algebra. A Lie group G
acts on itself by conjugation.

Cg : G→ G, h 7→ ghg−1.

The Lie algebra of a Lie group is the tangent space of G at its unit element e. If we take the
tangent map of Cg in e we obtain a map g → g. In this way we find a map

Ad : G→ GL(g), g 7→ TeCg = Ad(g).

This is called the adjoint action of G on g. If we take again the tangent in e, but now from
Ad, we get a map

ad : g → gl(g).

If X is an element of g, we obtain a vector field vX on G, by

vX(x) = Te(lx)X,

where lx is the left multiplication by x.

Denote with αX the maximal integral curve of vX , with starting point e. The exponential
map is defined as

exp : g → G,X 7→ αX(1).

We obtain the following commuting diagram.

G
Ad // GL(g)

g ad //

exp

OO

gl(g)

exp

OO
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G acts on the dual of its Lie algebra with the so called coadjoint action Ad∗, which is defined
by

〈
Ad∗g(ξ), Y

〉
= 〈ξ,Adg−1(X)〉 , for all Y ∈ g.

Here 〈ξ,X〉 = ξ(X) is the natural paring of g∗ and g. We denote the orbit of this action
through a ξ in g∗ with Oξ.

Lemma 1.2.9. The orbits of the coadjoint action of G on the dual of its Lie algebra g∗ have
a symplectic structure.

Proof. The coadjoint action gives rise to a vector field X# on g∗, for every X ∈ g. Let ξ ∈ g∗,
then for every Y ∈ g, X# is defined by

〈
X#
ξ , Y

〉
=

d

dt |t=0
Ad∗exp(tX)(ξ)(Y )

=
d

dt |t=0

〈
ξ,Adexp(−tX) Y

〉
= 〈ξ, [Y,X]〉

The tangent space of the orbit through ξ is generated by the vector fields X#
ξ . To see this,

we define for every ξ ∈ g∗ a bilinear form on g;

ωξ(X, Y ) = 〈ξ, [X, Y ]〉 .

The kernel of this bilinear form (i.e. {X ∈ g : ωξ(X, Y ) = 0 for allY ∈ g}) is the Lie algebra
of the stabilizer of ξ under the adjoint action. So, if we restrict this bilinear form to the orbit
of ξ, we get a nondegenerate 2-form. It remains to show that this form is closed. Let, X, Y, Z
be in g tangent to the orbits.

dωξ(X,Y, Z) = −(ωξ([X,Y ], Z) + ωξ([Z,X], Y ) + ωξ([Y, Z], X))

+ LZωξ(X, Y ) + LY ωξ(Z,X) + LXωξ(Y, Z)

= −ξ([[X,Y ], Z] + [[Z,X], Y ] + [[Y, Z], X]) + 0 = 0

Here we used the Jacobi identity in g.

Moser’s stability theorem Often, one can find more then one symplectic form on a
compact manifold M . An interesting question is then: if M equipped with two different
symplectic forms ω0 and ω1, is there a diffeomorphism φ : M →M , such that φ∗ω0 = ω1? If
they are symplectomorphic, it would be interesting to know if we can deform one smoothly
into another, i.e. if there is a smooth family ωt of symplectic forms joining ω0 to ω1. It would
also be interesting if there was a family of symplectomorphisms, such that φ∗tωt = ω0. A

20



necessary condition is that ω0 and ω1 live in the same De Rham-cohomology class. Moser
proved that such a family exists, provided one extra condition. The exact formulation of this
theorem, taken from [5], is as follows.

Theorem 1.2.10 (Moser). Let M be a compact manifold. Suppose that [ω0] = [ω1] and
that the 2-form ωt = (1 − t)ω0 + tω1 is symplectic for each t ∈ [0, 1]. Then there exists an
isotopy φ : M × R →M , such that φ∗tωt = ω0 for all t ∈ [0, 1].

Proof. This theorem is proved by a trick called the Moser trick. The idea behind it is to
show that the existence of the isotopy depends on the solution of a differential equation, and
that this equation can be solved if [ω0] = [ω1]. Here is the exact trick. Suppose that there is
a isotopy φ : M × R →M such that φ∗tωt = ω0, for 0 ≤ t ≤ 1. Let

vt =
dφt
dt

◦ φ−1
t , t ∈ R.

Then we find the following equivalence.

0 =
d

dt
(φ∗tωt) = φ∗t (Lvtωt +

dωt
dt

)

⇔
Lvtωt +

dωt
dt

= 0(∗)

Conversely suppose that we can find a smooth time-dependent vector field vt, t ∈ R, which
satisfies this last differential equation (*). M is compact, so we can integrate vt to an isotopy
φt : M × R → R, with

d

dt
(φ∗tωt) = 0.

Which implies that φtωt = φ0ω0 = ω0. So all we have to do is to find a solution of the
differential equation (*). For this we use the assumptions on ω0 and ω1. Because ωt =
(1− t)ω0 + tω1, we have

dωt
dt

= ω1 − ω0

ω1 and ω0 live in the same de Rham cohomology class, so there is a 1-form µ such that

ω1 − ω0 = dµ.

Next we observe with Cartan’s formula and because ωt is closed by assumption that

Lvtωt = dι(vt)ωt + ι(vt)dωt = dι(vt)ωt.
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Hence the original differential equation is reduced to

dι(vt)ωt + dµ = 0.

By the nondegeneracy of ωt this can be solved pointwise. The result is an unique smooth
vector field vt.

Theorem 1.2.11 (Darboux). Let (M,ω) be a symplectic manifold, and let p be any point
in M . Then we can find a coordinate system (U, x1, ...xn, y1, ..., yn) centered at p such that
on U

ω =
n∑
i=1

dxi ∧ dyi.

Proof. Choose a symplectic basis for TpM , and use this to contruct coordinates U ′, x′1, ..., x
′
n, y

′
1, ..., y

′
n

around p such that

ωp =
n∑
i=1

dxi ∧ dyi|p.

On U ′ we now have 2 symplectic forms. ω0 = ω, and ω1 =
∑n

i=1 dxi ∧ dyi. Let ωt =
tω1 + (1 − t)ω0. Then ωt(p) = ω0(p) = ω1(p). Being symplectic is an open condition,
hence by the compactness of [0, 1], there is an open neighbourhood U of p, such that ωt is
symplectic on U1. By Moser’s theorem there is a symplectomorphism ϕ : (U, ω0) → (U, ω1)
with ϕ(p) = p. We obtain the desired coordinate system by setting the new coordinates
xi = x′i ◦ ϕ, yi = y′i ◦ ϕ.

1.2.2 Hamiltonian actions and the Hamiltonian group

Hamiltonian vector fields Let (M,ω) be a symplectic manifold. A vector field X on M
is called a symplectic vector field if its flow preserves the symplectic form ω, i.e.

ϕt∗Xω = ω

Naturally, we find in that case, using that ω is closed,

0 = LXω = ι(X)dω + dι(X)ω = dι(X)ω.

The first De Rham cohomology group of a coordinate neighborhood is trivial so, at least
locally, we find a function f such that

ι(X)ω = −df

If we find such a function globally, then we call X a Hamiltonian vector field.
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Definition 1.2.12. A vector fieldX on on a symplectic manifold (M,ω) is called Hamiltonian
if there is a function H : M → R, such that

ι(X)ω = −dH

The function H, is then called the Hamiltonian function of X.

Conversely, starting from a f ∈ C∞(M), we find a Hamiltonian vector field Xf , for which
f is the Hamiltonian function. To see this, we observe that there is at each m ∈ M an
isomorphism

TmM → T ∗mM, v → ω(v,−).

Such a vector field is a symplectic vector field as we see by the following computation:

LXf
ω = dι(Xf )ω + ι(Xf )dω = −ddf = 0

The flow of a Hamiltonian vector field preserves not only the symplectic form, but it also
preserves its Hamiltonian function.

LXf
f = dι(Xf )f + ι(Xf )df = ι(Xf )ι(Xf )ω = 0.

The cotangent bundle of a manifold M has a canonical symplectic form ωcan and a canonical
1-form αtau, which are related by ωcan = −dαtau. If f : M →M is a diffeomorphism, then it
can be lifted to a diffeomorphism

F : T ∗M → T ∗M, (x, v∗) 7→ (f(x), ((Txf)∗)−1v∗).

In particular, F is a symplectomorphism: F ∗ωcan = ωcan. But, even stronger, it pre-
serves αtau. We have a look to a certain set of diffeomorphisms from M to itself: the
1-parameter group of diffeomorphisms, ψt : M → M , generated by a vector field Y . Let
X : T ∗M → TT ∗M be the vector field which generates the lifts Ψt : T ∗M → T ∗M . Then X
is a Hamiltonian vector field with Hamiltonian function

H : T ∗M → R : (m, v∗) 7→ v∗(Y (m))

The Lie derivative of αtau with respect to X is zero. Therefore

ι(X)ωcan = −dι(X)αtau,

and hence, it is sufficient to prove that H = ι(X)αtau. By the construction of X, we have

dπ ◦X = Y ◦ π : T ∗M → TM
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Here π : T ∗M →M is the projection. We have:

ι(X)αtau(m, v
∗) = αtau(m, v

∗)(X(m, v∗))

= v∗ ◦ dπ ◦X(m, v∗)

= v∗ ◦ Y ◦ π(m, v∗)

= H(m, v∗)

Here we used that αtau(m, v
∗) = v∗ ◦ dmπ.

Hamiltonian group actions Let (M,ω) be a symplectic manifold, and let G be a group
acting on it. This means that we have a group homomorphism ψ : G → Diff(M). For a
complete vector field on M , then its flow ϕtX is an 1-parameter group of diffeomorphisms.
Hence, every complete vector field gives rise to an action of R on M .

Definition 1.2.13. An action ψ is called a symplectic action, if for all g ∈ G, ψg ∈
Symp(M,ω).

Clearly, a symplectic action gives rise to a symplectic vector field and vice versa.

Definition 1.2.14. An action of R is called Hamiltonian if it is generated by a Hamiltonian
vector field.

If G is not R, but another Lie group, then we can act with R on M via G. Let X ∈ g. Then
we obtain a 1-parameter group of diffeomorphisms of M , by ψexp(tX). Denote with X• the
corresponding vector field.

Definition 1.2.15. An action ψ : G×M → M of a Lie group G on a symplectic manifold
(M,ω) is Hamiltonian if there is a map

µ : M → g∗

such that,

1. dµX = ι(X•)ω, where µX : M → R, p 7→ 〈µ(p), X〉.

2. µ is equivariant with respect to the given action ψ of G, and the coadjoint action Ad∗

of G on g∗:
µ ◦ ψg = Ad∗g ◦ µ, for all g ∈ G.

The map µ is called the moment map of the action.

We call (M, G, µ) a Hamiltonian G-space. Hamiltonian actions appear in a natural way, as
will see in the next two examples
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Example 1.2.16 (The action of G on T ∗G). G acts on its own cotangent bundle T ∗G by

G× T ∗G→ T ∗G, (g, (h, v∗)) 7→ (hgHgnv, rTg∗v
∗)

where rTg∗ is the transpose of rg∗. For every g ∈ G we define a map

Lg : g → TG, ξ 7→ (g, lg∗(ξ)).

For all ξ ∈ g the 1-parameter group t 7→ rexp(−tξ) is generated by the vector field

G→ TG : g 7→ Lgξ.

The lift of the action by rg−1 , is exactly the action G on T ∗G. Hence G acts Hamiltonian on
T ∗G, with moment map

µ : T ∗G→ g∗, (h, v∗) 7→ −L∗gv∗

Example 1.2.17. This example is similar to the previous one. If P is a principal G-bundle,
then G-acts on T ∗P :

G× T ∗P, (g, (p, η)) 7→ (pg−1, rg−1∗η).

This a Hamiltonian action with moment map

µP : T ∗P → g∗, (p, η) 7→ −L∗pη.

Here is Lp : g → TP , ξ 7→ p · ξ = d
dt
|t=0p exp(tξ).

The Marsden-Weinstein quotient The goal of this section is to prove the following
theorem.

Theorem 1.2.18 (Marsden-Weinstein-Meyer). Let (M,ω,G, µ) be a Hamiltonian G-
space for a compact Lie group G. Let i : µ−1(0) ↪→M be the inclusion map. Assume that G
acts freely on µ−1(0), then µ−1(0)/G is a manifold, and there is a symplectic form ωred on
µ−1(0)/G, satisfying i∗ω = π∗ωred.

Definition 1.2.19. The action of a group G on a set M is called free if for all elements
m ∈M the stabilizers the unity element e.

Denote with gp the Lie algebra of the stabilizer of p ∈ M , let g◦p ⊂ g∗p be its annihilator.
Denote with orb(p) the the orbit of p in M .

Lemma 1.2.20. The map dµp : TpM → g∗ has as kernel (Tp orb(p))ωp, and it has as image
g◦p.
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Proof. µ is the moment map of a Hamiltonian action. So for all v ∈ TpM and X ∈ g, we
have

ωp(X
•
p , v) = 〈dµp(v), X〉 .

Moreover, observe that Tp orb(p) = {X•
p : X ∈ g}. If X ∈ gp, then

X•
p =

d

dt
|t=0p exp(tX) =

d

dt
|t=0p = 0.

Now we are ready to compute the kernel of dµp. Let v 6= 0 be in this kernel, then

0 = 〈dµp(v), X〉 = ωp(X
•
p , v).

Which is equivalent with v ∈ Tp orb(p)ωp . In order to prove that im(dµp) ⊂ g◦p we take X ∈ gp
and v ∈ TpM .

〈dµp(v), X〉 = ωp(X
•
p ) = 0.

So dµp(v) is indeed in the annihilator of gp. To finish the prove we count the dimensions of
the spaces involved.

dim orb(p) + dim gp = dim g

dim g◦p + dim gp = dim g, hence

dim g◦p = dim orb(p).

dimM = dim ker dµp + dim im dµp

= dimM − dim orb(p) + dim im dµp

Finally we find
dim im dµp = dim g◦p

and we may conclude that these spaces are the same.

If an action is locally free in a point p ∈ M , then is the stabilizer trivial and hence is µ a
submersion in p. Now G acts freely on µ−1(0), so 0 is a regular value of µ and µ−1(0) is a
closed submanifold of M .

Lemma 1.2.21. Let (V, ω) be a symplectic vector space. Suppose that W is an isotropic
subspace, i.e., W ⊂ W ω. Then ω induces a canonical symplectic form Ω on W ω/W .

Proof. Let u, v ∈ W , and denote [u], [v] for their respective classes in W ω/W . Define

Ω([u], [v]) = ω(u, v)
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It has to be checked that Ω is welldefined and nondegenerate. For the welldefinedness we
compute for all i, j ∈ W

ω(u+ i, v + j) = ω(u, v) + ω(u, j) + ω(i, v) + ω(i, j) = ω(u, v).

To check the nondegeneracy suppose that u ∈ W ω, such that ω(u, v) = 0 for all v ∈ W ω,
then u ∈ (W ω)ω = W , and then [u] = 0.

Theorem 1.2.22. Let G be a compact Lie group which acts freely on a manifold M, then
M/G is a manifold.

Proof. See[5] page 143.

Proof of the Marsden-Weinstein theorem. G act freely on µ−1(0), hence then µ−1(0) is a
closed submanifold of M . By the previous theorem µ−1(0)/G is a manifold. Using lemma
1.2.21 we see that all what is left to prove is that the orbits of G in µ−1(0) are isotropic. For
p ∈ µ−1(0) we have

Tp orb(p) ⊂ Tpµ
−1(0) = Ker(dµp) = (Tp orb(p))ωp .

The flux homomorphism We study some properties of the group of symplectomorphisms
Symp(M,ω). We assume, throughout this section, that M is compact and without boundary.
Symp(M,ω) is a locally path connected Lie group. Denote with Symp0(M,ω) the identity
component of Symp0(M,ω). That means that for all ψ ∈ Symp0(M,ω) there is an isotopy
ψt, such that ψ0 = id and ψ1 = ψ. Such a isotopy induces a family of symplectic vector
fields, by the following relation.

d

dt
ψt = Xt ◦ ψt.

If, moreover, for all t ι(Xt)ω is exact, then the ψt are Hamiltonian symplectomorphisms.
Ham(M,ω) denotes the set of Hamiltonian symplectomorphisms.

Lemma 1.2.23. Ham(M,ω) ⊂ Symp(M,ω) is a normal and pathconnected subgroup.

Proof. Let ψt and φt be Hamiltonian isotopies which are generated by Ht and Gt respectively
and let Xt and Yt be their respective families of vector fields. Then φt ◦ ψt is a symplecto-
morphism for all t. Define the vector fields:

Zt = φt∗ ◦Xt ◦ φ−1
t + Yt.

This family of vector fields satisfies:
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d

dt
(φt ◦ ψt) = φt∗ ◦Xt + Yt ◦ φt ◦ ψt = (φt∗ ◦Xt ◦ φ−1

y + Yt) ◦ φt ◦ ψt,

and

ι(Zt)ω = ι((φ−1
t )∗Xt + Yt)ω = d(Ht ◦ φ−1

t +Gt).

So φt ◦ψt is a Hamiltonian isotopy with Hamiltonian function Ht ◦ φ−1
t +Gt. With a similar

computation we see that

Zt = −ψ−1
t∗ ◦Xt ◦ ψt,

is the family of vector fields corresponding to ψ−1
t , with Hamiltonian function −Ht ◦ ψt.

So, Ham(M,ω) is a subgroup of Symp(M,ω). Moreover, for any φ ∈ Symp(Mω) Ht ◦ φ
generates the isotopy φ−1 ◦ ψt ◦ φ, hence Ham(M,ω) is a normal subgroup. Ham(M,ω) is
path-connected by its very definition.

Soon we will define the flux homomorphism. The flux homomorphism is a homomorphism

between the universal cover, S̃ymp0(M,ω), of Symp0(M,ω), which exists out of homotopy
classes of smooth paths {ψt} in Symp0(M,ω), and the cohomology group, H1(M,R). The
flux homomorphism is of our interest, since Ham(M,ω) appears exactly as its kernel. First
we recall that there is a natural identification:

H1(M,R) ∼= Hom(π1(M),R)

α 7→ ([γ] 7→
∫
γ

α).

Definition 1.2.24. The flux homomorphism, Flux : S̃ymp0(M,ω) → H1(M,R) is defined
by:

Flux({ψt}) =

∫ 1

0

[ι(Xt)ω]dt.

Here is Xt induced by ψt as above.

We have to prove that this is a welldefined homomorphism, i.e it depends only on homotopy
classes. By the identification given above, the Flux({ψt}) corresponds to the homomorphism:

γ 7→
∫ 1

0

∫ 1

0

ω(Xt(γ(s)), γ̇(s))dsdt.

We define the map β : S1 × [0, 1] → M, (s, t) 7→ (ψ−1
t (γ(s))), and we get ψt(β(s, t)) = γ(s).

If we differentiate this with respect to s and t we get, since ∂
∂t
ψt = Xt ◦ ψt,
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∂

∂s
[ψt(β(s, t))] = dψt(β(s, t))

∂β

∂s
= γ̇(s)

∂

∂t
[ψt(β(s, t))] = (Xt ◦ ψt(β(s, t)) + dψt(β(s, t))

∂β

∂t
= 0.

Therefore, we have:

Flux({ψt})(γ) =

∫ 1

0

∫ 1

0

−ψ∗tω(
∂β

∂t
,
∂β

∂s
)dsdt

=

∫ 1

0

∫ 1

0

ω(
∂β

∂s
,
∂β

∂t
)dsdt,

since ψ∗tω = ω. This last expression depends on the homotopy class of β only. β is dependent
on ψt with fixed endpoint. Therefore the Flux depends only on the homotopy class of ψt
with ψ0 = id, and ψ1 = ψ,and hence it is well-defined. It is left to prove that the Flux is a
homomorphism. To see that, recall that if ψt generates Xt and φt generates Yt, then φt ◦ ψt
generates Xt + (ψ−1

t )∗Yt. Therefore;

Flux({φt}{ψt}) =

∫ 1

0

[ι(Xt + (ψ−1
t )∗Yt)]ωdt

=

∫ 1

0

[ι(Xt)]ωdt+

∫ 1

0

[ι((ψ−1
t )∗Yt)]ωdt

= Flux({φt}) + Flux({ψt}),

and the Flux is a homomorphism. Now we come to our main theorem of this section.

Theorem 1.2.25. Let ψ ∈ Symp0(M,ω). Then ψ is a Hamiltonian symplectomorphism
if and only if there exists a symplectic isotopy ψt with ψ0 = id, and ψ1 = ψ, such that
Flux({ψt}) = 0. Moreover, if the Flux({ψt}) = 0, then {ψt} is isotopic with fixed endpoints
to a Hamiltonian isotopy.

In the proof of this theorem we will integrate families of vector fields. With
∫ 1

0
Xtdt we mean

the vector field:

∫ 1

0

Xtdt : M → TM,m 7→ lim
n→∞

n∑
1

Xti(m)−Xti−1
(m).

Here the ti make a partition of [0, 1], such that the mesh of this partitions goes to zero, if
n→∞.
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Proof. Let ψ be Hamiltonian, then it is the endpoint of a Hamiltonian isotopy ψt, corre-
sponding to a family of Hamiltonian functions. We get

Flux({ψt}) =

∫ 1

0

[ι(Xt)ω] =

∫ 1

0

[dHt]dt.

Elements in this last class are clearly exact, so indeed

Flux({ψt}) = 0

For the converse we start with a isotopy class {ψt}, for which the flux is zero. We want to
change this isotopy such that ι(Xt)w is exact. We make use of the following lemma:

Lemma 1.2.26. ι(Xt)ω is exact for all t ∈ [0, 1], precisely if
∫ T

0
ι(Xt)ωdt is exact for all

T ∈ [0, 1].

Proof. Proof of the lemma. Let there be for all t ∈ [0, 1], functions ft such that,
∫ T

0
[ι(Xt)ω]dt =

dft. Then

∫ T

0

ι(Xt)ωdt =

∫ T

0

dftdt = d

∫ T

0

ftdt,

i.e.
∫ T

0
ι(Xt)ωdt is exact. The other way round, if

∫ T

0
ι(Xt)ωdt is exact for all T ∈ [0, 1], then

it is in particular closed. We get, using lemma ??, that ι(Xt)ω is exact for all t ∈ [0, 1].

Flux({ψt}) = 0, and hence there is a function F : M → R, such that∫ 1

0

ι(Xt)ωdt = dF.

Let φs be the Hamiltonian flow of F . Then it is the flow of a vector field Y , such that
ι(Y ) = dF . Therefore

ι(Y )ω =

∫ 1

0

ι(Xt)ωdt,

hence Y =
∫ 1

0
Xtdt. Now we change the ψt by juxtaposition with φs. It we get an isotopy

ψ′t = { ψ2t if 0 6 t 6 1
2

φ1−2t if 1
2

6 t 6 1.

This isotopy generates a vector field X ′
t, which we integrate:∫ 1

0

X ′
tdt =

∫ 1

0

Xtdt−
∫ 1

0

Y dt = Y − Y = 0.
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Without loss of generality, we may assume in that ψt is an isotopy such that
∫ 1

0
ι(Xt)ωdt = 0,

and
∫ 1

0
Xtdt = 0. For every t ∈ R, define the symplectic vector field.

Zt =

∫ t

0

Xsds,

which flow we denote with ζtr. Now we consider the isotopy φt = ζtr ◦ ψt. Observe that
ζ0
r = ζ1

r = id, and therefore we have

φ0 = id, φ1 = ψ.

φt is our desired Hamiltonian isotopy. We check this:

Flux({φt}0≤t≤T ) = Flux({ζt1}0≤t≤T ) + Flux({ψt}0≤t≤T )

= Flux({ζTr }0≤r≤1) +

∫ T

0

[ι(Xt)ω]dt

= [ι(YT )ω] +

∫ T

0

[ι(Xt)ω]dt = 0.

1.3 Poisson geometry

The Poisson bracket The idea of Poisson geometry is to look to the properties of the
space of smooth functions on a manifold: C∞(M). A Poisson structure on a manifold is
defined in terms of a bracket on this space.

Definition 1.3.1. A Poisson bracket on a manifold M is a map

{., .} : C∞(M)× C∞(M) → C∞(M),

such that the following properties are satisfied:

1. C∞(M) equipped with a {, } is a Lie algebra, i.e. for all f, g ∈ C∞(M):

{f, g} = −{g, f} (skew-symmetry),
{{f, g}, h}+ {{h, f}, g}+ {{g, h}, f} = 0 (Jacobi-identity),

2. {., .} satisfies a Leibniz rule:

{f, gh} = {f, g}h+ g{f, h}
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Definition 1.3.2. A manifoldM with a Poisson bracket {., .} is a Poisson manifold (M, {., .}).

Example 1.3.3. Any symplectic manifold (M,ω) is a Poisson manifold. Recall that for every
function f ∈ C∞(M) there is Hamiltonian vector field Xf on M , such that ι(Xf )ω = −df .
The Poisson bracket on M is defined by;

{f, g} = ω(Xf , Xg).

This bracket is clearly skew-symmetric, and since ω(Xf , Xg) = −df(Xg) = dg(Xf ) = LXf
g =

−LXgf , the Leibniz rule follows directly from the Leibniz rule for the exterior derivative. We
have to check the Jacobi identity. First we compute the exterior derivative of {g, f}:

d{f, g} = dLXf
g = LXf

dg = −LXf
(ι(Xg)ω) = −ι([Xf , Xg])ω.

Here we used that LXf
ω = 0 in the formula:

ι([Xf , Xg])ω = LXf
(ι(Xg)ω)− ι(Xg)LXf

ω.

This expression for d{f, g} implies:

X{f,g} = [Xf , Xg].

We take an arbitrary h ∈ C∞(M), and let this work on both sides:

{{f, g}, h} = X{f,g}(h) = [Xf , Xg](h)

= Xf (Xg(h))−Xg(Xf (h))

= Xf ({g, h})−Xg({f, h})
= {f, {g, h}} − {g, {f, h}}.

This equation is equivalent to the Jacobi identity, which one can see by rearranging compo-
nents using the skew symmetry of the Poisson bracket.

Poisson bivector There is an equivalent way to define a Poisson manifold. Let π be a
bivector on M . Recall that we may consider π as a map:

π : Ω1(M)× Ω1(M) → C∞(M).

A bracket is now defined by:

{f, g} = π(df, dg).
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This bracket may fail to satisfy the Jacobi identity. It satisfies this identity exactly if π yields
[π, π] = 0 for the Schouten-Nijenhuis bracket. In that case we call π a Poisson bivector. This
construction gives rise to a bundle map:

π# : T ∗M → TM, µ 7→ π#(µ),

with ν(π#(µ)) = π(µ, ν) for all ν ∈ T ∗M .

Poisson maps and submanifolds

Definition 1.3.4. A map ϕ : (M,πN) → (N, πN) between two Poisson manifolds is called a
Poisson map if for all f, g ∈ C∞(N)

{f ◦ ϕ, f ◦ ϕ}M = {f, g}N ◦ ϕ.

Definition 1.3.5. A Poisson map ϕ : (M,πN) → (N, πN) which is a diffeomorphism is called
a Poisson diffeomorphism.

There is not a well defined way to pull-back a Poisson structure along a map, unless this map
is a diffeomorphism. Therefore the definition of a Poisson submanifold looks a bit ugly.

Definition 1.3.6. A Poisson submanifold (M,πM) ⊂ (N, πN) is a submanifold such that the
immersion i : M ↪→ N is a Poisson map.

Note that not on all submanifolds of N , such a Poisson structure exists. If it exists, then it is
unique. Later we will derive some conditions for submanifolds, which guarantee the existence
of the Poisson structure.

Hamiltonian vector fields Given a function f ∈ C∞(M), we get a derivation {f, .} on
C∞(M). There is an one-to-one correspondence between derivations on C∞(M) and vector
fields X(M): for every f ∈ C∞(M), there is a Xf ∈ X(M), such that for all g ∈ C∞(M)

{f, g} = LXf
g.

Definition 1.3.7. A vector field X on a Poisson manifold (M, {., .}) is called a Hamiltonian
vector field if there is a f ∈ C∞(M), such that for all g ∈ C∞(M)

{f, g} = LXg.

The function f is then called the Hamiltonian function of X.

Hamiltonian vector fields are not dependent on the function, but on the exterior derivative
of the function. In relation with the bundle map π# it yields Xf = π# ◦ df . In the case that
M is a symplectic manifold we found that {f, g} = LXf

g for the Hamiltonian vector field we
defined above. So, the two definitions of Hamiltonian vector fields are compatible.
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Group actions Like in symplectic geometry we distinguish some types of group actions of
Lie groups G. Let ρ : G ×M → M be such an action. Denote with ρg : M → M the map
one gets if one fixes an element g ∈ G.

Definition 1.3.8. We call an action on a Poisson manifold (M,π) a Poisson action if ρg is
a Poisson map for all g ∈ G.

Definition 1.3.9. Let (M, {., .}) be a Poisson manifold, and let G act on it in a Poisson
fashion. The action is called Hamiltonian if there is a moment map:

µ : M → g∗,

such that for all X ∈ g, X̃ = π#(dµX), where µX : X → R : p 7→ 〈µ(p), X〉.

Note that in this situation X̃ is the Hamiltonian vector field of the function µX . The definition
seems therefore suitable.

Symplectic foliation and the splitting theorem Let (M,π) be a Poisson manifold. We
have seen that this means that we have a bundle map

π# : T ∗M → TM.

The image π#(T ∗M) ⊂ TM is a distribution, which we denote with D, and which is not
necessarily regular.

Lemma 1.3.10. Let (M,π) be a Poisson manifold. Dm = π#
m(T ∗mM) ⊂ TmM is a symplectic

vector space, for every m ∈M . On Dm the symplectic form ωm is defined by:

ωm(u, v) = π(α, β).

Here is π#(α) = u, and π#(β) = v.

Proof. First we prove that ωm is well-defined. Suppose that α′ ∈ T ∗mM , such that π#(α′) = u.
Then

π(α− α′, β) = β(π#(α))− β(π#(α′)) = 0.

Therefore π(α, β) = π(α′, β), and hence ωm is well-defined. That ωm is skew-symmetric
follows directly from the skew-symmetry of π. Suppose that ωm(u, v) = 0 for all v ∈ Dm,
then it yields for all β ∈ T ∗mM , that β(u) = 0. Which implies that u = 0. We conclude that
ωm is nondegenerate, and really defines a symplectic structure on Dm.

Definition 1.3.11. Let (M,π) be a Poisson manifold. The distribution D = im π#(T ∗M)
is called the symplectic distribution of π.
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It is natural to wonder if this distribution is integrable to a foliation, and if that is the case
if the symplectic forms on the tangent spaces can be extended to symplectic forms on the
leaves. The answer is yes, as we will later see using Lie algebroids. The following theorem
describes the local structure of Poisson manifolds.

Theorem 1.3.12 (The splitting theorem, Weinstein). Let (M,π) be a Poisson manifold
and choose x ∈ M arbitrary. Denote rank πx = 2k, and let dimM = 2k + l = m. There
exists a neighbourhood centered as x with coordinates (q1, ..., qk, p1, ..., pk, y1, ...yl), such that

π =
k∑
i=1

∂

∂qi
∧ ∂

∂pi
+

∑
φij(y)

∂

∂yi
∧ ∂

∂yj
,

with φij(0) = 0.

Proof. In case k = 0 we are done. If k > 0, then there are two functions f, g ∈ C∞(M),
such that {f, g}(x) 6= 0. Label g = q1. Because Xq1(f)(x) = {f, g}(x) 6= 0, we have Xq1 6= 0.
One can find local coordinates x1, ..., xm around x, such that ∂

∂x1
= Xq1 . Then {q1, x1} =

∂
∂x1

(x1) = 1. Now choose p1 to be x1. Note that Xp1 and Xq1 are linear independent at x,
because otherwise 1 = Xp1(q1)(x) = {q1, λq1}(x) = 0, which is clearly a contradiction. Linear
independence of vector fields is an open condition, so Xq1 and Xp1 are linear independent
on a neighbourhood of x. Since [Xq1 , Xp1 ] = X{q1,p1} = 0, we can use Frobenius theorem to
find a two dimensional foliation, i.e. we find local coordinates p1, q1, y3, ..., ym round x, such
that {p1, q1} = 1, {p1, yi} = {q1, yi} = 0. The Jacobi identity implies that {p1, {yi, yj}} =
{q1, {yi, yj}} = 0. Which means that ∂

∂q1
{yi, yj} = ∂

∂p1
{y1, yj} = 0. So, in this coordinates

the bivector is of the form:

π =
∂

∂p1

∧ ∂

∂q1
+

∑
ij

φij(y)
∂

∂yi
∧ ∂

∂yj
.

If k = 1 we are done, otherwise we can find two functions h, k ∈ C∞(M), such that
{h, k}(x) 6= 0, and, moreover, such that Xp1(x), Xq1(x), Xh(x), Xk(x), are linear indepen-
dent. With this functions we repeat the construction.

Remark 1.3.13. The splitting theorem states that all Poisson manifolds look locally like the
product of a transversalN and some symplectic plaques. These transversal Poisson structures
are unique up to Poisson diffeomorphisms, as we will see later using Dirac geometry.

Proposition 1.3.14. The space of 1-forms Ω1(M) on a Poisson manifold (M,π) is a Lie
algebroid over M with anchor map π#. The bracket on the sections is defined by:

[., .]π : Ω1(M)× Ω1(M) → Ω1(M)

[α, β]π = Lπ#(α)β − Lπ#(β)α − d(π(α, β))

= ι(π#(α))dβ − ι(π#(β))dα+ d(π(α, β)).
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Proof. We have to prove that [, ]π is a Lie bracket, and that it satisfies the Leibniz rule:

[α, fβ]π = f [α, β]π + (Lπ#(α)f)β.

We start with the Leibniz rule.

[α, fβ]π = ι(π#(α))d(fβ)− fι(π#(β))dα+ d(fπ(α, β))

= f [α, β]π + ι(π#(α))df ∧ β + π(α, β)df

= f [α, β]π + (ι(π#(α)))β

= f [α, β]π + (Lπ#(α))β.

It is left prove that [, ]π is a Lie bracket. [, ]π is clearly skew symmetric. First we check the
Jacobi identity on two exact forms; df dg. If we put those in our second expression for the
bracket we get:

[df, dg]π = d(π(df, dg)) = d{f, g}.

So the Jacobi identity for the exact forms is equivalent with the Jacobi identity for the Poisson
bracket. Because all 1-forms are locally linear combinations of functions times exact 1-forms,
it is sufficient to check the Jacobi identity for (fdx, dy, dz), where f, x, y, z ∈ C∞(M).

[fdx, [dy, dz]π]π = f [dx[dy, dz]π]π + Lπ#([dy,dz]π)(f)dx

[dy, [dz, fdx]π]π =
[
dy, f [dz, dx]π + Lπ#(dz)(f)dx

]
π

= f [dy, [dz, dx]π]π + Lπ#(dy)(f)[dz, dx]π

+ Lπ#(dz)(f)[dy, dx]π + Lπ#(dy)Lπ#(dz)(f)dx

[dz [fdx, dy]π]π = f [dz, [dx, dy]π]π + Lπ#(dz)(f)[dx, dy]π

− Lπ#(dy)(f)[dz, dx]π − Lπ#(dz)Lπ#(dy)(f)dx.

When we add those three expression then everything cancels by the Jacobi identity for exact
1-forms, and the following identity for Lie derivatives:

Lπ#([dy,dz]π)(f)dx = Lπ#(dy)Lπ#(dz)(f)dx− Lπ#(dz)Lπ#(dy)(f)dx.

Definition 1.3.15. The orbits of the Lie algebroid described above are called the symplectic
leaves of the Poisson π structure on M . The foliation is called the symplectic foliation on of
the Poisson structure.
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All Hamiltonian vector fields are tangent to the symplectic leaves. We find the symplectic
leaves in a set theoretical way by an equivalence relation; two points x, y are equivalent if
there are Hamiltonian vector fields X1, .., Xn, with respective flows ϕ1, ..., ϕn, and a t ∈ Rn,
such that

y = ϕntn ◦ · · · ◦ ϕ
1
t1
(x).

Linear Poisson structures

Definition 1.3.16. A Poisson structure on a vector space V is called linear if the bracket of
two linear functions on V is again linear.

The space of the linear functions on V is the dual V ∗ of V , and hence a linear Poisson structure
gives a Lie algebra structure on the dual space. We take V to be finite dimensional, such
that V is canonically isomorphic to V ∗∗. So V is the dual of a Lie algebra g, and we denote
V with g∗.

A way to define a Poisson structure on g∗ is by:

{f, g}(µ) = 〈µ, [dµf, dµg]〉 .

Again we made use of the fact that g∗∗ = g. That this bracket satisfies the Leibniz condition
follows directly from the Leibniz rule for the exterior derivative. To check the Jacobi identity
we make use of structure of the Lie algebra.

Definition 1.3.17. Let x1, ..., xn be a basis of a Lie algebra g. There are constants ckij such
that:

[xi, xj] =
∑
k

ckijxk.

These constants are called structure constants.

So, chosen a basis for g, we find the following expression:

{f, g} =
∑
ijk

ckijxk
∂f

∂xi

∂g

∂xj
, f, g ∈ C∞(g∗).

Therefore the structure constant of g are exactly the structure constants of (C∞(M), {., .}),
and the Jacobi identity is satisfied. The Poisson structure described here is called the
Konstant-Kirilov-Souriau Poisson structure.

We have a look at the symplectic leaves of g∗. Let u, v ∈ g∗. We may consider them as linear
functions on g, and hence they have Hamiltonian vector fields:

Xuv(µ) = {u, v}(µ) = 〈µ, [u, v]〉 = 〈ad∗u(µ), v〉 .
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So, Xu is tangent to the coadjoint orbits, and the symplectic leaves are these orbits. We did
meet this orbits already as examples of symplectic manifolds in the previous section.

Example 1.3.18. We compute an explicit example. Take g to be R2 and denote the (e1, e2)
basis. The Lie product is defined by [e1, e2] = e1. Denote with (f1, f2) the dual basis, and
with (h1, h2) the dual of that basis of g∗∗. The isomorphism, g∗∗ → g, which is in fact
independent of all these bases, is given by ah1 + bh2 7→ ae1 + be2. Take u1 = a1h1 + b1h2, u2 =
a2h1 + b2h2 ∈ g∗∗ and µ = cf1 + df2 ∈ g∗, then:

{u1, u2}(µ) = µ([a1h1 + b1h2, a2h1 + b2h2]) = µ((a1b2 − b1a2)e1) = c(a1b2 − b1a2).

1.4 Dirac geometry

1.4.1 Linear Dirac structures

Let W be a finite dimensional vector space. On the direct sum W ⊕W ∗ there is a natural
paring:

〈(v, ν), (v′, ν ′)〉 = ν ′(v) + ν(v′).

Definition 1.4.1. A linear Dirac structure on W is a subspace L ⊂ W ⊕ W ∗, such that
L is maximal isotropic with respect to the paring, 〈, 〉, or equivalently L is isotropic and
dim(L) = dim(W ).

The image of the projection pr1 : L → W is called the range R of L. We claim that the
annihilator R◦ is the set {α ∈ W ∗ : (0, α) ∈ L} = W ∗ ∩ L.

Proof. Let α ∈ R◦, then α(v) = 0 for all v ∈ R. So for all (v, ξ) ∈ L it yields 〈(0, α), (v, ξ)〉 =
0, and hence L + R(0, α) is isotropic. By the maximality of L, this means that (0, α) ∈ L.
For the other inclusion, we just take (0, α), (v, ξ) ∈ L. Then α(v) = 〈(0, α), (v, ξ)〉 = 0. So
α ∈ R◦.

Denote with pr2 : L → W ∗ the projection of L on W ∗. The annihilator of pr2(L) is called
the kernel K of the Dirac structure. In a very similar way as the prove above one can prove
that K = {v ∈ W : (v, 0) ∈ L} = W ∩ L.

Given a Dirac structure L, we define a natural 2-form ω on the range of L. Let (v, ξ), (u, η) ∈
L, then ω(u, v) = ξ(u) = −η(v). Conversely, given a subset R of W and a 2-form ω, we
obtain a Dirac structure LR,ω in the following way.

LR,ω = {(v, ξ) ∈ W ⊕W ∗ : v ∈ R, ξ|R = ivω}.

This set is isotropic because: 〈(v, ξ), (u, η)〉 = ξ(u)+η(v) = ι(v)ω(u)+ι(u)ω(v) = 0. Counting
the dimensions gives the maximality property. Note that if we reconstruct the range and the
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natural 2-form from LR,ω, we indeed get R and ω back. Introducing an R and a ω is an
equivalent way of defining a Dirac structure.

With the kernel we can do more or less the same trick. A Dirac structure L implies a bivector
on W/K. Let again (v, ξ), (u, η) ∈ L, and define π(ξ, η) = ξ(u). This is a antisymmetric
form which has K as kernel. Such a 2-form can also be seen as a map π : pr2(L) → pr2(L)∗.
And using the canonical isomorphism W ' W ∗∗, we find a bivector π : (W/K)∗ → W/K.

Definition 1.4.2. Let V ⊂ W be a subspace, we call a Dirac structure LR,ω V -nondegenerate
if ω|V ∩R is nondegenerate.

Proposition 1.4.3. LR,ω is V -nondegenerate if and only if (V × V ◦) ∩ LR,ω = {0}.

We postpone the proof of this proposition a little. First we explore some nice properties of
linear Dirac structures.

Proposition 1.4.4. Let L be a Dirac structure on a vector space W , and subsets V of W ,
such that (V × V ◦) ∩ L = {0}. Then the space

H = {v ∈ W : there is a ξ ∈ V ◦, such that (v, ξ) ∈ L}.

is an orthogonal complement of V in W .

Proof. We check that H ∩ V = {0}. Take v ∈ H ∩ V , then, since v ∈ H, there is a ξ ∈ V 0

such that (v, ξ) ∈ L. Hence we obtain

(v, ξ) ∈ (V × V ◦) ∩ L = {0},

and v has to be 0. Next we check that W = V +H. Counting dimensions we find dimL =
dimW = dim(V × V ◦), and since L and V × V ◦ intersect trivially, we must have

W ×W ∗ = (V × V ◦)⊕ L.

Therefore, for all w ∈ W there is a decomposition

(w, 0) = (v, ξ) + (h, η),

with v ∈ V, ξ ∈ V ◦ and (h, η) ∈ L. It follows that η = −ξ, and hence in V ◦, so h ∈ L. We
found that w = v + h, and we conclude

W = H ⊕ V.

Corollary 1.4.5. Dually there is the decomposition W ∗ = H◦ ⊕ V ◦.
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Example 1.4.6. We consider the case that V = R. Then LR,ω is V -nondegenerate exactly
if ω is nondegenerate. H = {0} and V = R = W is a symplectic vector space.

Example 1.4.7. The other extreme case is V ∩R = {0}. Then all LR,ω are V -nondegenerate.
And for all X ∈ R there is α ∈ V ◦, such that α|R = ι(X)ω. Hence R = H.

Lemma 1.4.8.

H◦ = {α ∈ W ∗ : there is a X ∈ V, such that (X,α) ∈ L}

V ◦ = {β ∈ W ∗ : there is a Y ∈ H, such that (Y, β) ∈ L}

Proof. We only prove the first equation, the second can be proved in a similar way. Take
X ∈ V , such that there is an α ∈ W ∗ for which (X,α) ∈ L. By the definition of H, there is
for every Y ∈ H a β ∈ V ◦, with (Y, β) ∈ L. Because L is isotropic we find

〈(X,α), (Y, β)〉 = α(Y ) + β(X) = α(Y ) = 0.

Therefore, such α indeed annihilatesH. Moreover, the decompositionW×W ∗ = (V×V ◦)⊕L,
induces that we can write every ξ ∈ W ∗, as

(0, ξ) = (X, η) + (Y, α) ∈ (V × V ◦)⊕ L.

It follows that Y = −X ∈ V . The decomposition W ∗ = H◦ ⊕ V ◦ induces that if ξ ∈ H◦,
then η = 0. Hence for any α ∈ H∗ there is a Y ∈ V , such that (Y, α) ∈ L.

Proof of proposition 1.4.3. If V ∩R = {0}, then V is clearly nondegenerate and the intersec-
tion (V × V ◦)∩LR,ω = {0}. Assume that there is a X 6= 0 in V ∩R. Suppose first that L is
V -nondegenerate, then there is an Y ∈ R ∩ V , such that

ι(Y )ξ|R∩V = ι(Y )ι(X)ω|V ∩R 6= 0,

which implies that ξ /∈ V ◦, i.e. (V × V ◦) ∩ LR,ω = {0}. For the converse we use the
decomposition W = H ⊕ V . Assume that there is a X ∈ V ∩ R such that ω(X,Y ) = 0 for
all Y ∈ V ∩R, ω(X,Y ) = 0. Then there is a ξ ∈ W ∗ such that (X, ξ) ∈ L, i.e. ξ|R = ι(X)ω.
Moreover ξ ∈ H◦, and H ⊂ R. Therefore this implies that ι(X)ω = 0, which on its turn
implies that X = 0 or ω = 0. In the first case we are done, in the second we get

LR,ω = {(X, ξ) ∈ W ⊕W ∗ : X ∈ R, ξ|R = ι(X)ω}
= {(X, ξ) ∈ W ⊕W ∗ : X ∈ R, ξ ∈ R◦}.

(V × V ◦)∩ (R×R◦) = {0} implies that V ∩R = {0}, which we assumed not to be the case.
Hence ω is V -nondegenerate.
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1.4.2 Dirac manifolds

To go from the study of linear Dirac structures to the study of Dirac manifolds we first
generalise the tangent bundle of a manifold M :

TM = TM ⊕ T ∗M,

on which we have again a natural paring.

〈(x, ξ), (x′, ξ′)〉 = ξ′(x) + ξ(x′).

Note that sections of TM are described by elements of X(M)× Ω1(M). On them we define
the so called Courant bracket:

[(x, ξ), (x′, ξ′)]c = ([x, x′], Lxξ
′ − Lx′ξ + d(ξ(x′))).

Definition 1.4.9. An almost Dirac structure on a manifold M is a subbundle L ⊂ TM of
rank dimM such that 〈α, β〉 = 0 for all α, β ∈ Γ(L).

Definition 1.4.10. A Dirac structure on a manifold M is an almost Dirac structure which
is closed under the Courant bracket, i.e. [α, β]c ∈ Γ(L) for all α, β ∈ Γ(L).

Note that on an almost Dirac structure the Courant bracket is anti-symmetric.

Example 1.4.11 (Dirac structures of closed 2-form type). The graph {(X, ι(X)ω)} of
a 2-form on M defines an almost Dirac structure Lω. This almost Dirac structure is a Dirac
structure if for all vector fields X, Y ∈ X(X), it yields

ι([X, Y ])ω = LX(ι(Y )ω)− LY (ι(X)ω) + d((ι(X)ω)(Y )).

Because,

d((ι(X)ω)(Y )) = LY (ι(X)ω)− ι(Y )d(ι(X)ω) = LY (ι(X)ω)− ι(Y )LXω + ι(Y )ι(X)dω,

we get that Lω is Dirac exactly if

ι([X, Y ])ω = LX(ι(Y )ω)− ι(Y )LXω + ι(Y )ι(X)dω.

Which is equivalent to dω = 0, i.e. to ω is closed. Dirac structures of this form are called of
closed 2-form type or presymplectic Dirac structures. Note that for such Dirac structures the
map pr1 : L→ TM is surjective. The other way round, given a Dirac structure L for which
this projection is surjective, one can find a 2-form for which this structure is the graph; for
any vector field X ∈ X(M) there is an unique 1-form αX , such that (X,αX) ∈ Γ(M). We
find ω to be

ω(X,Y ) = αX(Y ) = −αY (X).
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Example 1.4.12 (Dirac structures of Poisson bivector type). The graph of a bivector
π on M , {(π#(ξ), ξ) : ξ ∈ T ∗M} is an almost Dirac structure, as is easily seen by this
computation:

〈
(π#(ξ), ξ), (π#(ξ′), ξ′)

〉
= π(ξ, ξ′) + π(ξ, ξ′).

This structure is Dirac if for all ξ, ξ′ ∈ T ∗M , [π#(ξ), π#(ξ′)] = π#(η), where

η = Lπ#(ξ)ξ
′ − Lπ#(ξ′)ξ + d(ξ(π#(ξ′))) = [ξ, ξ′]π.

Which is equivalent to requiring that π#([ξ, ξ′]π) = [π#(ξ), π#(ξ′)], i.e the bivector preserves
bracket or equivalently it is a Poisson bivector. Note that for such Dirac structures the map
pr2 : L→ T ∗M is surjective. The other way round, given a Dirac structure L for which this
projection is surjective, one can find a bivector for which this structure is the graph. For
every ξ ∈ T ∗M there is an unique Xξ ∈ TM such that (Xξ, ξ) ∈ L. Define the bivector by:

π# : T ∗M → TM : ξ 7→ Xξ.

A way to measure if L is Dirac There is a 3-form TL on an almost Dirac structure L,
which vanishes identically if and only if L is a Dirac structure. Let (s1, s2, s3) ∈ Γ(L), then

TL(s1, s2, s3) = 〈[s1, s2]c, s3〉 .

For later computational purposes we give a more explicit expression for this 3-form. Denote
s1 = (X,α), s2 = (Y, β), s3 = (Z, γ).

TL(s1, s2, s3) =
1

2
(LX(β(Z)) + LY (γ(X)) + LZ(α(Y )) +

α([Y, Z]) + β([Z,X]) + γ([X,Y ]))

Proof.

TL(s1, s2, s3) =
1

2
((LXβ − LY α+ d(α(Y )))(Z) + γ([X, Y ]))

=
1

2
(LX(ι(Z)β)− ι([X,Z])β

−LY (ι(Z)α) + ι([Y, Z])α+ ι(Z)d(α(Y )) + γ([X, Y ]))

=
1

2
(LX(β(Z)) + LY (γ(X)) + LZ(α(Y ))

+α([Y, Z]) + β([Z,X]) + γ([X,Y ])).
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The Dirac structure as Lie algebroid

Theorem 1.4.13. A Dirac structure L on a manifold M is a Lie algebroid over M with
anchor map pr : L→ TM . The bracket on the sections is the Courant bracket.

Proof. We have to check the Jacobi identity and the Leibniz rule, which both can be done
by straight forward computations. We only do the Leibniz rule:

[(x, ξ), f(x′, ξ′)]c = ([x, fx′], Lxfξ
′ − Lfx′ξ + d(ξ(fx′)))

= (f [x, x′] + (Lxf)ξ′, (Lxf)ξ′ + fLxξ
′ − fLx′ξ − ξ(x′)df + f(ξ(x′)) + ξ′df)

= f [(x, ξ), (x′, ξ′)]c + Lxfξ
′

Definition 1.4.14. Let (M,L) be a Dirac manifold. The orbits of the Dirac structure are
called the presymplectic leaves of the Dirac structure. They form the presymplectic foliation
FL of the Dirac structure.

Lemma 1.4.15. Let (M,L) be a a Dirac manifold. All presymplectic leaves carry a natural
closed 2-form.

Proof. For every X ∈ X(FL) there is a αX ∈ Ω2(F), such that (X,αX) ∈ Γ(L). Let S be a
leaf of FL, and define ωS as follows:

ωS(X, Y ) = αX(Y )|S = −αY (X)|S.

We check that this form is closed.

dωS(X, Y, Z) = (αX([Y, Z]) + αY ([Z,X]) + αZ([X,Y ]))|S
+LZ(ωS(X,Y )) + LX(ωS(Y, Z) + LY ωS(Z,X))

= TL((X,αX), (Y, αY ), (Z, αZ))|S.

TL vansihes, because L is a Dirac structure.

Theorem 1.4.16. A Dirac structure L on a manifold M such that the characteristic dis-
tribution is regular, is determined by a regular foliation F together with a foliated 2-form
ω ∈ Ω2(F), which is leafwise closed, i.e. the restriction of ω to any leaf S is closed.

Proof. Let F and ω be as in the theorem. The Dirac structure is given by:

L = {(X, ι(X)ω) : X ∈ X(F )}.
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Corollary 1.4.17. Let M be a manifold. There is an one-to-one correspondence between
Poisson structures on M for which the symplectic distribution is regular, and regular symplec-
tic foliations of M , i.e. foliations F and a nondegenerate leafwise closed 2-form ω ∈ Ω2(M).

Proof. The graph of a Poisson bivector determines a Dirac structure on the manifold. The
presymplectic leaves of this Dirac structure are precisely the symplectic leaves induced by
the Poisson structure. The other way round, a symplectic foliation on a manifold induces
in a unique way a Dirac structure. By the nondegeneracy of the 2-form is the projection of
this Dirac structure to the cotangent bundle bijective. Therefore, it is the graph of a Poisson
bivector.

In the other extreme example, where the Dirac structure is the graph of a closed 2-form,
there is only one presymplectic leaf; the manifold itself.

Remark 1.4.18. The theorem above can be extended to the situation where the character-
istic distribution is singular.

Dirac gauging Given a Dirac structure L on a manifold M , one could wonder how to
change it a little such that it is still Dirac. This can be done using so called Dirac gauging.
The idea is to change the foliated 2-form on M by adding a 2-form B ∈ Ω2(M), such that
for all leaves S the restrictions

ωS +B|S ∈ Ω2(S)

are closed. In particular all closed 2-forms on M would work. Doing this one obtains a new
Dirac structure which is the image of the map

τB : TM → TM : (X, ξ) → (X, ξ − ι(X)B).

Such a 2-form is called a Dirac gauge 2-form, the map τB is called a Dirac gauge transfor-
mation, and the new Dirac structure is called the gauge transform.

Remark 1.4.19. Set theoretically, the leaves of the presymplectic foliation of a Dirac struc-
ture don’t change.

Poisson gauging If we gauge a Poisson Dirac manifold (M,Lπ) structure then we wonder
if the gauge transform is again the graph of a Poisson bivector. In this paragraph we discuss
the conditions this imposes on the gauge 2-form. The natural condition is that for all the
leaves S the restrictions

ωS +B |S∈ Ω2(S)

are symplectic. A calculation yields that
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ker((ωS +B|S)x) = ker((idTM −π# ◦B#)x),

for all x ∈ S and all symplectic leaves (S, ωS). This proves the following lemma.

Lemma 1.4.20. ωS + B|S is symplectic for every leaf S of the foliation if and only if
idTM −π# ◦B# : TM → TM is an isomorphism.

Which is the motivation for the coming definition.

Definition 1.4.21. A closed 2-form B on a Poisson manifold (M,π) for which all symplectic
leaves (S, ωS + B|S) are again a symplectic manifolds, is called a Poisson gauging form for
(M,π).

Proposition 1.4.22. Let B be a is a Poisson gauging form for (M,π), then

π#
B = (idTM − π# ◦B#)−1 ◦ π# : T ∗M → TM

defines a Poisson structure on M .

Proof. We have to check that [πB, πB] = 0 for the Schouten-Nijenhuis bracket. Note that for
all 1-forms onM we have π(ξ, η) = π(ξ+π#

B (ξ), η). So [π, π] = 0 implies that [πB, πB] = 0.

π#
B is called the gauge transformation of π, with respect to B. We use this theory of Poisson

gauging to prove for some special manifolds that they are Poisson diffeomorphic. We do this
using a result very similar to the Moser theorem in the symplectic case.

Theorem 1.4.23. Let M be a compact manifold and be π0, π1 be Poisson structures on M .
Assume that there is a smooth family {Bt}t∈[0,1] of gauging forms for (M,π0) such that

1. B0 = 0,

2. π1 is a gauge transformation of π0 with respect to B1,

3. d[Bt]
dt

= [0] in H2
de Rham(M),

then (M,π0) and (M,π1) are Poisson diffeomorphic.

Proof. We consider the problem leavewise, and use the Moser theorem from symplectic geom-
etry. Denote the symplectic leaves of (M,π0) and (M,π1), with (S, ω0

S) and (S, ω1
S) respective.

On each leaf S, ωS,t = ω0
S + Bt|S is a smooth family of symplectic forms, in the same coho-

mology class, such that ωS,0 = ω0
S and ωS,1 = ω1

S. So, all leaves are symplectomorphic under
the gauge transformation. This means that there is a diffeomorphism

Ψ : M →M,

such that for all leaves S, Ψ|S : (S, ω0
S) → (S, ω1

S) is a symplectomorphism. Ψ is the desires
Poison diffeomorphism.
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Maps between Dirac manifolds In general one can say that a nice feature of vector
fields is that one can push them forward, and a nice feature of forms is that one can pull
them back. For Dirac structures, being a combination of those two, we define concepts in
both directions.

Definition 1.4.24. Let φ : (M,LM) → (N,LN) be a smooth map between Dirac manifolds.

1. φ is called a forward Dirac map or shortly f-Dirac, if:
LN = φ∗LM = {(Y, β) ∈ TN ⊕ T ∗N : there is a X ∈ TM, with
dφ(X) = Y and (X, dφ∗β) ∈ LM}

2. φ is called a backward Dirac map or shortly b-Dirac, if:
LM = φ∗LN = {(X,α) ∈ TM ⊕ T ∗M : there is a β ∈ T ∗N, with
dφ∗(β) = α and (dφ(X), β) ∈ LN}

In case φ is a diffeomorphism, these notions coincide.

Reduction Dirac reduction looks quite similar to the reduction we have seen in the Marsden-
Meyer-Weinstein quotient. First we translate the notion of a Hamiltonian group action to
the Dirac language.

Definition 1.4.25. Let G×M →M be a proper action of a Lie group G on a Dirac manifold,
(M,L). We call the action Hamiltonian if there is a moment map:

µ : M → g∗ such that: (Xξ, dµ
ξ) ∈ Γ(L) for all ξ ∈ g,

which is G-equivariant:

µ(g · x) = (Ad∗g) ◦ µ(x)

Xξ ∈ X(M) is defined by:

Xξ(m) =
d

dt
|t=0 exp(tξ) ·m,

and µξ : M → R : m 7→ 〈µ(m), ξ〉 .

Lemma 1.4.26. µ : M → g∗ is a f-Dirac, where g∗ is equipped with the Dirac structure
induced by the Konstant-Kirilov-Souriau Poisson structure.

Proof. For every η ∈ g∗, we have T ∗µg
∗ ' g. We use this identification to give an explicit

description of the Dirac structure on g∗:

Lg∗ = {(〈η, [·, ξ]〉 , ξ) ∈ Tg∗ ⊕ T ∗g∗}.
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So µ is a f-Dirac means that dmµ(Xξ(m)) = 〈η, [·, ξ]〉, for µ(m) = η, and all ξ ∈ g, and
moreover dµ∗(ξ) = dµξ. The last requirement is true by the definition of the dual of a linear
map. For the first requirement we compute:

dmµ(Xξ(m)) = dmµ(
d

dt
|t=0 exp(tξ) ·m) = ad∗ξ(µ(m)) = 〈µ(m), [·, ξ]〉 .

Where we used the G-equivariance of the moment map.

Proposition 1.4.27. Let G ×M → M be a Hamiltonian action of a compact Lie group G
on a Dirac manifold (M,L), with momentum map µ : M → g∗. Let 0 be a regular value of
µ, and let the action of G on µ−1(0) be free, then

1. i : µ−1(0) ↪→M , is a Dirac submanifold so it inherits the pull-back Dirac structure i∗L.

2. The orbit space Mred = µ−1(0)/G inherits a Dirac structure Lred, which is uniquely
defined by the requirement that the quotient map, π : µ−1(0) → µ−1(0)/G, is a f-Dirac.

Proof. 1. 0 is a regular value of µ, so µ−1(0) is a submanifold of codimension dimG = g
of M . The only thing to check is that the pull-back Dirac structure i∗L is of constant
rank dimM − dimG. First we give the explicit expression for i∗L.

i∗L = {(X,α|Tµ−1(0)) : X ∈ Tµ−1(0), (X,α) ∈ L}

Let Xξ be a vector field induced by the action of G, and let x ∈ µ−1(0). Then, by the
G-equivariance of µ,

µ(exp(tξ) · x) = Ad∗exp(tξ) ·µ(x) = 0.

So all vector fields Xξ are tangent to µ−1(0). i∗L contains the pairs (Xξ, dµ|Tµ−1(0)) =
(Xξ, 0), for all ξ ∈ g, because Tpµ

−1(0) = ker dpµ, for all p ∈ µ−1(0). Define for all
m ∈ µ−1(0), Hm = span{Xξ(m) : ξ ∈ g}. Then L contains all pairs (0, α), such that α
annihilates Hm, and so does i∗L. Because G acts freely on µ−1(0), all Xξ are nonzero
and moreover rank of H is dimG. So the rank of i∗L is at least, g+(m−g)−g = m−g.
Because i∗L is isotropic it rank is also at most m− g, hence i∗L is of constant rank.

2. G is a compact Lie group which acts freely on µ−1(0). Hence µ−1(0) is a manifold. Lred
is desribed by:

Lred = {(dπX, β) ∈ T (µ−1(0)/G)⊕ T ∗(µ−1(0)/G) :

X ∈ Tµ−1(0), dπ∗β = α|Tµ−1(0) (X,α) ∈ L}.

Note that dπ(Xξ) = 0 for all ξ ∈ g.
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1.5 Poisson geometry continued

Recall that it is not always possible to find a compatible Poisson structure on a submanifold
of a Poisson manifold. In this section we discuss a type of submanifolds on which such a
Poisson structure always can be found.

Transversal and cosymplectic submanifolds

Definition 1.5.1. A transversal of a Poisson manifold (M,π) through x is a submanifold
N ⊂M such that

TxM = TxN ⊕ TxS,

where S is the symplectic leaf containing x.

In fact transversal submanifolds are Poisson manifolds, as we will see later.

Definition 1.5.2. Let N ⊂M be a submanifold. Define

(TxN)⊥ = π#((TxM/TxN)∗) ⊂ TxM

N is called of constant rank if dim(TxN)⊥ is independent of x.

The notation (TxN)⊥ suggests that this has to do with some kind of orthogonality. In fact
if M is a symplectic manifold, then we (TxN)⊥ = (TxN)ωx , the symplectic orthogonal. In
general (TxN)⊥ is the symplectic orthogonal of TxN ∩ TxS inside TxS.

Definition 1.5.3. A submanifold N ⊂M is called cosymplectic in (M,π), if for all x ∈ N

TxM = TxN + (TxN)⊥

Proposition 1.5.4. If N is cosymplectic in (M,π), then TxM = TxN ⊕ (TxN)⊥ for all
x ∈ N . In particular is N of constant rank.

Proposition 1.5.5. For x ∈ M , there is at least one cosymplectic transversal that passes
through x. Moreover, for each transversal , Ñ , that passes through x, there exists an open
subspace N ⊂ Ñ , containing x, such that N is a cosymplectic transversal.

Proof. Ñ is transversal in x, so TxÑ ∩ TxS = {0}. Because (TxN)⊥ is the symplectic
orthogonal of TxN ∩ TxS inside TxS, this implies that (TxÑ)⊥ = TxS. So at x we have
indeed

TxM = TxÑ ⊕ (TxÑ)⊥.

This is an open condition, so there is an open neighbourhood of x for which this is true.
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Theorem 1.5.6. A transversal cosymplectic submanifold N of a Poisson manifold (M,π)
inherits a Poisson structure, such that it is a Poisson submanifold.

Proof. Let L = Lπ be the Dirac structure on M induced by π. N is a Poisson submanifold
exactly if there is a Poisson bivector πN on N , such that the pull-back Dirac structure,

LN = {(X,α|TN
) : (X,α) ∈ L}

is the graph of a πN . LN is a graph of a Poisson bivector precisely pr2 : LN → T ∗N is a
bijection, or here equivalently an injection. The kernel of this projection is

ker(pr2) = {(X,α|TN
) : (X,α) ∈ L, α|TN

= 0}.

We conclude that LN is the graph of a bivector exactly as for all αT∗M , π#(α) = 0 if and only
if α |TN= 0, i.e. LN is the graph of a Poisson bivector πN if and only if N is a cosymplectic
transversal.

Poisson diffeomorphic transversals

Theorem 1.5.7. Let x0, x1 be elements of one symplectic leaf of a Poisson manifold (M,π).
Let N0 and N1 be transversals through respective x0 and x1. Then (N0, x0) and (N1, x1) are
Poisson diffeomorphic.

Proof. Symplectic leaves of a Poisson manifold are path connected, so it is sufficient to prove
this for x0 and x1 in one coordinate neighbourhood U of M . By the splitting theorem we may
assume that there are coordinates x0, ..., xk, y1, ..., yk, z1, ....zl around x0, such that z1, ....zl
are the coordinates in N0. U looks like N0 × R2k. N0 is cosymplectic in M , hence there is
an induced Poisson structure π0 on N0, such that π0(x) = 0. On the product N0 × R2k, we
have a Poisson structure π0 × πcan. Where πcan =

∑k
i=1

∂
∂xi

∧ ∂
∂yi

. N1 is also transversal,

therefore in this product we may write N1 as the graph of a map φ : N0 → R2k. Because
N1 is cosymplectic as well, we also have an induced Poisson structure π1 on N1. The first
projection pr1 : (x, φ(x)) → N0 gives a map from N1 → N0. This induces a second Poisson
structure πφ on N0, such that pr1 is a Poisson diffeomorphism. Now we have to prove that
(N0, π0) and (N0, πφ) are Poisson diffeomorphic. We do this using the theory of Poisson
gauging and the Moser theorem, discussed above.

On R2k we have the canonical symplectic 2-form ωcan =
∑k

i dxi ∧ dyi. Let B = φ∗(ωcan) ∈
Ω2(N0).

Lemma 1.5.8. B is a gauging form for (N0, π0) if and only if Nφ is cosymplectic in M .

We postpone the proof of the lemma a little. We finish the proof of the theorem with noting
that Bt = tB is a family of exact gauging for (N0, π0), with B0 = 0, and πφ is the gauge
transformation of π0 with respect to B1. So, by the Moser theorem, we have that (N0, π0)
and (Nφ, πφ) are Poisson diffeomorphic.
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Proof of the lemma. In this prove we omit the 0 from (N0, π0). It suffices to prove the
following equality for any x ∈ N :

ker(idTN −π# ◦B#)x.

We have:

T(x,φ(x))Nφ = {(X,Txφ(X)) : X ∈ TxN}
(T(x,φ(x))M/T(x,φ(x))Nφ)

∗ = {(φ∗(ξ), ξ) ∈ T ∗xN × T ∗φ(x)R2k}
(T(x,φ(x))Nφ)

⊥ = {(π#(φ∗ξ), π#
can(ξ)) : ξ ∈ T ∗φ(x)R2k}

= {(π# ◦ (φ∗ωcan)#(V ), V ) : V ∈ Tφ(x)R2k}.

In the last equality we used (π#
can)

−1 = (ωcan)#. We compute the intersection:

T(x,φ(x))Nφ ∩ (T(x,φ(x))Nφ)
⊥ = {((X,Txφ(X))) : X ∈ TxN,X = π# ◦B#(Txφ(X)))}

' ker(idTN −π# ◦B#)x
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Chapter 2

Connections on fibre bundles

2.1 Ehresmann connections

Abstract In this chapter we discuss the notion of connections on a fibre bundle. These
can be described with the help of a special kind of almost Dirac structures on the total space
of the fibration.

Fibre bundles

Theorem 2.1.1. Let M be a compact connected manifold. A smooth mapping π : M → B
is a locally trivial fibration if and only if π is a surjective submersion.

Proof. Let π be a locally trivial fibration of fibretype F . Then for every b ∈ B, there is a
neighbourhood Ui, and a diffeomorphism φi : π−1(Ui) → Ui×F , such that π|π−1(Ui) = pr1◦φi.
pr1 is a surjective submersion, so π is a surjective submersion as well. For the converse we
use the submersion theorem. HAS TO BE REPAIRED.

Let π : M → B be a fibre bundle. The vertical subspace Vertx of TxM at x ∈M is:

Vertx = KerTxπ.

The vertical space Vertx at x ∈ M is the tangent space at x of the fibre containing x. All
vertical spaces together for the the vertical bundle Vert ⊂ TM . Sections of this bundle
are called vertical vector fields. The space of vertical vector fields on M is denoted with
XVert(M).

Ehresmann connections

Definition 2.1.2. An Ehresmann connection Γ on a fibration π : M → B is a distribution
Hor on M , such that
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1. for all x ∈M , TxM = Horx⊕Vertx.

2. for every piecewise smooth path γ : [0, 1] → B starting from b and for each x ∈ Fb
there is a piecewise smooth path γ# : [0, 1] →M starting x such that π ◦ γ# = γ, and
d
dt
γ#(t) ∈ Horγ#(t), for all t ∈ [0, 1], where it is defined.

Remark 2.1.3. Note that γ# will be unique. It is called the horizontal lift of γ with respect
to Γ.

A connection Γ on a fibration π : M → B allows us to decompose every X ∈ TM into a
horizontal and a vertical part, which we denote with X = Xhor +Xvert. Moreover, for every
x ∈M one gets an isomorphism:

Txπ|Horx : Horx → Tπ(x)B.

Definition 2.1.4. Let π : M → B be a fibre bundle, and let Γ be a connection on it. The
horizontal lift of a vector field X ∈ X(B) with respect Γ is the vector field X# ∈ X(M),
which is defined by:

X#(x) = (Txπ|Horx)
−1(X(π(x))).

In other words, X# is the unique horizontal vector field on M which is projectable to X. See
also the paragraph on projectable vector field in chapter 1.

Lemma 2.1.5. Let π : M → B be a fibre bundle with a connection Γ. For vector fields
v1, v2 ∈ X(B) the following equality holds:

[v#
1 , v

#
2 ]hor = [v1, v2]

#.

Proof. The horizontal lift v#
i is defined exactly such that it descends to vi. It follows by

lemma 1.1.8 that [v#
1 , v

#
2 ] descends to [v1, v2]. Also, [v1, v2]

# is horizontal and descends to
[v1, v2]. Hence, [v#

1 , v
#
2 ]hor = [v1, v2]

#.

Definition 2.1.6. Let π : M → B be a fibre bundle, let Γ be a connection, and let γ be a
path in B. Parallel transport along γ with respect to Γ is a map:

φγ : π−1(γ(0)) → π−1(γ(1)),

which sends a p ∈ π−1(γ(0)) to the point γ#
p (1). Here γ#

p is the horizontal lift of γ which
starts at p.

Proposition 2.1.7. A fibre bundle π : M → B of fibre type a compact manifold F admits
connections.
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Proof. First we consider the local problem. Let γ be at path in B contained in a coordinate
neighbourhood (U, x) such that the bundle is trivial over that neighbourhood. There is a
diffeomorphism φ : π−1(U) → U × F , such that pr1 ◦ φ = π. The horizontal lift of the local
vector field ∂

∂xi
, is given by ( ∂

∂xi
, vi) with vi : F → TF a vector field. We describe the path γ

as the solution curve of
∑n

i αi(t)
∂
∂xi
|γ(t). The horizontal lift of γ is of the form (γ, ζ)(t), such

that

(γ̇, ζ̇) =
n∑
i

αi(t)(
∂

∂xi
|γ(t), vi(t)).

So, in fact all we have to do is to find a path ζ in F , such that

ζ̇(t) =
n∑
i

αi(t)vi(t).

Since F is compact, this differential equation has an unique solution. Next, we have to prove
that a path which is not contained in such a neighbourhood is still uniquely liftable. Since B
is covered by open coordinate neigbourhoods Uα as above on which the bundle is trivial, and
since the interval [0, 1] is compact, we find finitely many ti with t0 = 0 < t1 < ... < tn = 1,
such that γ([ti, ti+1]) is contained in such a neighbourhood. On all this neighbourhoods γ has
horizontal lift. On the overlap of to the lifts conicide, hence the lifts can be glued together
to one lift.

Curvature

Definition 2.1.8. Let Γ be a connection on a fibration π : M → B. The curvature 2-form
Ω ∈ Ω2(M,Vert) of Γ is a defined by:

Ω : (X, Y ) 7→ [Xhor, Y hor]vert.

The curvature 2-form is a horizontal form in the sense that ι(X)Ω = 0 for any vertical vector
X. Therefore one can also view Ω as a form on the base space, having values in the vertical
vector fields, i.e. as a map:

Ω : X(B) → XVert(M) : Ω(v1, v2) = [v#
1 , v

#
2 ]vert = [v#

1 , v
#
2 ]− [v1, v2]

#.

Remark 2.1.9. Th Lie bracket of two horizontal vector fields is not necessarily horizontal,
and this failure is measured precisely by Ω. In particular, the horizontal distribution in
integrable if and only if the curvature vanishes identically.
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2.2 Connections defined by almost Dirac structures

In this section we discuss connections induced by almost Dirac structures. This discussion is
inspired by [4], and we use our discussion on linear Dirac structures 1.4.1.

Definition 2.2.1. Let p : M → B be a fibration. An almost Dirac structure L on the total
space of the fibration is called fibre nondegenerate if

(Vert⊕Vert◦) ∩ L = {0}.

Proposition 2.2.2. A fibre nondegenerate almost Dirac structure defines a connection ΓL
on the fibration. The horizontal spaces are:

Hor = {X ∈ TM : there is a α ∈ Vert◦, (X,α) ∈ L}.

Moreover, any connection on p : M → B can be obtained in this way.

Proof. Note that for each x ∈M , Lx is Vertx-nondegenerate in TxM . We saw in the section
about linear Dirac structures that this induces the existence of a natural orthogonal com-
plement Hx of Vertx in TxM . Note that this Hx coincides with the Horx described above.
Indeed we find a splitting:

TM = Hor⊕Vert .

This proves the first part of the proposition. Conversely, given a connection Γ on M , then
we find a fibre nondegenerate almost Dirac structure by

L = Hor⊕Hor◦ .

The associated connection to this fibre nondegenerate almost Dirac structure is the old Γ.

Remark 2.2.3. Two different fibre nondegenerate almost Dirac structures may lead to the
same connection. In fact, a fibre nondegenrate Dirac structure induces much more then a
connection.

The horizontal 2-form and the vertical bivector Note that the splitting TM =
Hor⊕Vert induces a splitting on the dual bundle T ∗M = Hor∗⊕Vert∗, and we have the
following identifications:

Hor◦ ' Vert∗, and Vert◦ ' Hor∗ .

We use these identifications several times in the sequal.
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Proposition 2.2.4. Let p : M → B be a fibration. Any fibre nondegenerate almost Dirac
structure L on M induces a smooth horizontal 2-form

ωL : Hor×Hor → R,

which is the restriction of the natural 2-form to the horizontal subspaces.

Proof. For every X ∈ Hor there is an unique α ∈ Vert◦, such that (X,α) ∈ L. Define the
2-form ωL by:

ωL(X1, X2) =
1

2
(α1(X2)− α2(X1)) = α1(X2) = −α2(X1),

where α1, α2 ∈ Vert◦, such that (α1, X1), (α2, X2) are in L.

Proposition 2.2.5. Let p : M → B be a fibration. For any fibre nondegenerate almost Dirac
structure and any fibre i : Fb ↪→ M the pull-back almost Dirac structure is well defined and
coincides with the graph of a vertical bivector field πL ∈ X2

Vert(M).

Proof. We define a 2-form πL : Hor◦×Hor◦ → R, and then use the identification Hor◦ '
Vert∗ to obtain a vertical bivector field. For every α ∈ Hor◦ there is a unique X ∈ Vert, such
that (X,α) ∈ L. Define:

πL(α1, α2) =
1

2
(α1(X2)− α2(X1)) = α1(X2) = −α2(X1),

with X1, X2 ∈ Vert such that (X1, α1)(X2, α2) ∈ L. By the identification mentioned before
this defines a bivector field on the fibres of p : M → B. Fix a fibre i : Fb ↪→M , and consider
the pull-back of the Dirac structure i∗L:

i∗L = {(X,α|Vert) ∈ Vert⊕Vert∗ : (X,α) ∈ L}
= {(X,α) ∈ Vert⊕Hor◦ : (X,α) ∈ L}
= {(X,α) ∈ Vert⊕Hor◦ : X = πL(α, ·) ∈ L}
= graph(πL).

Summarizing this section: a fibre nondegenerate almost Dirac structure L on a fibration
p : M → B induces:

1. a connection ΓL,

2. a horizontal 2-form ωL ∈ Ω2
Hor(M),

3. a vertical bivector field πL ∈ X2
Vert(M).
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Conversely, given such a triple (Γ, ω, π) there exists a unique fiber nondegenerate almost
Dirac structure L which induces it. It is given by:

L = graph(πL)⊕ graph(ωL).

2.3 Connections defined by Dirac structures

Conditions on (Γ, ω, π). Some connections can be described by fibre nondegenerate Dirac
structures. In the next proposition we see which conditions this requirement imply on
(Γ, ω, π). In the last chapter about Poisson fibrations we investigate the influence on the
so called holonomy group. In fact, to ask that the almost Dirac structure is Dirac turns out
be a quite strong requirement.

Proposition 2.3.1. Let (ΓL, ωL, πL) be the triple which is determined by a fibre nondegen-
erate almost Dirac structure L on a fibration p : P →M . Then L is a Dirac structure if and
only if the following conditions hold:

1. The vertical bivector πL is a Poisson bivector.

2. Parallel transport with respect to ΓL preserves the vertical Poisson structure πL:

LṽπL = 0, for all v ∈ X(M).

3. The horizontal 2-form ωL is closed.

4. The following identity for the curvature ΩΓ of Γ is satisfied:

ΩΓ(v1, v2) = π#
L (dι(ṽ1)ι(ṽ2)ωL), for all v1, v2 ∈ X(M).

Proof. Recall that L is a Dirac structure if and only if the 3-form TL on L vanishes identically.

1. Let α, β, γ ∈ Γ(Hor◦), then X = π#
L (α), Y = π#

L (β), Z = π#
L (γ) are the unique vector

fields in XVert(M) such that (X,α), (Y, β), (Z, γ) ∈ Γ(L). The explicit formula for TL
gives:

TL((X,α), (Y, β), (Z, γ)) =
1

2
(α([X, Y ]) + β([Z,X]) + γ([X, Y ]) +

LX(β(Z) + LY (γ(X)) + LZ(α(Y )))

=
1

2
((LZα)(Y ) + (LXβ)(Z) + (LY γ)(X))

=
1

2
(πL(Lπ#

L (γ)α, β) + πL(Lπ#
L (α)β, γ) + πL(Lπ#

L (β)γ, α))

= −1

2
[πL, πL](α, β, γ).
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We used the following formula for a 1-form σ and vector fields V,W ;

σ([V,W ]) = −LWσ(V ) + (LWσ)(V ).

2. Let v ∈ X(M), and let β, γ ∈ Γ(Hor◦). There exists an unique 1-form α ∈ Γ(Vert◦)
and unique vector fields Y, Z ∈ Γ(Vert) such that (v#, α), (β, Y ), (γ, Z) ∈ Γ(L). The
explicit expression for TL gives:

TL((v#, α), (β, Y ), (γ, Z))

=
1

2
(α([Y, Z]) + β([Z, v#]) + γ([v#, Y ]) + v# · β(Z) + Y · γ(v#) + Z · α(Y ))

=
1

2
(β([Z, v#]) + γ([v#, Y ]) + v# · β(Z))

=
1

2
(ι(v#)LZβ − Lv#(β(Z))− ι(v#)LY γ + Lv#(γ(Y )) + v# · β(Z))

=
1

2
(Lv#πL(β, γ) + Lv#πL(β, γ)− Lv#πL(β, γ))

=
1

2
Lv#πL(β, γ).

We used that the Lie bracket of vertical vector fields is vertical, and that LZβ, LY γ ∈
Γ(Hor◦).

3. Let v1, v2, v3 ∈ X(M). There exists unique 1-forms α, β, γ ∈ Γ(Vert◦) such that
(v#

1 , α), (v#
2 , β), (v#

3 , γ) ∈ Γ(L). The explicit expression for TL gives:

TL((v#
1 , α), (v#

2 , β), (v#
3 , γ))

=
1

2
(α([v#

2 , v
#
3 ]) + β([v#

3 , v
#
1 ]) + γ([v#

1 , v
#
2 ]) + v#

1 · β(v#
3 ) + v#

2 · γ(v
#
1 ) + v#

3 · α(v#
2 ))

=
1

2
(α([v#

2 , v
#
3 ]hor) + β([v#

3 , v
#
1 ]hor) + γ([v#

1 , v
#
2 ]hor)

+v#
1 · β(v#

3 ) + v#
2 · γ(v

#
1 ) + v#

3 · α(v#
2 ))

=
1

2
(ωL([v#

1 , [v
#
2 , v

#
3 ]hor) + ωL([v#

2 , [v
#
3 , v

#
1 ]hor) + ωL([v#

3 , [v
#
1 , v

#
2 ]hor)

+v#
1 · ωL(v#

2 , v
#
3 ) + v#

2 · ωL(v#
3 , v

#
1 ) + v#

3 · ωL(v#
1 , v

#
2 ))

=
1

2
dωL(v#

1 , v
#
2 , v

#
3 ).

4. Let v1, v2 ∈ X(M), and let γ ∈ Γ(Hor◦). There are unique α, β ∈ Γ(Vert◦) and
Z ∈ Γ(Vert) such that (v#

1 , α), (v#
2 , β), (Z, γ) ∈ Γ(L). The explicit expression for TL

gives:
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TL((v#
1 , α), (v#

2 , β), (Z, γ)) =
1

2
(v#

1 · β(Z) + v#
2 · γ(v

#
1 ) + Z · α(v#

2 )

+α([v#
2 , Z]) + β([Z, v#

1 ]) + γ([v#
1 , v

#
2 ]))

=
1

2
(Z · α(v#

2 ) + γ([v#
1 , v

#
2 ])).

We used that the Lie bracket between a horizontal and a vertical vector field is verti-
cal. We continue the computation after making the observation that d(ωL(v#

1 , v
#
2 )) ∈

Γ(Hor◦).

1

2
(Z · α(v#

2 ) + γ([v#
1 , v

#
2 ])) =

1

2
(d(α(v#

2 ))(Z) + γ([v#
1 , v

#
2 ])vert)

=
1

2
(d(ωL(v1, v2))(Z) + γ(ΩΓ(v1, v2)))

=
1

2
(πL(d(ωL(v1, v2)), γ) + γ(ΩΓ(v1, v2))).

Therefore if L is Dirac structure we get that

ΩΓ(v1, v2) = π#
L (d(ι(v#

1 )ι(v#
2 )ωL)).

A natural question to ask is how fibre nondegenerate symplectic Dirac structures and Poisson
bivector Dirac structures look like.

Lemma 2.3.2. Let ω be a closed 2-form on the total space of a fibration p : P → M . Then
the associated Dirac structure is fibre nondegenerate if and only if the pull-back of ω to each
fibre is nondegenerate.

Proof. The Dirac structure is fibre nondegenerate if and only if at every x ∈ P , ωx is Vertx-
nondegenerate, which is equivalent to the requirement that the pull-back of ω to all fibres is
nondegenerate.

Fibre bundles with a nondegenerate closed 2-form on the fibres are called symplectic fibra-
tions. To them we have devoted a whole chapter.

Lemma 2.3.3. Let π be a Poisson structure on the total space of a fibration p : P → M .
Then the associated Dirac structure Lπ is fibre nondegenerate if and only if the bilinear form

π |Vert◦ : Vert◦×Vert◦ → R

is nondegenerate.
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Proof. Lπ is fibre nondegenerate means that ξ ∈ Vert◦ if and only if π#(ξ) /∈ Vert. So in
that case ξ ∈ Vert◦ and π(ξ, η) = 0 for all η ∈ Vert◦ indeed implies π#(ξ) = 0, i.e. π|Vert◦ is
nondegenerate.

For the converse note that π |Vert◦ is nondegenerate implies that for ξ ∈ Vert◦, π#(ξ) = 0 if
and only if ξ = 0.Therefore, if we assume that ξ 6= 0, we get that there is a η ∈ Vert◦ such
that π(ξ, η) 6= 0, hence π#(ξ) /∈ Vert.

In this case, the horizontal form ωL is nondegenerate. Hor is constructed such that π#|Vert◦ :
Vert◦ → Hor is an isomorphism.

2.4 Dirac gauging of fibre bundles

We wonder when the gauge transforms of fibre nondegenerate Dirac structures on M are
again fibre nondegenerate. We start with the extreme case.

Example 2.4.1. Assume pr1(L) ∩ Vert = {0}. Then the horizontal distribution is given by
pr1(L). This implies in fact that Hor is integrable and that the foliation it induces coincides
with the presymplectic leaves of the Dirac structure. Moreover, since gauge transformations
leave the range of the Dirac structure as well as the vertical bundle invariant, all gauge
transformations leave the Dirac structure fibre nondegenerate.

Things get less obvious if we assume that pr1(L)∩Vert is nontrivial. Analogue to the linear
case we get:

Lemma 2.4.2. A Dirac gauging transformation τB preserves the fibre nondegeneracy condi-
tion if and only if for all presymplectic leaves S,

ωS +B|pr1(L)∩Vert,

is still nondegenerate.

Corollary 2.4.3. Any horizontal Dirac gauge 2-form preserves the fibre nondegeneracy con-
dition of a Dirac structure.

Proof. Since horizontal 2-forms vanish on vertical vectors we get for a horizontal gauging
2-form B:

ωS +B|pr1(L)∩Vert = ωS|pr1(L)∩Vert.
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Chapter 3

Connections on vector bundles and
principal G-bundles

Abstract A broad and important family of fibre bundles are the so called principal G-
bundles. Here G is a Lie group which acts on the total space. The fibre type of a principal
bundle is this Lie group G. Connections on a principal bundle can be defined in terms of a
Lie algebra valued 1-form on the total space of the fibration. One of the nice properties of
principal bundles is that if one has a manifold F on which G acts, one can construct a new
fibration which has as fibre type F . This is called the associated bundle. We will see that
associated bundles are very useful to find a relation between a fibre bundle and its so called
linear frame bundle. We use this relation to show that connections on linear frame bundles
are in one-to-one correspondence with covariant derivatives ∇.

3.1 Connections on vector bundles

Vector bundle valued differential forms We extend the notion of differential forms to
the notion vector bundle valued differential forms.

Definition 3.1.1. Let (E, π) and (E ′, π′) be two vector bundles over a manifold M . The
homomorphism bundle Hom(E,E ′) consists of bundle maps ϕ : E → E ′, such that for every
m ∈M , ϕm : Em → E ′

m is linear, i.e. it has the fibre Hom(E,E ′)m = Lin(Em, E
′
m).

Definition 3.1.2. Let M be a manifold and let (E, π) be a vector bundle over M . A E-
valued 1-form on M is a smooth section of Hom(TM,E). The space of E-valued 1-forms on
M is denoted with Ω1(M,E).

Similar as with the 1-forms discussed in chapter 1, we may consider σ ∈ Ω1(M,E) as a
C∞(M)-linear map:

σ : X(M) → C∞(M,E) : σ(X)(m) = σ(m)(X(m)).

Where C∞(M,E) is the space of smooth sections of E.
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Definition 3.1.3. Let M be a manifold and let (E, π) be a vector bundle over M . A E-
valued k-form on M is a smooth section of Hom(

∧k TM,E). The space of E-valued k-forms
on M is denoted with Ωk(M,E).

We may consider σ ∈ Ωk(M,E) as a C∞(M)-multilinear skew-symmetric map:

σ : X(M)× · · · × X(M)︸ ︷︷ ︸
k−times

→ C∞(M,E).

Denote with Sm the group of permutations of {1, ...,m}. An n, k-shuffle with n+ k = m is a
permutation s such that s({1, ..., n}) = {1, ..., n}. We use shuffles to define a wedge product
for ω ∈ Ωn(M) and σ ∈ Ωk(M,E):

(ω ∧ σ)(X1, ..., Xn, Xn+1, ..., Xn+k) :=
∑

s is a n,k-shuffle

sign(s)ω(Xs(1), ..., Xs(n))σ(Xs(n+1), ..., Xs(n+k)).

Note that ω ∧ σ ∈ Ωn+k(M,E).

The covariant derivative Let π : E → M be a vector bundle over a manifold M . To
generalise the exterior derivative to vector bundle valued forms, we need the notion of a
connection.

Definition 3.1.4. Let (E, π) be a vector bundle over M . A connection on E is a differential
operator

∇ : C∞(M,E) → Ω1(M,E),

which satisfies a Leibniz rule:

∇(fσ) = df ∧ σ + f∇σ.

for all σ ∈ C∞(M,E) and f ∈ C∞(M).

Example 3.1.5. Let E = M × R be the trivial line bundle over M . Then C∞(M,E) =
C∞(M), Ω1(M,E) = Ω1(M), and the exterior derivative is a connection.

Connections ∇ are used to differentiate sections of E with respect to any vector field X on
M . More precisely one defines:

∇X : C∞(M,E) → C∞(M,E)

σ → (∇σ)(X).
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Example 3.1.6. Let E be again the trivial line bundle over M , and let d be the connection.
Then for X ∈ X(M) and f ∈ C∞(M), we get:

dXf = ι(X)df = df(X) = LXf,

the Lie derivative of f along X.

Definition 3.1.7. Let E be a vector bundle over a manifold M . A covariant derivative is a
map

∇ : Ωk(M,E) → Ωk+1(M,E),

for all nonnegative intergers k. Moreover, it has to satisfy:

∇(ω ∧ µ) = −ω ∧∇µ+ (−1)kdω ∧ µ,

for µ ∈ Ωk(M,E) and ω ∈ Ωn(M).

The covariant derivative ∇ is characterised in a very similar way as the exterior derivative.
Namely by the relation

(∇µ)(X1, ..., Xk+1) =
k+1∑
i=1

(−1)i+1∇Xi
(µ(X1, ..., X̂i, ..., Xk+1)) +∑

1≤i<j≤k+1

(−1)i+j(µ([Xi, Xj], X1, ..., X̂i, ..., X̂j, ..., Xk+1). (3.1)

In particular, for a σ ∈ Ω1(M,E), and X, Y ∈ X(M) we have:

∇σ(X,Y ) = ∇X(σ(Y ))−∇Y (σ(X))− σ([X, Y ]).

The curvature Note that in the definition of a covariant derivative we do not have the
analogue of the property d ◦ d = 0 for the exterior derivative. In fact ∇◦∇ does not need to
vanish. It gives the so called curvature of the connection.

Definition 3.1.8. Let E be a vector bundle over M , and let ∇ be a connection. The
curvature Ω of ∇ is ∇ ◦∇ : C∞(M,E) → Ω2(M,E).

Proposition 3.1.9. Let E be a vector bundle over M , and let ∇ be a connection. For all
X, Y ∈ X(M), and σ ∈ C∞(M,E):

Ω(σ)(X, Y ) = ∇X∇Y σ −∇Y∇Xσ −∇[X,Y ]σ.

Moreover, this expression is C∞(M)-linear in all arguments.
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Proof.

Ω(σ)(X, Y ) = ∇(∇σ)(X, Y ) = ∇X(∇σ(Y ))−∇Y (∇σ(X))−∇σ([X, Y ])

= ∇X∇Y σ −∇Y∇Xσ −∇[X,Y ]σ.

Which proves the first the first part of the proposition. For the second part, take f ∈ C∞(M):

∇(∇fσ) = ∇(df ∧ σ + f∇σ)

= −df ∧∇σ − ddf ∧ σ + df ∧∇σ + f∇σ
= f∇σ,

and

Ω(σ)(fX, Y ) = f∇X∇Y σ −∇Y (f∇Xσ)−∇f [X,Y ] −∇(LXf)Y σ

= f∇X∇Y σ − f∇Y∇Xσ − LY f∇Xσ − f∇[X,Y ]σ − LXf∇Y σ

= fΩ(σ)(X, Y ).

Corollary 3.1.10. The curvature Ω ∈ Ω2(M,End(E)).

Definition 3.1.11. Let E be a vector bundle over a manifold M , and let ∇ be a connection.
∇ is called a flat connection if the curvature vanishes identically.

Remark 3.1.12. For any trivial vector bundle E = M × V there is an unique flat covariant
derivative. This covariant exterior derivative is denoted with d, and it coincides with the
exterior derivative when V = R.

Pull-back vector bundle Let φ : N → M be a differentiable map between manifolds.
Let (E, π) be a vector bundle over M . The pull-back vector bundle φ∗E is the bundle over
N defined by:

φ∗E = {(e, a) ∈ E ×N : π(e) = φ(a)}.

As general notation, for each s ∈ Γ(M,E), we denote by φ∗(s)Γ(N, φ∗E) the section given
by φ∗(s)(x) = s(φ(x)). In general, every section of φ∗E can be written as a sum of sections
of type fφ∗(s), with f ∈ C∞(N), s ∈ Γ(M,E). Let with a covariant derivative ∇ on E. The
pull-back of the covariant derivative along φ is the covariant derivative on φ∗E is characterised
by:

∇φ∗E(fφ∗s) = df ∧ φ∗s+ fφ∗(∇s).

for all s ∈ Γ(M,E), f ∈ C∞(N).
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Parallel sections Let E be a vector bundle over a manifold M . For a path γ : R →M we
are looking for lifts in the total space E, i.e. paths a : R → E, such that a(t) ∈ Eγ(t) for all
t. Such lifts can be viewed as sections of the pull-back vector bundle γ∗E. In the presence of
a connection ∇ on E, it is interesting to look at the following special class of lifts. Namely
lifts a such that:

∇γ∗E
γ̇(t)a(t) = 0, for all t ∈ R.

Such lifts are called parallel with respect to ∇.

Proposition 3.1.13. Let E be a vector bundle over a manifold M , and let ∇ be a connection.
Let γ : [0, 1] →M be a path joining the points x, y ∈M . For any p ∈ Eγ(0), there is a unique
parallel lift a(t) ∈ C∞(R, γ∗E) starting at p.

This proposition follows directly from the theory of ordinary differential equations.

3.2 Principal G-bundles

Definition 3.2.1. A principal G-bundle is a manifold P together with a free and proper
right action from G.

The orbit space M := P/G is called the base space of the principal G-bundle, and π : P →M
is the natural projection. We denote a principal G-bundle with total space P with P (M,G).

Proposition 3.2.2. P (M,G) is a fibre bundle of fibre type G.

Proof.

Remark 3.2.3. The fibres of a principal G-bundle are isomorphic with G, but not canoni-
cally. Once one has chosen a u ∈ π−1(x), then all other elements of π−1(x) are of the form
ug for g ∈ G, and one obtains a isomorphism G→ π−1(x) : g 7→ ug.

Example 3.2.4 (Hopf fibration). Let P = S3 = {z = (z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1} and
let G be the circle group S1. Then G acts on P by

G× P → P : (eiϕ, (z1, z2)) 7→ (eiϕz1, e
iϕz2).

For a point (z1, z2) ∈ P we find an element eiϕ of S1, such that eiϕz1 is a real number. In
this way we find the quotient S3/S1, and the projection π.

π : S3 → S3/S1 ' S2 = {(x, z) ∈ R× C : x2 + |z|2 = 1}
(r1e

iϕ1 , r2e
iϕ2) 7→ (r1, r2e

i(ϕ2−ϕ1)).

Example 3.2.5 (Frame bundle). Let M be a m-dimensional manifold. A frame u at
p ∈M is a ordered basis of TpM , which we see as a linear map u : Rm → TpM . Let L(M) be
the set of all linear frames above all p ∈ M , and let the projection π map a frame u at p to
p. The linear group GL(m) acts on L(M) by precomposition, and L(M) becomes a principal
GL(m) bundle. We call this bundle the linear frame bundle of M .
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The vertical bundle Since any principal G bundle P (M,G) is a fibre bundle we can talk
about vertical subspaces and the vertical bundle V P ⊂ TP . In this case however, there is a
nicer description of vertical vectors:

Lemma 3.2.6. For all p ∈ P there is a linear isomorphism between ϕp : g → VpP .

Proof. For p ∈ P define

ϕp : g → TpP, ξ 7→
d

dt
|t=0 exp(tξ) · p.

We check that ϕp(ξ) is vertical for all ξ ∈ g. Let f ∈ C∞(M), then

d

dt
|t=0(π

∗f)(p exp(tξ)) =
d

dt
|t=0f(π(p)) = 0.

ϕp is linear. The fibres of the fibre bundle are diffeomorphic to G, hence g and VpP have
the same dimension. It is left to show that the map is injective. G acts freely on P hence,
d
dt
|t=0 p exp(tξ) = 0 if and only if exp(tξ) = e.

Definition 3.2.7. Let P (M,G) be a principal bundle. The fundamental vector field on P
induced by ξ ∈ g is the vector field constructed by

ξ̃ : P → TP, p 7→ ϕp(ξ).

Note that all fundamental vector fields are vertical. They lead to a map ϕ : g → XVert(P ) :
ξ → ξ̃.

Example 3.2.8 (The Hopf fibration). We consider the infinitesimal action of S1 of the
Hopf fibration. The Lie algebra of S1, is iR, and the exponential map is the usual exponential
map: iϕ 7→ eiϕ. Hence, the fundamental vector field for iϕ is given by ĩϕ(z1, z2) = iϕ(z1, z2).

Reduced subbundles

Definition 3.2.9. A homomorphism f between two principal bundles, P ′(M ′, G′) and P (M,G)
is a map f : P ′ → P and a homomorphism f ′ : G′ → G, such that f(u′g′) = f(u′)f ′(g).

Remark 3.2.10. A homomorphism between two principal bundles sends fibres to fibres,
hence it induces a map from M ′ →M .

Definition 3.2.11. We call P ′(M ′, G′) a reduced subbundle of P (M,G) if M ′ = M , f :
P ′ → P is an imbedding, f ′ : G′ → G is injective, and the induced map M ′ → M is the
identity mapping.

65



Example 3.2.12. Let M be an orientable manifold. A frame u above p ∈M is a orthogonal
ordered basis of TpM , which we see as a orthogonal linear map u : Rm → TpM . Let OL(M)
be the set of all orthogonal linear frames above all p ∈ M , and let the projection π map a
frame u at p to p. The orthogonal linear group O(m) acts on OL(M) by precomposition.
OL(M)(M,O(m)) is a principal O(m) bundle. We call this bundle the orthogonal linear
frame bundle of M . The orthogonal linear frame bundle is a reduced bundle of the linear
frame bundle.

Lemma 3.2.13. Let P (M,G) be a principal G-bundle over M and let H be a Lie subgroup
of G. Let Q ⊂ P . Assume that:

1. the projection π : P →M maps Q onto M .

2. rh(Q) = Q for all h ∈ H.

3. for all u, v ∈ Q such that π(u) = π(v), there is a h ∈ H, such that uh = v.

4. every point x ∈M has a neighbourhood U and a section σ : U → P such that σ(U) ⊂ Q.

Then Q(M,H) is a reduced subbundle of P (M,G).

Proof. Let x ∈ M and U a neighbourhood of x as in assumption (4). For u ∈ π−1(x) there
is a g ∈ G such that u = σ(x)g. Define a map ψ : π−1(U) → U × G, u 7→ (x, g). Restrict ψ
to Q and get a bijection ψ : Q ∩ π−1(U) → U ×H. Endow Q with the following topology;
V ⊂ Q is open if ψi : π−1(Ui) → Ui × H is open. Here {Ui} is a suitable open cover M ,
and ψi is defined as ψ above. For this topology the ψi|π−1(Ui)∩Q are homeomorphisms. Let
(V, κ) be a coordinate neighbourhood in Ui × H, then (ψ−1

i (V ), κ ◦ ψi|ψ−1
i (V )) a coordinate

neighbourhood in Q. This induces a smooth structure on Q for which all ψi|π−1(Ui)∩Q are
diffeomorphisms. It follows easily that Q(M,H) is a reduced subbundle of P (M,G).

Associated bundles Given a principal G-bundle P (M,G) and a manifold F on which G
acts from the left, we construct a new fibre bundle over M of fibre type F .

Definition 3.2.14. Let P (M,G) be a principal bundle and let F be a G-manifold. Then the
associated bundle of F to P (M,G) is the following fibre bundle over the space M . The total
space P ×G F is the orbit space of the action of G on P × F given by g · (p, f) = (pg, g−1f).
The projection map πF : P ×G F →M sends the equivalence class [p, f ] to π(p), where π is
the projection of the original principal bundle.

We need to prove that P ×G F is a fibre bundle over M .

Proof. Note tha πF is well defined because π(pg) = π(p). Note that the fibres of P ×G F are
diffeomorphic with F . Let U be an open neighbourhood M such that π−1(U) ∼= U × G say
by isomorphism φ. We find an isomorphism

π−1
F (U) → U × F : [p, ξ] 7→ (π(p), pr2 ◦ φ(p)ξ).
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Here is pr2 the projection to the second component. The transition functions of this associated
fibre bundle are by means of the group action on F .

ψαβ : F → F, ξ 7→ (pr2 ◦ φα(b))(pr2 ◦ φβ(b)−1)ξ.

Hence the associated fibre bundle is a local trivial bundle.

3.3 Connections on principal G-bundles

Like for general fibre bundles a connection on a principal bundle is a horizontal distribution
on P . In the definition of a connection on a principal G-bundle the action of G is taken into
account.

Definition 3.3.1. Let P (M,G) be a principal G-bundle. A connection Γ on P is a distri-
bution H, such that for all p ∈ P and g ∈ G:

1. TpP = HpP ⊕ VpP

2. HpgP = (rg)∗(Hp).

Vectors in Hp are called horizontal vectors, and sections of H are horizontal vector fields.
The space of horizontal vector fields on P is denoted with XHor(P ).

Remark 3.3.2. A connection Γ on P (M,G) determines a decomposition X = Xhor ⊕Xvert

for all X ∈ TP .

The connection 1-form. An equivalent way to define a connection on a principal G-
bundle is by using a g-valued 1-form.

Definition 3.3.3. A connection 1-form on a principal G-bundle is a g-valued differential
1-form ω on P that satisfies the following conditions:

1. for all ξ ∈ g, ω(ϕ(ξ)) = ξ.

2. for all g ∈ G and p ∈ P , ωpg(Tprg(X)) = Ad(g−1)ωp(X).

Proposition 3.3.4. Let ω be a connection 1-form on a principal bundle P (M,G). Then

HpP = {X ∈ TpP |ω(X) = 0},

is a connection on P (M,G).

Proof. Choose p ∈ P . First we check that TpP = HpP ⊕ VpP . Take X ∈ HpP ∩ VpP , then
there is a ξ ∈ g such that X = ϕp(ξ), and ω(X) = ξ, which implies that ξ = 0. Hp ⊂ TpP is a
subspace of codimension dim g. Dimension count gives TpP = HpP ⊕VpP . Take X ∈ Hp and
g ∈ G, then ω(Tp(rg)(X)) = Ad(g−1)ω(X) = 0, and hence we have Tprg(HpP ) = HpgP .

67



Conversely, for a connection Γ on a principal bundle we find a connection 1-form, for which
the kernel is the horizontal distribution.

Lemma 3.3.5. Let P (M,G) be a principal bundle with a connection Γ. Define ω ∈ Ω1(P, g):
for X ∈ TpP , ωp(X) = ξ, such that ϕp(ξ) = Xvert. ω is a connection 1- form, and the
connection it induces is Γ.

Proof. The first condition for connection 1-forms is clear by the contruction of ω. All el-
ements X of TpP can be written as a unique sum Xhor + Xvert. Therefore it suffices to
check the equivariance condition for horizontal X and vertical X. Let X be horizontal then
Ad(g−1)(ω(X)) = 0. Tp(rg)(X) ∈ HpgP , and therefore Tp(rg)

∗(ω(X)) = 0 as well. For a
vertical vector X, there is a ξ ∈ g such that X = ϕp(ξ). For the fundamental vector field ξ̃,
we find

˜Ad(g−1)ξ(pg) =
d

dt
|t=0pg exp(tAd(g−1)ξ) =

d

dt
|t=0pgg

−1 exp(tA)g = (Tprg)(ξ̃(p)).

So for the connection 1-form we have indeed ωpg(Tprg(X)) = Ad(g−1)(ωp(X)).

It is now a natural question to ask if connections exists. To prove that this is the case we
use the locally trivial nature of principal bundles.

Theorem 3.3.6. Any principal G-bundle admits a connection.

Proof. By the very definition of a principal fibre bundle there is a covering {Ui}I of M such
that π−1(Ui) ∼= Ui × G. Note that Tp,g(U × G) ' TpU ⊕ g. Subordinate to the covering we
find a partition of unity; that is for every i ∈ I we find a function χi which is zero outside
a compact subset of Ui, and moreover, for every m ∈ M , the sum

∑
i∈I χi(m) = 1. By

the trivial structure we find for all i ∈ I a connection 1-form ωi; ωip(X ⊕ ξ) = ξ for all
X ⊕ ξ ∈ Tp,g(U ×G). A connection 1-form for the whole principal fibre bundle is now given
by ω =

∑
i∈I π

∗(χi)ωi.

Proposition 3.3.7. Any connection on a principal G-bundle is a Ehresmann connection on
π : P →M viewed as a fibre bundle

To prove this theorem we make use of the following lemma.

Lemma 3.3.8. Let G be a Lie group. For any path A : [0, 1] → g, there is a unique path
γ : [0, 1] → G, with γ(0) = e and d

dt
γ(t)(γ(t))−1 = A(t), for t ∈ [0, 1].

Proof. We may assume that A(t) is defined for all t ∈ R. We define a vector field X on
G× R:

X(g, s) = (a(s) · g, d
dt
|s).

The integral curve of this vector field starting at (e, 0) is of the form (γ(t), t), with γ our
desired path.
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Proof of the propostion. We have to prove that there exists horizontal lifts for paths γ in M .
Let γ : [0, 1] → M be a path in M and let x ∈ π−1(γ(0)). There are finitely many open
neighbourhoods Ui such that π−1(Ui) ' Ui × G, and, moreover, γ(t) is contained in ∪iUi.
Using this isomorphisms we find a path u in P such that π(u(t)) = γ(t) and u(0) = x. The
horizontal lift γ# of γ a starting at x is of the form u(t)a(t), where a(t) is a path in G starting
at e. We have a look at the tangent vectors:

˙γ#(t) = u̇(t)a(t) + u(t)ȧ(t).

Note that γ#(t) is horizontal precisely when ω(γ̇#(t)) = 0, i.e. when:

Ad(a(t)−1)ω(u̇(t)) + a(t)−1ȧ(t) = 0.

Now Ad(a(t)−1)ω(u̇(t)) plays the role of A(t) in the lemma above. Therefore, we conclude
that such a path a in G exists.

Connections on associated bundles Let F be a manifold on which G acts, then a
connection onP (M,G) can carried over to the associated bundle P ×G F , which has fibres
diffeomorphic to F . As we see in the following proposition.

Proposition 3.3.9. Let G be a Lie group which acts on a manifold F from the left, and let
P (M,G) be any principal G-bundle. Any connection Γ on P (M,G) determines a connection
on the associated fibre bundle P ×G F .

Proof. Define the map π̃ : P × F → M by (p, f) 7→ π(p). At (p, f) the tangent space of
P × F has the following property.

T(p,f)(P × F ) = TpP ⊕ TfF

= HpP ⊕ VpP ⊕ TfF.

Moreover, KerT(p,f)π̃ = Vp ⊕ TfF . Consider natural projection πP×F : P × F → P ×G F ,
and observe that π̃ = πF ◦ pr and that T(p,f)πP×F (Vp) = {0}. Therefore, we conclude that
KerT[p,f ]πF = T(p,f)pr(TfF ). It is now natural to require that

H[p,f ](P ×G F ) = T(p,f)πP×F (Hp)

This defines a connection on P ×G F .

Remark 3.3.10. LetX ∈ TbM , and denote with X̄(p) the horizontal lift ofX to TpP , for p ∈
π−1(b). Then the horizontal lift [p, f ] in P×GF is given by X#([p, f ]) = T(p,f)πP×F (X̄(p), 0f ).
Here 0f is the zero vector in TfF .
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3.4 Curvature

Analogue to the fibre bundles we define the curvature for connections on principal bundles.

Definition 3.4.1. Let P (M,G) be a principal G-bundle and let Γ be a connection on it with
connection 1-form ω. The curvature 2-form Ω ∈ Ω2(p, g), is defined by

Ω(X, Y ) = ω([Xhor, Y hor]).

The curvature form can also be defined in terms of the connection 1-form ω.

Proposition 3.4.2. Let ω be the connection 1-form for a connection Γ on a principal G-
bundle, then Ω(X, Y ) = (dω)(Xhor, Y hor).

Proof. The explicit formula for the exterior derivative gives:

(dω)(Xhor, Y hor) = (Xhor)(ω(Y hor))− (Y hor)(ω(Xhor))− ω([Xhor, Y hor]) = ω([Xhor, Y hor]).

Here we used that ω vanishes on horizontal vectors.

There is another relation between the connection form and the curvature form. This relation
is given by the so called structure equation.

Theorem 3.4.3. Ωp(X, Y ) = (dω)p(X, Y ) + [ωp(X), ωp(Y )], for X, Y ∈ TpP, p ∈ P .

In the proof of this theorem the following lemma is used.

Lemma 3.4.4. Let P (M,G) be a principal bundle and let Γ be a connection on it. The Lie
bracket [X, ξ̃] between a horizontal vector field and a fundamental vector field on P is again
horizontal.

Proof. The flow of ξ̃ is exp(tξ). Hence, for all p ∈ P

[X, ξ̃](p) = −[ξ̃, X](p) = lim
t→0

X(p)− (rexp(tξ)∗X)(p)

t
.

the horizontal spaces are constructed such that rexp(tξ)∗X(p) is horizontal. Therefore, [X, ξ̃]
is horizontal.

Proof of the theorem. A vector in TpP can be decomposed in a horizontal and a vertical
component. Therefore it is sufficient to consider the cases that X, Y are both horizontal,
both vertical or that X is horizontal and Y is vertical. If X and Y are both horizontal then
ω(X) = ω(Y ) = 0, and then the equation is the same as in the previous proposition. Note
that Ω(X, Y ) = 0, whenever X or Y is vertical. If X and Y are both vertical, then there are
elements ξ, η ∈ g such that ϕp(ξ) = X and ϕp(η) = Y . Hence:
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dω(ξ̃, η̃) = ξ̃(ω(η̃))− η̃(ω(ξ̃))− ω([ξ̃, η̃]) = −[ω(ξ̃), ω(η̃)].

Because ωp(ξ̃(p)) = ξ for all p ∈ P , η̃(ω(ξ)) vanishes, and ξ̃(ω(η̃)) vanishes similarly. We are
left with

dω(ξ̃, η̃) = −[ω(ξ̃), ω(η̃)],

and hence the equation is satisfied. The last case is that X is horizontal and Y is vertical.
Since ω(X) = 0 it is sufficient to prove that dω(X,Y ) = 0. Extend X to a horizontal vector
field on P , which we denote again with X. Let ξ ∈ g such that ϕp(ξ) = Y . We find

dω(X, ξ̃) = X(ω(ξ̃))− ξ̃(ω(X))− ω([X, ξ̃]) = X(ω(ξ̃))− ω([X, ξ̃])

ω([X, ξ̃]) disappears because [X, ξ̃] is horizontal, as is proved in the lemma above.

Definition 3.4.5. A connection Γ on a principal bundle P (M,G) is called flat if the curvature
2-form vanishes identically.

Curvature on associated fibre bundles

Proposition 3.4.6. Let P (M,G) be a principal G-bundle, and let G act on a manifold F .
Denote with ρF : g → X(F ) the infinitesimal action of G on F . Let Γ be a connection on
P (M,G), and let θ be the connection induced on the associated bundle P ×G F . Let X̄(p)
denote the horizontal lift of X ∈ X(M) at p in P (M,G). Denote with πP×F the projection
P × F → P ×G F . The curvatures ΩΓ and Ωθ are related in the following way:

Ωθ(Xp, Yp)([p, f ]) = T(p,f)πP×F (0p, (ρF ◦ ΩΓ(X̄p, Ȳ
#
p )))

Proof. Let X, Y be to vector fields on M . The vector fields X ′ = (X̄, 0), Y (Ȳ , 0)′ ∈ X(P ×F )
descend under πP×F to X#, Y # ∈ X(P ×G F ).

Define a 2-form on P × F :

Ω′(X ′, Y ′) = [X ′, Y ′]− [X, Y ]′

Ω′(X ′, Y ′) descends to [X#, Y #]−[X, Y ]# = Ωθ(X, Y ). On the other hand we have Ω′(X ′, Y ′) =
([X̄, Ȳ ], 0)− ([X, Y ], 0). Hence,

Ω′(X ′, Y ′) = (ϕ(ΩΓ(X, Y )), 0).

We finish the prove by showing that TπP×F (ϕp(ξ), 0) = TπP×F (0, ρF (ξ)). This last equality is
is equivalent to TπP×F (ϕp(ξ),−ρF (ξ)) = 0. Consider the path γ(t) = (p exp(tξ), exp(−tξ)f)
in P × F . πP×F (γ(t)) is a constant path in P ×G F . Hence we have:

0 =
d

dt
|t=0TπP×F (γ(t)) = TπP×F

d

dt
|t=0γ(t) = TπP×F (ϕp(ξ),−ρF (ξ)).
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3.5 Connections and the covariant derivative

The linear frame bundle Above we defined the linear frame bundle L(M) on a manifold
M in terms of bases of the tangent spaces. We extend the notion of the linear frame bundle
to a general vector bundle.

Definition 3.5.1. Let π : E → M be a vector bundle of rank n over manifold M . A frame
u above p ∈ M is a ordered basis of Ep, which we see as a linear map u : Rn → Ep. Let
GL(E) be the set of all linear frames above all p ∈M , and let the projection π map a frame
u at p to p. The linear group GL(n) acts on GL(E) by precomposition. GL(E)(M,GL(m))
is a principal GL(m) bundle. We call this bundle the linear frame bundle of π : E →M .

GL(n) acts on Rn in the usual way. The associated bundle GL(E) ×GL(n) Rn is isomorphic
with the original vector bundle E. The isomorphism is given by [u, v] 7→ u(v).

On vector bundles we have defined the covariant derivative and in principal bundle we have
defined the connections. The aim of this section is to prove the following proposition.

Proposition 3.5.2. There is an one-to-one correspondence between connections on the frame
bundle GL(E) and covariant derivatives on the vector bundle E.

From a covariant derivative to a connection We start with a covariant derivative, and
construct with that a connection on the frame bundle. We defined the covariant derivative
to be the linear map:

∇ : C∞(M,E) → Ω1(M,E),

which satisfies the Leibniz rule: for f ∈ C∞(M), s ∈ C∞(M,E),

∇(fs) = f∇s+ df ∧ s.

A local section σ of the frame bundle on a neighbourhood U is of the following form.

σ : m 7→ {σ1(m), ..., σn(m)},

where {σ1(m), ..., σn(m)} forms a basis of Em. So in fact σ exists of n sections M → E
such that the σi(m) are linear independent for m ∈ U . We call a section of a frame bundle
horizontal if ∇σi(m) = 0 for all i. Now we define the horizontal subspace of Tp GL(E), to
be the tangent spaces of the horizontal local sections i.e. Hp GL(E) = Tσ(m)=pσ(m), where
∇σi(m) = 0. We have to check that Hp GL(E) is invariant under the action of GL(n). If
A ∈ GL(n), then forms A ◦ σ(m) a new basis of Em; {σ̃j(m)}. The covariant derivative is
linear so ∇σ̃j(m) = 0, exactly if all ∇σi(m) = 0. Therefore, the in this way defined horizontal
spaces, are invariant under the action.
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From a connection to a covariant derivative Next we start with a principal G-bundle,
P (M,G). Let E be a vector space, and let ρ : G → GL(E) be a linear representation of G.
P ×GE be the associated bundle. Denote with C∞(P,E)G be the space of equivariant maps.
Those are maps f : P → E satisfying f(pg) = ρ(g−1)f(p). If X ∈ g, then exp(tX) ∈ G, for
t ∈ R, hence we have

f(p exp(tX)) = ρ(exp(−tX))f(p).

Therefore we have on the infinitesimal level that

(X̃(f))(p) + ρ∗(X)f(p) = 0, for X ∈ g,

Definition 3.5.3. A form α on a principal bundle P (M,G) is called horizontal if ι(X)α = 0
for all vertical vector fields X ∈ X(P )

Definition 3.5.4. A form α on a principal G-bundle, taking values in a representation (E, ρ)
of G, i.e α ∈ Ω1(P,E) is called basic if it is horizontal and invariant, i.e. gα = α for all
g ∈ G. The space of basic forms with values in E is denoted with Ωbas(P,E).

Next two proposition come from [3] on page 19 and 20.

Proposition 3.5.5. There is a natural isomorphism between Γ(M,P ×GE) and C∞(P,E)G,
given by sending s ∈ C∞(P,E)G to sM defined by

sM(x) = [p, s(p)];

here p is any element of π−1(x) and [p, s(p)] is the element of P ×G E corresponding to
(p, s(p)) ∈ P × E.

Proposition 3.5.6. If α ∈ Ωq
bas(P,E), define αM ∈ Ωq(M,P ×G E) by

(αM)(π∗X1, ..., π∗Xq)(x) = [p, α(X1, ..., Xq)(p)].

Here p is any point in π−1(x), and Xi ∈ TrP . Then the map α 7→ αM from Ωq
bas(P,E) to

Ωq(M,P ×G E) is an isomorphism.

Proof. First we have to check that this map is well-defined. For p′ ∈ π−1(x) another, there is
a g ∈ G such that p′ = pg. We observe [p′, α(X1, ..., Xq)(p

′)] = [pg, α(X1, ..., Xq)(pg)] =
[p, α(X1, ..., Xq)(p)]. The last equality follows from the fact that α is basic. The map
α 7→ αM is linear, so to prove injectivity let α ∈ Ωq

bas(P,E) be in the kernel. Then
αM(π∗X1, ..., π∗Xq)(x) = 0 for allXi ∈ X(P ). This only happens if α = 0. For surjectivity, let
β ∈ Ωq(P ×G E), and define α ∈ Ωq

bas(P,E) by α(X1, ..., Xq)(p) = (β)(π∗X1, ..., π∗Xq)(π(p)).
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Let ω ∈ Ω1(P, g) be a connection 1-form. Let ρ : G→ GL(E) the representation of G. Then
the differential ρ∗ := Tρ is a mapping gg → gl(E). We define the map:

ρ∗(ω) : C∞(P,E)G → Ω1(P,E)G,

by

〈ρ∗(ω)s,X〉p = ρ∗(ω(X(p)))s(p).

And in a similar way we define:

ρ∗(dω) : Ω1(P,E)G → Ω2(P,E)G,

by

〈ρ∗(dω)α, (X, Y )〉p = ρ∗(dω(X(p), Y (p)))α(X(p), Y (p)).

We find a covariant derivative of an associated vector bundle by means of the following
diagram.

C∞(P,E)G -
d+ ρ∗(ω) Ω1

bas(P,E)

? ?

∼= ∼=

Γ(M,E) Ω1(M,E)-∇

Let s ∈ C∞(P, F )G end let X ∈ g, then

ι(X̃)(ds+ ρ∗(ω)(s)) = X̃(s) + ρ(X)(s) = 0

Moreover ds+ρ∗(ω(s)) isG-equivariant, if s equivariant. Therefore ds+ρ∗(ω(s)) ∈ Ω1
bas(P,E).

To check that ∇ is a covariant derivative, we choose a sM ∈ Γ(M,P ×G E) and a C∞-
function f on M , and we observe what ∇fsM is. The isomorphism of 3.5.5 sends fsM
to (f ◦ π)s ∈ C∞(P,E)G. Since d(f ◦ π)s = d(f ◦ π) · s + (f ◦ π)ds, so it is sent to
d(f ◦ π) · s + (f ◦ π)ds + (f ◦ π)ρ(ω)s ∈ Ω1

bas(P,E). On its turn the isomorphism of 3.5.6
sends it to df · s+ f∇sM ∈ Ω1(M,E).
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The curvature For both, the vector bundles and the principal bundles we discussed the
notion of curvature. These are related by the following extension of the diagram above.

C∞(P,E)G
d+ρ∗(ω)//

∼=
��

Ω1
bas(P,E)

∼=
��

d+ρ∗(dω)// Ω2
bas(P,E)

∼=
��

Γ(M,E) ∇ // Ω1(M,E)
∇ // Ω2(M,E)

Note that dω is the curvature of the principal bundle here, because it maps from the basic
forms.

3.6 Parallel transport and the holonomy group

Parallel transport The concepts of a horizontal lifts and parallel transport are similar as
for fibre bundles. Nice is that parallel transport in principal bundle preserves the additional
date; the group structure of the fibre.

Lemma 3.6.1. Let P (M,G) be principal bundle, and let Γ be a connection on it. Parallel
transport φγ : π−1(γ(0)) → π−1(γ(1)) along a path γ with respect to Γ is an isomorphism.

Proof. φγ is bijective because the different horizontal lifts of γ don’t intersect each other.
Recall that one can obtain all elements from a fibre π−1(x), by multiplying one chosen
element by the elements of G. Because multiplying with elements of G, sends horizontal
paths to horizontal paths, we observe that φγ is really a homomorphism and therefore a
isomorphism between the fibres.

The holonomy group.

Definition 3.6.2. Let P (M,G) be a principal fibre bundle with a connection Γ. Choose
x ∈ M . The holonomy group Φ(x) in x with respect to Γ is the following subgroup of
Aut(π−1(x)): Φ(x) exists out of those automorphisms of π−1 which can be obtained via
parallel transport φγ with respect to Γ along a loop in M around x.

This definition requires a prove that Φ(x) is really a subgroup of Aut(π−1).

Proof. Take two elements φγ, φγ′ ∈ Φ(x). Then φγ ◦ (φγ′)
−1 is obtained by parallel transport

along γ ∗ (γ′)−1, with

γ ∗ (γ′)−1(t) =

{
γ(t), 0 ≤ t ≤ 1

2

γ′(t), 1
2
≤ t ≤ 1

Hence, Φ(x) is a subgroup.
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Lemma 3.6.3. Let P (M,G) be a principal fibre bundle with a connection Γ. For two points
x and x′ in the same path connected component of the base space M the holonomy groups
Φ(x) and Φ(x′) with respect to Γ are isomorphic.

Proof. Let α be an path joining x and x′. Then

Φ(x) → Φ(x′) : φγ 7→ φα ◦ φγ,

is an isomorphism.

There is another equivalent way to define the holonomy group. It uses that the fibres of a
principal G-bundle are isomorphic with G.

Definition 3.6.4. Let P (M,G) be a principal fibre bundle with a connection Γ, and let
u ∈ P . The holonomy group Φ(u) in u with respect to Γ is the subgroup of G which exists
out of those g ∈ G such that there is a horizontal path from g to ug.

Again, this definition requires a prove that Φ(u) is a subgroup of G.

Proof. For g, h ∈ Φ(u), there are paths γ, α in M such that φγ(u) = ug and φα(u) = uh. By
combining these paths we get φα∗γ(u) = φα(ug) = φα(u)g = uhg. Hence hg ∈ Φ(u).

Lemma 3.6.5. Let P (M,G) be a principal fibre bundle with a connection Γ, and let u ∈ P
and x = π(u). The holonomy groups Φ(x) and Φ(u) are isomorphic.

Proof. The map which sends φγ ∈ Φ(x) to that g ∈ Φ(u) such that φγ(u) = ug, is the
isomorphism.

Proposition 3.6.6. Φ(u) is a Lie subgroup of a G

A proof of this proposition can be found in [11].

Definition 3.6.7. Let P (M,G) be a principal G-bundle, and let Γ be a connection on it.
The restriction of the holonomy group Φ(u) in u to elements generated by the loops in M
which are contractible is called the restricted holonomy group in u, and denoted with Φ0(M).

Lemma 3.6.8. Let P (M,G) be a principal G-bundle whose base manifold is connected, and
let Γ be a connection on it. Choose u ∈ P , and let x = π(u). There is a surjective group
homomorphism from the fundamental group π1(M,x) of M to the quotient Φ(u)/Φ0(u).

Proof. Let γ and γ′ be loops in around x, such that [γ] = [γ′] ∈ π1(M,x). γ and γ′ both define
an element in Φ(u). γ · γ′ is null-homotopic, so they define the same element in Φ(u)/Φ0(u).
This defines the homomorphism from f : π1(M,x) → Φ(u)/Φ0(u).

Corollary 3.6.9. For principal G-bundles for which the base manifold is connected is Φ(u)/Φ0(u)
countable.

Proof. Manifolds which are connected have countable fundamental groups.
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A theorem on holonomy There is an important result due to Ambrose and Singer which
gives a relation between the holonomy group of a connection and its curvature. First we
introduce the notion of the holonomy bundle.

Definition 3.6.10. Let P (M,G) be a principal fibre bundle with a connection Γ. Let u ∈ P .
The set of all elements v in P such that there exists a horizontal path joining u and v is
called the holonomy bundle with respect to connection Γ of u, and denoted with P (u).

That P (u) is a fibre bundle is hidden in the proof of the following theorem.

Theorem 3.6.11 (Reduction). Let P (M,G) be a principal fibre bundle with connected base
M , and let Γ be a connection on it. Let u ∈ P , then

1. P (u) is a reduced bundle with structure group Φ(u).

2. the connection Γ is reducible to a connection in P (u).

Proof. To prove this theorem we use lemma 3.2.13. For the first statement it is sufficient to
check the assumptions of this lemma. Let x = π(u). Since M is connected there is a path
to any y ∈ M . Therefore π(P (u)) = M . If v ∈ P (u), then va ∈ P (u) if a ∈ Φ(u), by the
very definition of Φ(u). To verify assumption (4) we take a local coordinate system x1, ..., xn
around x, where x is mapped to the origin. Let δ > 0 and define U by U = {|xi| < δ}. For a
y ∈ P such the π(y) ∈ U , let γ be a path in U joining x and π(y). Define σ(y) to be obtained
by parallel transport along this γ. Then σ is a section and σ(y) ∈ P (u). This proves the first
statement of the theorem. To prove the second statement, we observe that HpP ⊂ Tp(P (u)),
for p ∈ P (u). We now define HpP (u) to be HpP .

Now we are ready to state and prove the holonomy theorem.

Theorem 3.6.12 (Holonomy). Let P (M,G) be principal bundle. Let Γ be a connection
on P , and denote with ω its connection 1-form and with Ω its curvature. Let u ∈ P be an
arbitrary point, and denote with P (u) the holonomy bundle through u. Then the Lie algebra
of the holonomy group Φ(u) is equal to the following subspace g′ of g.

g′ = {Ωv(X,Y ) : v ∈ P (u), X, Y ∈ Horv}.

Proof. By the reduction theorem we may assume that P (u) = P , and hence G = Φ(u).
Because for all horizontal X, Y , we have Ω(X, Y ) = −ω([X, Y ]), and because of the G
equivariance of ω, we find that g′ is AdG invariant. Therefore g′ is a Lie algebra itself. We
will prove that in fact g′ = g. Thereto we define a distribution S in P . Let

Sv = Horv +g′v for v ∈ P, here

g′v = {Ã(v) : A ∈ g′}.
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We claim that S is differentiable and integrable. Let v ∈ P , and let U be an open neighbour-
hood of y = π(v) in M such that π−1(U) ' U ×G. Let X1, ..., Xm ∈ X(M) be differentiable
vector fields such that for all y′ ∈ U , X1(y

′), ..., Xm(y′) forms a basis for Ty′M . Let A1, ..., Ar
be a basis for g′. Then we obtain a basis for Sv: X

#
1 (v), ...X#

m(v), Ã1(v), ..., Ãr(v). By the
differentiability of the vector fields involved, this implies that S in differentiable. We use

this basis to prove the integrability. Because g′ is an algebra and [Ãi, Ãj] = ˜[Ai, Aj], we have

that [Ãi, Ãj] ∈ S. We proved before that [Ãi, X
#
j ] is horizontal, so, vectors of that form are

also contained in S. For horizontal vectors we have ω([X#
i , X

#
j ]) = −Ω(X#

i , X
#
j ) ∈ g′, hence

[X#
i (v), X#

j (v)] = Ã(v) for some A ∈ g′. We conclude that S is integrable. Let P0 be the
maximal integral manifold in of S through u. Because S contains the horizontal distribution,
P = P (u) ⊂ P0 = P . Therefore:

dim g′ = dimP0 − r = dimP − r = dim g,

and hence g′ = g.

3.7 Connections on the frame bundle

In this section we take a fibration π : M → B with fibre F . The structure group G of the
fibration is a subgroup of Diff(F ), and is not necessarily finite dimensional. We introduce a
more general concept of frame bundle, and we compare the holonomy groups of the frame
bundle with the holonomy group of the original bundle.

Frame bundles

Definition 3.7.1. The frame bundle, p : P → B of the fibration π : M → B is a principal
G-bundle whose fibre over b ∈ B is

Pb = {u : F → Fb : u is a diffeomorphism}.

G acts on P from the right by precomposition:

P ×G→ P : (u, g) 7→ u ◦ g.

The original fibre bundle is isomorphic with the associated bundle P ×GF , and a connection
on the original bundle induces a connection on the frame bundle. In order to see that we
need the notion of the tangent space TuP of P , which we will describe without specifying the
differential structure on P . Take a path ut, t ∈ [0, 1] in P , with u0 = u. The choice of this
path involves the specification of a path b(t), t ∈ [0, 1] in B, such that ut : F → Fb(t). Note
that for all x ∈ F , ut(x), t ∈ [0, 1], is a path in M . Therefore we get a map

∂

∂t
ut|t=s : F → Tπ−1(b(s))M.
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Let X be the map we get if we take s = 0. We compute

Tu(x)π(X(x)) =
d

dt
|t=0π(ut(x)) =

d

dt
|t=0b(t),

which is independent of x. Finally we have computed that

TuP = {X : F → TM : X(x)Tu(x)π ·X(x) ∈ Tp(u)B is constant}.

The vertical spaces of p : P → B are the kernels of Tup. These are those vector fields in TuP
which image in vertical in the original fibre bundle. Therefore the vertical spaces are given
by

Vu = {du ◦X : X ∈ X(F )}

Now let Γ be a connection on the original fibration. It induces a connection on p : P → B
in the following way.

Hu = {v# ◦ u : v ∈ TbB}.

Moreover its induced connection on P ×G F is the original connection Γ. p : P → B is a
principal G-bundle, hence the connection can also be described with the help of a g valued
connection 1-form. The Lie algebra of Diff(F ) is X(F ). The fundamental vector field on P
induced by X ∈ X(F ) is

X̃(u) = du ◦X.

Curvature We describe how the curvature in the original bundle ΩΓ is related with the
curvature in the frame bundle FΓ. For every x ∈ F and ξ ∈ TuP we have ξ(x) = ξ(x)hor +
ξ(x)vert. And the connection 1-form ω at ξ has as value at u that vector field X ∈ X(F ),
such that

X̃(x)u = u ◦ d

dt
|t=0 exp(tX)(x) = ξ(x)vert.

The curvature is given by

FΓ(ξ, η) = ω([ξhor, ηhor]) ∈ X(F ),

and du ◦ ω([ξhor, ηhor]) ∈ Vu. The curvature of the original bundle is given by

ΩΓ(v1, v2)u(x) = [v#
1 , v

#
2 ]vert ∈ X(Fb),
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where b = p(u). Because for all ξ ∈ TuP , Tu(x)p · ξ(x) = constant, there are v1, v2 ∈ TbB such
that ξ(x)hor = v1(x)

hor, and η(x)hor = v2(x)
hor. Now it is not hard to see that the relation

between the two curvatures is given by:

ΩΓb = du ◦ FΓ ◦ u−1,

where u ∈ Pb.

The holonomy groups The following lemma gives a relation between the holonomy group
of the original bundle and the frame bundle.

Lemma 3.7.2. Let b ∈ B, and Φ(b) the holonomy group for a connection Γ on the bundle
π : M → B. Let u : F → Fb be in P. Then the Φ(b) is isomorphic to the holonomy group
Φ(u) of the induced connection on p : P → B.

Proof. Φ(u) exists out of those elements g ∈ Diff(F ) = G, such that u and ug can be joined
by a horizontal path ft in P . ft is the horizontal lift of a path γ(t) in B. u and ug live in
the same fibre, so γ(t) is a loop in B, and u ◦ g ◦ u−1 ∈ Φ(b). The map

Φ(u) → Φ(b) : g 7→ u−1 ◦ g ◦ u,

is our desired isomorphism.
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Chapter 4

Symplectic fibre bundles

Abstract In this chapter we concentrate on symplectic fibre bundles. These are fibre
bundles of type a symplectic manifold (F, σ) and the transition functions are symplecto-
morphisms. The total space of a symplectic fibration doesn’t always admit a compatible
symplectic structure itself. We derive some conditions on the fibration, for which the total
space is symplectic. We discuss the notions of a symplectic connection. These are connections
for which the parallel transport preserves the symplectic structure. They can be described
by vertically closed 2-forms. If such a 2-form turns out to be closed and nondegenerate then
the total space is in fact a symplectic space, and the form is called a coupling form. We
finish with a theorem, which shows that the connection induced by a coupling form has to
have quite restricted holonomy groups. The theory is illustrated with examples. The outline
of this chapter is mostly based on chapter 6 of monograph of McDuff and Salomon, [13].

4.1 Symplectic fibre bundles

A fibre bundle π : M → B has a structure group G ⊂ Diff(F ) if all transition functions take
values in G. In this chapter the fibre is a compact symplectic manifold (F, σ).

Definition 4.1.1. A fibration π : M → B with local trivialisation (φi, Ui) is a symplectic
fibration if all transition functions take values in Symp(F, σ), i.e. φi,j(b)

∗σ = σ, for all i, j
and b ∈ Ui ∩ Uj.

The fibres Fb of a symplectic fibration are equipped with a natural symplectic structure
σb ∈ Ω2(Fb) defined by σb = φi(b)

∗σ. We could define a symplectic fibration equivalently, by
requiring that every fibre has a symplectic structure σb such that σb = φi(b)

∗σ yields. Then
for the transition functions it yields,

φi,j(b)
∗σ = (φj(b) ◦ φi(b)−1)∗σ = φi(b)

−1∗σb = σ.

Hence, they are in Symp(F, σ). A symplectic form ω on the total spaceM is called compatible
with the symplectic fibration if each fibre (Fb, σb) is a symplectic submanifold of (M,ω),i.e.
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for all b ∈ B ι∗bω = σb, where ιb : Fb → M denotes the inclusion. Given a fibration
π : M → B with symplectic fibre (F, σ), and a structure group G ∈ Symp(F, σ), we would
like to understand under which conditions M admits a compatible symplectic form ω. The
other way round, if we have a fibration π : M → B, and a symplectic form ω ∈ Ω2(M), such
that the fibres are all symplectic manifolds of M , we would like to understand if the fibration
admits the structure of a symplectic fibration which is compatible with ω. The last question
is answered by the following theorem.

Theorem 4.1.2. Let π : M → B be a fibre bundle with connected base and let ω ∈ Ω2(M) be
a symplectic form such that the fibres are all symplectic submanifolds of M . Then π : M → B
admits the structure of a symplectic fibration which is compatible with ω.

Proof. For every b ∈ M we have σb = ι∗bω ∈ Ω2(Fb) and a diffeomorphism φi(b) : Fb → F ,
hence φi(b)

−1∗σb ∈ Ω2(F ). We will show that for all b these represent the same cohomology
class in H2

de Rham(F ). Using lemma ?? hAS TO BE REPAIRED.we note that the difference

φi(b)
−1∗σb − φj(b

′)−1∗σb′

is an exact form. M is a connected manifold, so in particular for two points b and b′ there
is a path γ, such that γ(0) = b and γ(1) = b′. First take b and b′ both containded in a
neighborhood Ui, over which the bundle is trivial. Let γ(t) be contained in Ui, for all t ∈ I.
Define

φ = ιγ(t) ◦ φi(γ(t))−1 : I × F →M

This is a smooth map, and using the lemma we conclude that (ιb◦φi(b)−1)∗ω−(ιb′◦φi(b′)−1)∗ω,
is an exact form for such b and b′. If two point b, b′ don’t lie in such a neighbourhood, but
in neighbourhoods Ui, Uj such that Ui ∩ Uj 6= ∅, then choose c ∈ Ui ∩ Uj, and conclude
that (ιb ◦ φi(b)−1)∗ω and (ι′b ◦ φj(b′)−1)∗ω are both cohomologous with (ιc ◦ φi(c)−1)∗ω. For
points which are further away from each other we construct a path γ joining them. Then
γ−1(Ui)i gives a cover of [0, 1]. [0, 1] is compact, so we get after only finitely many steps that
(ιb ◦ φi(b)−1)∗ω and (ι′b ◦ φj(b′)−1)∗ω are cohomologous in H2

dR(F ).

To finish the proof we take again a path γ joining two points b, b′ ∈ M . Now define σt =
(1 − t)σ + tσγ(t) ∈ Ω2(F ). They are also all cohomologous. Now Moser’s stability theorem
gives that there is a family of diffeomorphisms ψt : F → F , such that

ψ0 = id

ψ∗t σt = σ0 = σ

Therefore all fibres are symplectomorphic to the standard fibre (F, σ).

The converse is not obvious.

The next result, due to Thurston, shows that forM compact and for B a symplectic manifold,
there is a necessary and sufficient condition, which guarantees the existence of a compatible
symplectic form on M .
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Theorem 4.1.3 (Thurston). Let π : M → B be a symplectic manifold with compact total
space M , symplectic fibre (F, σ), and connected symplectic base (B, β). Suppose, there is a
class a ∈ H2

de Rham(M) such that

ι∗ba = [σb]

for some b ∈ B. Then for every sufficiently large real K > 0, there exists a symplectic form
ωK ∈ Ω2(M) which is compatible with the fibration π and represents the class a+K[π∗β].

Proof. Let τ0 be any closed 2-form which represents the class a ∈ H2
de Rham(M). For any α

denote by σα ∈ ω2(Uα×F ) the 2-form obtained from σ via the pull-back under the projection
Uα × F → F . The open sets Uα are chosen to be contractible, so it follows that the forms
φ∗ασα − τ0 ∈ Ω2(π−1(Uα)) are exact. Choose a collection of 1-forms λα ∈ Ω1(π−1(Uα)) such
that

φ∗ασα − τ0 = dλα.

Let {ρα : B → [0, 1]} be a partition of unity subordinate to the cover {Uα}α, and define
τ ∈ Ω2(M) by:

τ = τ0 +
∑
α

d((ρα ◦ π)λα).

All terms are closed, so τ is closed as well, and represents the class a. Moreover, the 1-form
d(ρα ◦ π) vanishes on vertical vectors, and hence

ι∗bτ = ι∗bτ0 +
∑
α

(ρα ◦ π)ι∗bdλα

=
∑
α

(ρα ◦ π)ι∗b(τ0 + dλα)

=
∑
α

(ρα ◦ π)ι∗bφ
∗
ασα

=
∑
α

(ρα ◦ π)σb = σb.

The form τ need not to be nondegenerate. However, it is nondegenerate on the vertical
subspaces, and hence it determines a field of horizontal subspaces Horx = (Vertx)

τ . The
form

ωK = τ +Kπ∗β

agrees with τ on Vertx, is nondegenerate on Horx for K > 0 sufficiently large, and satisfies
ωK(ξ, η) = 0 for ξ ∈ Horx and η ∈ Vertx. This shows that ωK is nondegenerate for K
sufficiently large.
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Constructing a symplectic fibre bundle. There is a natural way to construct a sym-
plectic fibration from a principal G-bundle and a symplectic manifold.

Theorem 4.1.4. If (P,B) is a principal G-bundle, and if G acts in a symplectic fashion on
a symplectic manifold (F, σ), then P ×G F is a symplectic fibration.

Proof. As we have seen in the chapter about principal G-bundles are the transition functions
of the associated fibre bundle, really by means of the group action on F . This group action
is here symplectic, and therefore the transition functions as well.

Example 4.1.5. Let P (G,B) be a principal G-bundle. The symplectic form on the orbits
of the coadjoint action on g∗ is invariant under this action. So G acts in particular in a
symplectic way on Oξ. Therefore, for all orbits P ×G Oξ is a symplectic fibration over B.

If we allow G to be infinite dimensional, like Symp(F, σ) is, then every symplectic fibration
gives rise to a principal G-bundle, namely the symplectic frame bundle.

Definition 4.1.6. Let π : M → B be a symplectic bundle with fibre F . The symplectic
frame bundle, P → B, has as fibres

Pb = {f : F → Fb : f ∗σb = σ}.

The group of symplectomorphisms of (F, σ) acts on P by precomposition.

4.2 Symplectic connections

Definition 4.2.1. An Ehresmann connection Γ on a symplectic fibration π : M → B is
called symplectic if the diffeomorphisms, constructed by parallel transport along paths γ,
preserve the symplectic structures in the fibres.

Ehresmann connections may be described by fibre nondegenerate almost Dirac structures on
the total space. We consider those which are the graph of a compatible 2-form τ ∈ Ω(M),
i.e. ι∗bτ = σb for all b ∈ B. Note that the compatability condition assures that the graph
of τ is indeed fibre nondegenerate. Not all compatible 2-forms on M lead to a symplectic
connection. The following lemma indicates some obstructions on τ to induce a symplectic
connection.

Lemma 4.2.2. Assume that τ ∈ Ω2(M) is compatible with the fibration. Then the connection
Γτ is symplectic if and only if τ is vertically closed in the sense that

dτ(η1, η2, ·) = 0

for all x ∈M and all vertical tangent vectors η1, η2 ∈ Vertx.
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Proof. The connection Γτ is symplectic if the flow of all horizontal lifts v#, of vector fields
on B, preserve the restriction of τ to the fibres. Equivalently,

Lv#τ(η1, η2) = 0,

for all v ∈ X(B), and vertical vectors η1, η2. By Cartans formula we get

d(ι(v#)τ)(η1, η2) + (ι(v#)dτ)(η1, η2) = 0.

By the definition of Hor, the 1-form ι(v#)τ , vanishes on vertical vectors. Since the pull-back
and the exterior derivative commute it yields,

ι∗bd(ι(v
#)τ) = dι∗b(ι(v

#)τ) = 0.

Therefore, the first term is zero. That the last term is zero is equivalent to the statement
that

dτ(η1, η2, ξ) = 0

for all horizontal ξ. The restriction to the fibres of τ is closed by assumption so we obtain:

dτ(η1, η2, ·) = 0.

Definition 4.2.3. Let π : M → B be a symplectic fibration. A connection 2-form on M
is a form τ ∈ Ω2(M) which is compatible with the symplectic fibre structure and which is
vertically closed.

It is clear that all connection 2-forms give rise to symplectic connections. Next, we prove
that they really exist.

Lemma 4.2.4. Any symplectic fibrations π : M → B of fibre type (F, σ) admits a connection
2-form τ .

Proof. Let {φα : Uα}α be the local trivialization. Denote with σα ∈ Ω(Uα×F ) the pull-back
of σ under the projection Uα×F . Let ρα : B → R be a partition of unity subordinate to the
cover {Uα}α. Define τ by:

τ =
∑
α

(ρα ◦ π)φ∗ασα.

We claim that this τ is a connection 2-form. To check the compatibility of τ we take an
arbitrary b ∈ B, such that b ∈ Uβ, and compute:
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ι∗bτ = ι∗b
∑
α

(ρα ◦ π)φ∗ασα

=
∑
α

(ρα ◦ π)ι∗bφ
∗
αpr

∗
ασ

=
∑
α

(ρα ◦ π)(prα ◦ φα ◦ ιb)∗σ

= φβ(b)
∗σ = σb.

Furthermore, we compute dτ :

dτ =
∑
α

d(ρα ◦ π) ∧ φ∗ασα −
∑
α

(ρα ◦ π)φ∗αpr
∗
αdσ.

σ is closed, so the second term vanishes. Because Vert = Ker dπ, the first term vanishes on
vertical vectors, i.e. τ is vertically closed.

Example 4.2.5. In this example we study a fibration over the torus T2. The total space M ,
is the quotient space R4/ ∼, where ∼ is the equivalence relation

(s, t, x, y) ∼ (s+ i, t+ j, x+ it+ k, y + l),

with i, j, k, l ∈ Z. The projection is given by π : M → T2 : [s, t, x, y] 7→ [s, t]. The fibres are

π−1([s, t]) = {[s, t, x+ it+ k, y + l] ∈M : k, l ∈ Z}

again the torus. The symplectic form on the fibre dx∧dy. The following form is a connection
2-form on the total space;

τ = dx ∧ dy − sdt ∧ dy.

The second term of this form is zero on vertical vectors, so τ is really compatible with the
symplectic structure on the fibres. To check that it is really a connection 2-form we take the
exterior derivative.

dτ = −ds ∧ dt ∧ dy.

Since ds ∧ dt vanishes on vertical vectors, τ is vertically closed. Next we compute how the
connection induced by this 2-form looks like. Denote with m = [s, t, x, y] a point in M .
Elements of Vertm are of the form (0, 0, u, v), with u, v ∈ R. Then

Horm = Vertτm = {(a, b, c, d) ∈ R4 : cv − du− sbv = 0, for all u, v ∈ R}
= {(a, b, sb, 0) ∈ R4}.

Hence, the horizontal subspaces are dependent on m.
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Example 4.2.6.

Definition 4.2.7. The quaternions form a ring with elements of the form a+ bi + cj + dk,
where a, b, c, d ∈ R, and with the following commutation relations:

i2 = j2 = k2 = −1

ij = −ji = k

jk = −kj = i

ki = −ik = j

The quaternions are denoted with H.

It is possible to identify the quaternions with C2. To do that we define two maps:

ϕ1 : C → H, a+ bi 7→ a+ bi

ϕ2 : C → H, a+ bi 7→ aj + bk,

and combine this map to:

ϕ : C2 → H : (z1, z2) 7→ ϕ1(z1) + ϕ2(z2).

This map has the nice property that ϕ(λ(z1, z2)) = ϕ1(λ)(ϕ1(z1) + ϕ2(z2)), for all λ ∈ C.
Therefore, it induces a map of projective spaces:

ϕ̃ : CP 3 → HP 1.

The fibres of this fibration can be described as follows:

ϕ̃−1([1, h2]) = {[z1, z2, z3, z4] ∈ CP 3 :
ϕ1(z3) + ϕ2(z4)

ϕ1(z1) + ϕ2(z2)
= h2}

ϕ̃−1([h1, 1]) = {[z1, z2, z3, z4] ∈ CP 3 :
ϕ1(z1) + ϕ2(z2)

ϕ1(z3) + ϕ2(z4)
= h1}.

Parallel transport in terms of the connection 2-form. Let τ be a connection 2-form
on a symplectic fibration π : M → B. We give an explicit description of the parallel transport
in terms of τ . Because the horizontal lift is a local concept, it suffices to look to a trivial
bundle M = B × F . Where B ⊂ Rm is an open set. Denote with x1, ..., xm the standard
coordinates on Rm. A connection 2-form τ ∈ Ω2(M) is of the form:

τ = σ +
∑
i

αi ∧ dxi +
∑
i<j

fijdxi ∧ dxj.
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Where for all x ∈ B, σ(x) ∈ Ω2(F ), αi(x) ∈ Ω1(B), and fij ∈ C∞(F ). Abbreviate ∂
∂xi

= ∂i.
The exterior derivative of τ is:

dB×F τ = dσ +
∑
i

∂iσ ∧ dxi

+
∑
i

dαi ∧ dxi +
∑
i,j

∂jαi ∧ dxj ∧ dxi

+
∑
i<j

dfijdxi ∧ dxj +
∑
i<j<k

(∂kfij + ∂jfki + ∂ifik)dxi ∧ dxj ∧ dxk.

So, τ is vertically closed if and only if

dσ(x) = 0, and ∂iσ(x) + dαi(x) = 0.

The horizontal lift of a tangent vector ξ ∈ TbB, at a point (b, q) ∈ B × F is a vector
ξ# = (ξ,X) ∈ Rm × TqF , such that for any vector (0, Y ) ∈ Rm × TqF ,

τ((ξ,X), (0, Y )) = 0.

Insert this in the expression for τ . We find that this implies:

ι(X)σb =
m∑
i=1

ξiαi(b).

Hence, the holonomy along a path γ in B is given by the diffeomorphisms Φt : F → F defined
by

d

dt
Φt = Xt ◦ Φt, and ι(Xt)σt =

m∑
i=1

αi(t)(x(t))ẋi(t).

Construction of a symplectic fibre bundle with a closed connection 2-form A
connection 2-form doesn’t have to be closed. However in the following special case we can
always find a closed connection 2-form.

Theorem 4.2.8 (Weinstein). Let G → Symp(F, σ) be a Hamiltonian action. Then every
connection on a principal G-bundle P → B gives rise to a closed connection 2-form on
P ×G F .

Proof. First we consider the case that F is T ∗G. We have seen that G acts on T ∗G in
a Hamiltonian fashion. Since the fibres of a principal G-bundle are diffeomorphic with G,
P ×G T

∗G can be identified with the vertical cotangent bundle of P . A connection 1-form
A ∈ Ω2(P, g) determines a projection:
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TP → V P

(p, v) 7→ (p, ϕpA(v)).

Which, on its turn, determines an injection:

ιA : V ∗P → T ∗P.

A cotangent bundle has a canonical symplectic form, and so does T ∗P . By pulling it back
along the injection above we obtain a 2-form on V ∗P :

ωA = ι∗Aωcan.

The equivariant behaviour of the connecting 1-form induces that ιA is equivariant, i.e.

ιA(g · (p, v∗)) = gι(p, v∗) for all (p, v∗) ∈ T ∗P and g ∈ G.

Therefore, we get invariance of ωA under the action of G. ωA restricts to the canonical
symplectic forms on the fibres on V ∗P . Next we take (F, σ) to be a symplectic manifold with
Hamiltonian G-action and moment map µF :→ g∗. The form

τA = ωA ⊕ σ on W = V ∗P × F

is closed, since both ωA and σ are. G acts on W in a Hamiltonian fashion with moment map:

µW = µP ◦ ιA ⊕ µF : W → g∗

((p, v∗), f) = µP ◦ ιA(p, v∗) + µF (f).

To come to our result we observe that µP is a submersion, therefore 0 is a regular value of
µW . Furthermore we have that

µ−1
W (0) = {((p, v∗), f) : µP ◦ ιA(p, v∗) = −µF (f)}.

Recall that for every p ∈ P , v 7→ ωp(v), is an isomorphism between VpP and g. Therefore,
for every f ∈ F and every p ∈ P there is an unique v∗ ∈ V ∗

p P such that ((p, v∗), f) ∈ µ−1
W (0).

We find a natural identification

M = µ−1
W (0)/G ∼= P ×G F.

Since τA is invariant under the action of G it is projectable to a form on M which we call
again τA. Symplectic reduction on the fibres shows that this form restricts to the canonical
symplectic forms on the fibres.
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Connections on the symplectic frame bundle Recall from section 3.7, that an Ehres-
mann connection on a fibre bundle induces a connection on the frame bundle. Similarly, a
symplectic connection Γ on a symplectic fibre bundle π : M → B induces a connection on
the symplectic frame bundle P . Note that the symplectic frame bundle of π : M → B is a
subbundle of the frame bundle, and hence, the tangent space TfP at a symplectomorphism
f : F → Fb is a subspace of:

{X : F → TM : Tf(x)π ·X(x) ∈ Tp(f)B is constant}.

Let τ be the connection 2-form on M inducing Γ. Let ft be a path in P , with f0 = f . ft is
a symplectomorphism for all t, hence:

f ∗t (ι
∗
btτ) = (ιbt ◦ ft)∗τ = σ.

Therefore, in terms of the Lie derivative, for ξ ∈ TfP has to satisfy:

Lξτ
fibre
= 0,

where
fibre
= means that the restriction to the fibres is on both side the same. By the formula

of Cartan, we get

0 = Lξτ
fibre
= dι(ξ)τ + ι(ξ)dτ

fibre
= dι(ξ)τ.

Note that a general vertical vector in Tf(x)M can be expressed as df(x)w, where w ∈ TxF .
Thus the condition for ft to be symplectic translates to the condition that the 1-form on F

TxF → R : w → τ(ξ(x), df(x)w),

is closed. Hence,

TfP = {X : F → TM | Tf(x))π ·X(x) = constant,

and the 1-form TxF → R : w → τ(ξ(x), df(x)w)is closed}.

Now we find the vertical and thehorizontal spaces:

Vf = {ξ ∈ TfP : ξ = df ◦X for X ∈ X(F, σ)},
Hf = {ξ ∈ TfP : ξ = v# ◦ f, v ∈ Tp(f)B}.
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4.3 Symplectic gauge theory and the curvature form

Let π : M → B be a symplectic fibration, and let τ be a connection 2-form. A projectable
diffeomorphism φ : M →M , which preserves the symplectic structure of the fibre, i.e.

φ∗τ
fibre
= τ,

is called a fibrewise symplectomorphism of M . The Lie algebra of the group of fibrewise
symplectomorphisms are the fibrewise symplectic vector fields. Those are vector fields for
which

d(ι(X)τ)
fibre
= 0.

Since on vertical vectors the expression ι(X)dτ vanishes, an equivalent condition is that

LXτ
fibre
= 0.

Which looks like the original condition for a vector field to be symplectic. A special kind of
fibrewise symplectomorphisms of M , are those who descend to the identity on B. i.e.

π ◦ φ = π.

These are called symplectic gauge transformations, and they form a subgroup Diff(M, τ) of
the fibrewise symplectomorphisms. From the following commuting diagram it follows directly
that it is in fact a normal subgroup.

M
φ //

π

��

M
ψ //

π

��

M
φ−1

//

π

��

M

π

��
B

f // B
id // B

f−1
// B

The Lie algebra of Diff(M,σ) must be a subalgebra of the space of fibrewise symplectic vector
fields. The symplectic gauge transformations only interchange elements inside the fibres, so
the Lie algebra of Diff(M,σ) are the vertical fibrewise symplectic vector fields, which we
denote with XVert(M,σ). Given a Y ∈ X(M,σ), and a fibrewise symplectomorphism φ, we
find:

exp(Ad(φ)Y ) = φ−1 exp(Y )φ ∈ Diff(M, τ).

Which induces that Ad(φ)Y ∈ XVert(M,σ). If we differentiate another time we get that for
any fibrewise symplectic vector field X,

ad(X)(Y ) = [X, Y ] ∈ Xv(M,σ).

So in particular, for a horizontal lift v#, and a vertical fibrewise symplectic vector field Y ,
we have [v#, X] is again a vertical fibrewise symplectic vector field.
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Lemma 4.3.1. Let Y be a vertical Hamiltonian vector field, with Hamiltonian function H
in the sense that

ι(Y )τ
fibre
= dH.

Then, for every fibrewise symplectic vector field X, the Lie bracket [X, Y ] is a vertical Hamil-
tonian vector field, with Hamiltonian function LXH.

Proof. Let φ : M →M be a fibrewise symplectomorphism, and let Y be as above. Then for
a vector field X we have,

φ−1∗(ι(φ∗Y )τ)(X)
fibre
= τ(φ−1

∗ ◦ Y ◦ φ, φ−1
∗ X)

fibre
= τ(Y ◦ φ,X)

fibre
= d(H ◦ φ)(X)

So φ∗Y is a vertical Hamiltonian vector field.

Now we compute ι([X, Y ])τ , where Y is as above and X is a fibrewise symplectomorphism.

ι([X, Y ])τ
fibre
= ι(lim

h→0

Y − φ∗hY

h
)

fibre
= lim

h→0
ι(
Y − φ∗hY

h
)

fibre
= d(lim

h→0

H −H ◦ φh
h

)
fibre
= d(LXH).

Lemma 4.3.2. Let τ be connection 2-form, then the curvature of the connection Γτ , satisfies

ι([v#
1 , v

#
2 ]vert)τ

fibre
= dι(v#

2 )ι(v#
1 )τ − ι(v#

2 )ι(v#
1 )dτ.

Proof. Let Y be any vertical vector field, then we express:

dτ(v#
1 , v

#
2 , Y ) = Lv#1

(τ(v#
2 , Y )) + Lv#2

(τ(Y, v#
1 )) + LY (τ(v#

1 , v
#
2 ))

−τ([v#
1 , v

#
2 ], Y )− τ([Y, v#

1 ], v#
2 )− τ([v#

2 , Y ], v#
1 ).

We have seen above that the bracket [v#, Y ] is vertical. By definition of the horizontal
subspaces τ(v#, Y ) = 0. We observe that most terms vanish and we are left with:

dτ(v#
1 , v

#
2 , Y ) = LY (τ(v#

1 , v
#
2 ))− τ([v#

1 , v
#
2 ], Y ) = ι(Y )dι(v#

2 )ι(v#
1 )− τ([v#

1 , v
#
2 ]vert, Y ).
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4.4 The coupling form

We have seen that a connection Γτ is symplectic if the connection 2-form τ is vertically closed.
τ can not always be taken to be closed.

Example 4.4.1. Above we encountered the example of a symplectic fibration over the torus.
The total space M is R4/ ∼, where ∼ is the equivalence relation

(s, t, x, y) ∼ (s+ i, t+ j, x+ it+ k, y + l),

with i, j, k, l ∈ Z. As connection 2-form we found

τ = dx ∧ dy − sdt ∧ dy,

which is clearly not closed. In fact, M doesn’t admit a closed connection 2-form. If it would,
then M would be symplectic itself, but M is a nonorientable manifold. To see that, we
restrict the tangent bundle TM →M , to N , where N ⊂M is {[s+ i, t+ j, x+ it+k, y+ l] ∈
M : s, y ∈ R fixed}. N is isomorphic with the Möbius band, which is the most classical
example of a nonorientable surface. Hence, M is nonorientable.

The next important theorem gives when a closed τ can be found.

Theorem 4.4.2. Let π : M → B be a symplectic fibration and let Γ be a symplectic connec-
tion on M . Then the following are equivalent:

1. There exists a closed connection 2-form τ ∈ Ω2(M) such that Γτ = Γ.

2. The holonomy of Γ around any contractible loop in B is Hamiltonian.

Moreover, in this case, there exists a unique closed connection 2-form τΓ ∈ Ω2(M) which
generates Γ and satisfies the normalization condition:∫

F

τ k+1
Γ = 0 ∈ Ω2(B),

where
∫
F

denotes integration over the fibre. Any other closed connection 2-form τ which
generates Γ is related to τΓ by:

τ − τΓ = π∗β

for some closed form β ∈ Ω2(B) that is uniquely determined by τ .

A 2-form which satisfies the condition above is called the coupling-form.

Corollary 4.4.3. If π : M → B is a symplectic fibration, such that the base is a compact
symplectic manifold and the equivalent statements in the previous theorem are fulfilled, then
M carries a symplectic structure.
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Proof. By assumption there is a compatible closed 2-form τ ∈ Ω2(M). Let β be the symplec-
tic form on B. Then the theorem 4.1.3 of Thurston shows that ωk = τ + kπ∗β is symplectic
for k sufficiently large.

Proof of theorem 4.4.2. First we prove, ‘1 implies 2’. The other direction will follow later.
Let D ⊂ C be the unit disc, and let u : D → B be a smooth map. Any contractible loop
in B can be seen as the boundary of a the image of D under such map. We define the pull
back of the bundle u∗M , which has a total space

{(m, z) ∈M ×D : π(m) = u(z)},

and the projection is the projection on the second coordinate. u lifts to a bundle map

φ : D × F →M,

such that for each z ∈ D the map (F, σ) → (Fu(z), σu(z)) : q 7→ φ(z, q) is a symplectomor-
phism. Hence the pull-back of the connection 2-form is of the form:

φ∗τ = σ + α ∧ dx+ β ∧ dy + fdx ∧ dy,

where z = x+ iy is the coordinate on D, σ(z) = σ, α(z) = β(z) ∈ Ω1(F ) and f(z) ∈ C∞(F ).
The connection 2-form τ is closed, hence for all z ∈ D:

dα = dβ = 0, and df = ∂xβ − ∂yα.

As in the paragraph about the relation between parallel transport and coupling form we see
that the holonomy of φ∗ around the z(t) = e2πit = x(t) + iy(t) is the path of symplectomor-
phisms Φt : F → F given by

d

dt
Φt = Xt ◦ Φt, and ι(Xt)σ = αt,

where αt = α(z(t))ẋ(t) + β(z(t))ẏ(t).

The formula df = ∂xβ − ∂yα leads to the relation

∫ 1

0

αtdt = d

∫
D

f(x, y)dxdy,

which implies that the flux of the path {Φt}0≤t≤1 is zero, and hence that Φ1 : F → F is a
Hamiltonian symplectomorphism.
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The natural way to find the relationship between the holonomy and the connection 2-form
is the theorem, 3.6.12, of Ambrose and Springer. To do that we need a principal bundle; the
symplectic frame bundle. We restate the holonomy theorem of Ambrose and Springer for
this particular case.

Theorem 4.4.4. Given a symplectic fibre bundle, π : M → B,whose base manifold is B
is connected and paracompact. Then the symplectic frame bundle, P → B, is a principal
Symp(F, σ)-bundle. Let τ , be a connection 2-form on M , and ΓP,τ be the induced connection
on P. Let P(f) be the holonomy group with reference point f ∈ P. Let P(f) be the holonomy
bundle through f of ΓP,τ . Denote with g′ ⊂ X(F, σ), the subspace generated by elements of the
form ΩΓ(v, w), where w, v are tangent vectors to P at the points in P(f). Then the subgroup
of Symp(F, σ), generated by g′, is P0(f); the holonomy group, generated by contractible paths
in B.

Proof. Has to be done still.

Corollary 4.4.5. The symplectomorphisms from Fb → Fb obtained by parallel transport
along contractible loops in B are all Hamiltonian if and only if the curvature form takes
values in the space of Hamiltonian vector fields.

Proof. We denote the parallel transport along a contractible curve γ in B, in P with Φγ and
in M with φγ, an the fibre above b in P with Pb. P is a principal Symp(F, σ) bundle, so for
a f ∈ Pb, we have a ψ ∈ Symp(F, σ) such that

Φγ(f) = f ◦ ψ

Note that if f ∈ Pb then is φγ ◦ f ∈ Pb as well. The horizontal vectors in TP are of the form
v# ◦ f , and the solution curve of v# gives the parallel transport. So we find

Φγ(f) = φγ ◦ f .

If we combine this results we get

f ◦ ψ = φγ ◦ f

Now if the curvature form ends in the space of Hamiltonian vector fields if and only if
the holonomy around the contractible loops in B is Hamiltonian, in the notation here this
means that ψ is Hamiltonian. We observed earlier that Ham(F, σ) is a normal subgroup of
Symp(F, σ). Hence we get that ψ is Hamiltonian if and only if φγ is Hamiltonian.

Continuation of the proof of 4.4.2. Let Γ be a symplectic connection on π : M → B, such
that the holonomy around every contractible loop in b is Hamiltonian. We search for a closed
connection 2-form τ , such that Γ = Γτ . By the compatibility of τ , we know the value of
τ(X, Y ) on vertical vector spaces. Moreover, we know that τ(X, v#) = 0, where X is vertical
and v ∈ X(B). So we are left with defining τ on horizontal vector fields, for which we use
the condition on the holonomy. The curvature form takes values in the space of Hamiltonian
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vector fields on F . So, for two vector fields v1, v2 ∈ X(B), there is a function Hv1,v2 : M → R
such that

ι([v#
1 , v

#
2 ] Vert)σb = Hv1,v2|Fb

,

which is unique up to a constant. Therefore, we normalise it such that∫
Fb

Hv1,v2σ
k
b = 0.

Since for all x ∈ M , with π(x) = b, the form TbB × TbB → R : (v1, v2) 7→ Hv1,v2 is bilinear
and skew-symmetric, there is a unique connection 2-form, τΓ, which generates Γ and which
satisfies τΓ(v#

1 , v
#
2 ). We will prove that this form is closed. By the compatibility of τΓ, dτΓ

vanishes on all triples of vertical vectors, and, since Y is vertically closed, dτΓ vanishes already
when two vertical vectors are involved. We have a closer look to the curvature identity:

ι([v#
1 , v

#
2 ]vert)τΓ

fibre
= dι(v#

2 )ι(v#
1 )τΓ − ι(v#

2 )ι(v#
1 )dτΓ,

and insert the definition of τΓ, and get:

dHv1,v2

fibre
= dHv1,v2 − ι(v#

2 )ι(v#
1 )dτΓ.

So dτΓ(v1, v2, X) = 0 for vertical vector fields X. It remains to prove that dτΓ vanishes on
triples of horizontal vector fields. As we saw before we have:

dτΓ(v#
1 , v

#
2 , v

#
3 ) = Lv#1

(τΓ(v#
2 , v

#
3 )) + Lv#2

(τΓ(v#
3 , v

#
1 )) + Lv#3

(τΓ(v#
1 , v

#
2 ))

−τΓ([v#
1 , v

#
2 ], v#

3 )− τΓ([v#
3 , v

#
1 ], v#

2 )− τΓ([v#
2 , v

#
3 ], v#

1 ).

We write this as the sum of three fibrewise Hamiltonian functions:

H1 = Lv#3
(τΓ(v#

1 , v
#
2 ))− τΓ([v#

1 , v
#
2 ], v#

3 )

H2 = Lv#1
(τΓ(v#

2 , v
#
3 ))− τΓ([v#

2 , v
#
3 ], v#

1 )

H3 = Lv#2
(τΓ(v#

3 , v
#
1 ))− τΓ([v#

3 , v
#
1 ], v#

2 ).

With the help of lemma 4.3.1 we see that Hamiltonian vector field of H1 is

Y1 = ΩΓ([v1, v2], v3)− [v#
3 ,Ω(v1, v2)].

We write Y1 in another way:
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Y1 = ΩΓ([v1, v2], v3)− [v#
3 ,Ω(v1, v2)]

= [[v1, v2]
#, v#

3 ]vert + [Ω(v1, v2), v
#
3 ]

= [[v#
1 , v

#
2 ], v#

3 ]vert.

Where we have used that [v1, v2]
# + Ω(v1, v2) = [v#

1 , v
#
2 ], and that [Ω(v1, v2), v

#
3 ] is vertical.

The other Hamiltonian vector fields are found by cyclic permuting the indices in the last
expression for Y1. So, by the Jacobi-identity, the Hamiltonian vector field of dτΓ(v#

1 , v
#
2 , v

#
3 )

is 0, and hence dτΓ(v#
1 , v

#
2 , v

#
3 ) is zero itself. Therefore, τΓ is closed. Thus ‘2 implies 1’ is

proven.

We prove that this τΓ satisfies
∫
Fb
τ k+1
Γ = 0, which is equivalent to

∫
Fb
ι(v#

2 )ι(v#
1 )τ k+1

Γ = 0 for
all b ∈ B and v1, v2 ∈ TbB. This, in its turn is equivalent to∫

Fb

τΓ(v#
1 , v

#
2 )τ kΓ = 0.

This follows from the beginning of the proof where we took
∫
Fb
Hv1,v2σ

k
b = 0.

Next, we have to prove that if τ is another closed compatible connection 2-form which
generates Γ, then there is a closed β ∈ Ω2(B), such that τ − τΓ = π∗β. First we concentrate
on a Uα on which the fibration is locally trivial. Let (x1, ...xn) be the coordinates on Uα. We
write

τ − τΓ = ω +
∑
i

αi ∧ dxi +
∑
i<j

fijdxi ∧ dxj,

where ω ∈ Ω2(F ), αi(x) ∈ Ω1(F ), and fij(x) ∈ C∞(F ). The vertical subbundle is contained
in the kernel of τ − τΓ, because τ and τΓ generate the same connection. So, ω(x) = 0 and
αi(x) = 0. Since τ and τΓ are closed we get dfij = 0, hence the fij are constant in the fibres.
Therefore, there is a β ∈ Ω2(Uα) such that τ − τΓ = π∗β. β is uniquely determined by τ , so
there exist a global β ∈ Ω2(B). β is closed, because τ − τΓ is closed.

To finish we prove that this τΓ is unique. Suppose that there is a compatible closed connection
2-form which generates Γ, such that ∫

F

τ k=1 = 0.

Then the curvature identity gives

ι([v#
1 , v

#
2 ]vert)τ

fibre
= d(τ(v#

1 , v
#
2 )).

for v1, v2 ∈ X(B). So [v#
1 , v

#
2 ]vert is Hamiltonian on each fibre, with Hamiltonian function

τ(v#
1 , v

#
2 ). The normalisation condition above gives that the mean value of τ(v#

1 , v
#
2 ) is zero.
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Hence τ(v#
1 , v

#
2 ) = Hv1,v2 , and by the observation made in the beginning of the prove we may

conclude that τ = τΓ.

Example 4.4.6. We have seen already that for any principal G-bundle we get a symplectic
fibration, if we take the associated bundle with a orbit of the coadjoint action on g∗, E =
P×GOξ. Now let ω be a connection 1-form on P , let Γ and Ω be the corresponding connection
respectively the curvature 2-form. Such a connection induces a connection on the associated
bundle. Recall that Ω is g valued 2-form, so for a µ ∈ g∗, we get that µ ◦Ω ∈ Ω2(P, g). Now
we define a 2-form on E.

ΩE[p,µ](X, Y ) = µ ◦ Ωp(hX, hY ) + 〈µ, [vX, hY ]〉 .
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Chapter 5

Poisson fibre bundles

Abstract In this chapter we discuss fibrations with a Poisson manifold (F, π) as fibre, and
the structure group to be a subgroup of the Poisson diffeomorphisms of F . Different as in
the previous chapter, does the Poisson structure of the fibre immediately imply a Poisson
structure on the total space. This Poisson bivector will turn out to be vertical and is denoted
with πV . In this chapter we will find as an analogy to the coupling form the coupling Dirac
structure. Also will we discuss the effect of Poisson gauging on the total space.

5.1 Poisson fibre bundles

Definition 5.1.1. A Poisson fibration is a fibre bundle p : P → M , with as fibre a Poisson
manifold (F, π), and as structure group of the fibration a subgroup of the group of Poisson
diffeomorphisms, Diff(F, π).

All fibres of a Poisson fibration carry a natural Poisson structure

πb = (φi(b)
−1)∗π

Remark 5.1.2. All symplectic fibre bundles are Poisson fibre bundles. The Poisson bivector
π, is related to the symplectic 2-form ω, by π# = −(ω#)−1.

For symplectic fibre bundles we found some conditions for which the total space itself would
be a symplectic manifold. For a Poisson fibre bundles that is not necessary anymore: we
find immediately a Poisson structure on the total space. In fact we can just glue the Poisson
structure πb on the fibres defined above together to

πV (x) = πp(x)(x), for all x ∈M.

This is a vertical 2-vector field in the sense that it takes values in
∧2 Vert.

As we have seen before a fibre nondegenerate almost Dirac structure L, give rise to a con-
nection, a horizontal 2-form ωL and a vertical bivector πL, such that
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L = graph(πL)⊕ graph(ωL)

Definition 5.1.3. A fibre nondegenerate Dirac structure L on a Poisson fibration p : P →M ,
is called compatible with the fibration if πL = πV . In this case we call L a coupling Dirac
structure.

In general we can say the following about the existence of a Poisson structure on a fibration.

Proposition 5.1.4. Let p : M → B be a fibration with a connected base manifold and
compact fibres. If L is a fibre nondegenerate Dirac structure, then p : M → B admits the
structure of a Poisson fibration, such that πL = πV .

Proof. If L is a fibre nondegenerate Dirac structure then πL is a Poisson bivector. L defines
a connection and the parallel transport along the along paths define to a chosen fibre Fb,
gives the local trivialisation. The compactness of the fibre ensures the completeness of the
horizontal lifts.

5.2 Poisson connections

Definition 5.2.1. A connection Γ on a Poisson fibration p : P → M is called a Poisson
connection, if for all loops γ in B, the map defined by parallel transport

Fγ : Fb → Fb

is a Poisson diffeomorphism.

Example 5.2.2. We look to the symplectic fibration M → T2, with fibre T2, where The
total space M , is the quotient space R4/ ∼, where ∼ is the equivalence relation

(s, t, x, y) ∼ (s+ i, t+ j, x+ it+ k, y + l),

with i, j, k, l ∈ Z. The projection is given by π : M → T2 : [s, t, x, y] 7→ [s, t]. The symplectic
form on the fibre is ω = dx ∧ dy. A symplectic, and hence a Poisson connection is given in
terms of the connection 2-form τ = dy ∧ dy − sdt ∧ dy. The graph of τ is the almost Dirac
structure L. Note that Hor◦ is given by ι(X)τ , where X is vertical. Take X, Y vertical, then

πL(ι(X)τ, ι(Y )τ) = ι(X)τ(Y ) = τ(Y,X) = −ω(X, Y ).

The horizontal 2-form ωL(X, Y ) = τ(X, Y ), where X, Y are horizontal. We compute ωL
explicitelly, where we use the expression for the horizontal vectors we found before,

τm((a, b, sb, 0), (a′, b′, sb′, 0)) = 0.

The horizontal 2-form vanishes. Because L = graph(ωL)⊕ graph(πL) = graph(τ).
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A connection is a Poisson connection if and only if the flow of every horizontal vector field
preserves the vertical Poisson structure, i.e.

Lv#πV = 0, for all v ∈ X(B).

Poisson connections do exists as follows from the following proposition.

Proposition 5.2.3. Let p : P →M be a Poisson fibration, with fibre (F, π), then there exist
a fibre nondegenerate almost Dirac structure L on p : P →M such that:

1. The vertical Poisson structure πL coincides with πV

2. The connection ΓL is a Poisson connection.

Proof. We prove this proposition with the help of the local trivial structure of the fibration.
Let {Ui, φi} be a trivialisation of the fibre bundle. Li is the pull-back Dirac structure of the
graph of π.

Li = {((v, w), (0, η)) ∈ T (Ui × F )⊕ T ∗(Ui × F ) : w = π#(η)}.

The vertical vectors in T (Ui×F ) are vectors of the form (0, w), Vert◦ = {(ξ, 0) ∈ T ∗(Ui×F )}.
So elements of (Vert⊕Vert◦) ∩ Li are of the form ((0, w), (0, 0)), where w = π#(0) = 0. So
Li is fibre nondegenerate. Horizontal vectors are of the form (v, 0), and the horizontal 2-form
ωLi

= 0. The vertical bivector πL = π, and horizontal flow doesn’t effect this structure.
So ΓLi

is a Poisson connection. We glue this Dirac structures together with the help of a
partition of unity ρi subordinate to the open cover {Ui} of M . Define

L =
∑
i

(ρi ◦ p)φ∗iLi.

The associated data to this new Dirac structure are also obtained by gluing the old data
together:

• HorL =
∑

i(ρi ◦ p)φ∗i Hori

• ωL =
∑

i(ρi ◦ p)φ∗iωLi
= 0

• πL =
∑

i(ρi ◦ p)φ∗iπLi

L is fibre nondegenerate and πL coincides with πV . All we have to check is that ΓL is a
Poisson connection. To do this we use the following property of the Schouten-Neijenhuis
bracket:

[fX, Y ] = f [X, Y ] + (LXf)Y, X ∈ X(P ), Y ∈ X2(P ), f ∈ C∞(P ).
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The horizontal lift of a vector field v ∈ X(M), is
∑

i(ρi ◦ p)v
#
i , where v#

i is the horizontal lift
with respect to ΓLi

. Note that by the reasoning above Lv#i
πV = 0 We compute:

Lv#πV = [v#, πV ]

=
∑
i

[(ρi ◦ p)v#
i , πV ]

=
∑
i

(ρi ◦ p)[v#
i , πV ] + (Lv#i

(ρi ◦ p))πV

=
∑
i

(ρi ◦ p)Lv#i πV = 0.

Where we used that Lv#i
(ρi ◦ p) = 0.

Construction of a Poisson fibration equipped with a coupling Dirac structure
There is a way to construct a Poisson fibration with fibre (F, π) if there is a Hamiltonian
group action of a Lie-group G on F , and a principal G-bundle. This construction is analogue
to theorem 4.2.8.

Theorem 5.2.4. Let G× F → F be a Hamiltonian group action of a compact Lie group G
on a Poisson manifold (F, π), with momentum map µF : F → g∗. Then every connection
on a principal G bundle P (M,G) determines a coupling Dirac structure L on the associated
Poisson fibration P ×G F →M .

Proof. Note that the fibres of a principal G bundle are isomorphic to G, therefore there is a
canonical isomorphism between the vertical bundle and the and P ×g. Let ω be a connection
1-form on P , this induces a projection:

pω : TP → P × g, (p,X) 7→ (p, ωp(X)),

and hence an injection

iω : P × g∗ → T ∗P,

such that iω(p, ξ
∗) sends X ∈ TpP to ξ∗(ωp(X)) ∈ R. The fibres of the fibre bundle P ×g∗ are

isomorphic with G × g∗, which in its turn are isomorphic with T ∗G. The cotangent bundle
of P has a canonical symplectic structure, ωcan. We obtain a closed form on P × g∗ if we
pull-back ωcan:

σω = i∗ωωcan.

σω coincides on the fibres with σG the canonical symplectic structure on T ∗G. The graph(σω)
is a Dirac structure and G acts Hamiltonian on P × g∗:
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G× P × g∗ → P × g∗ : (g, (p, ξ)) 7→ (pg−1,Ad∗g ξ).

The moment map µ = µP ◦ iω. Now we define a new space

W = P × g∗ × F,

on which we have a Dirac structure

L = graph(σω)⊕ graph(π).

G acts Hamiltonian on W , with moment map

µW = µ⊕ µF

For every (p, f) ∈ P × F , there is a unique ξ ∈ g∗, such that ((p, ξ), f) ∈ µ−1(0). Hence
µ−1(0) ' P × F , and this isomorphism leads to a imbedding:

m : P → P × g∗.

m∗σω is a closed 2-form on P . The Dirac structure on obtained on µ−1
W (0), because 0 is a

regular value of µW , is described by

graph(m∗σω)⊕ graph(π)

G acts freely on P and therefore also on µ−1
W (0), so with the help of Dirac reduction we obtain

a Dirac structure Lred on the reduced space µ−1
W (0)/G ' P ×G F . Denote the projection

P × F → P ×G F , with pr. An explicit description of Lred is given by:

Lred = {(d pr(X, π#(ξ)), α) ∈ T (P ×G F )⊕ T ∗(P ×G F );

X ∈ TP, ξ ∈ T ∗F and d pr∗ α = (ι(X)(m∗σω), ξ)}

Lred is fibre nondegenerate. Hence L is the desired Dirac structure.

The Poisson frame bundle Let p : M → B be a Poisson fibration with (F, π). Like
before we construct a principal G-bundle over B, such that the associated bundle with F , is
original fibration.

Definition 5.2.5. The Poisson frame bundle, p : P → B of the Poisson fibration p :
M → B is a principal G-bundle, where G is a subgroup of Diff(F, π), the group of Poisson
diffeomorphisms. The fibre of p : P → B over b ∈ B is

Pb = {u : (F, π) → (Fb, πV ) : u is a Poisson diffeomorphism}.
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G acts on P from the right by precomposition:

P ×G→ P : (u, g) 7→ u ◦ g.

The tangent space of P at u is given by

TuP = {X : F → TM : Tu(x)p ·X(x) = constant, LXπV = 0}.

The vertical spaces are given by

Vu = {du ◦X : X ∈ X(F, π)}

Now let Γ be a connection on the original fibration. It induces a connection on p : P → B
in the following way.

Hu = {v# ◦ u : v ∈ X(B)}.

Moreover its induced connection on P ×G F is the original connection Γ.

The holonomy theorem for a Poisson frame bundle

Theorem 5.2.6. Let p : M → B be a Poisson fibre bundle with a paracompact base manifold
B and fibre (F, π). Denote its frame bundle with p : P → B. Let ΓP be the connection on
P induced by a connection Γ on M . Denote with F and Ω their respective curvatures. Let
u ∈ P and let P(u) be the holonomy bundle through u. Let Φ(u) be the holonomy group of u
with respect to ΓP . Then the Lie algebra of Φ(u) is given by:

{Fv(X, Y ) : v ∈ P(u), X, Y ∈ Hv}

Coupling Dirac structures In the chapter about symplectic fibre bundles we have seen a
beautiful theorem about the coupling form. It stated that a closed connection 2-form exists if
and only if the holonomy around all contractible loops is Hamiltonian. Here we find a similar
result. In fact the theorem about the symplectic fibre bundles turns out to be a particular
case of the following theorem.

Theorem 5.2.7. Let p : P → M be a Poisson fibration and let L be a fibre nondegenerate
almost Dirac structure such that the induced connection ΓL is Poisson. Then the following
statements are equivalent:

1. L is a Dirac structure.

2. for every base point b ∈ B the action of the holonomy group Φ(b) of ΓL on the fibre Fb
is Hamiltonian.
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We use the Poisson frame bundle to prove this theorem.

Proof. (2) implies (1). The outline of te prove is as follows. The connection Γ on p : P →M
induces a connection ΓP on the frame bundle. With the reduction theorem we may reduce P
to a Φ(u) bundle , where u ∈ P . We denote this new bundle again wtih P . This connection
induces a fibre nondegenerate Dirac structure on P×GF , where G is the holomomy group on
P → B, with respect to ΓP . Because P ×G F → B is isomorphic to the bundle p : P → M ,
and the induced connection is the original connection, we find that L has to be Dirac.

Recall that the holonomy group Φ(b) on p : P → M with respect to Γ is isomorphic to the
holonomy group Φ(u) in the frame bundle with respect to ΓP , where u ∈ Pb.

5.3 Poisson gauging on fibrations

A Poisson gauge 2-form for the fibre (F, π) of a Poisson fibration gives rise to a Poisson gauge
2-form for (P, πV ). All Poisson gauge transformations of a fibre nondegenerate Poisson-Dirac
structure give rise to a new fibre nondegenerate Poisson structure. In this section we discuss
the Poisson gauging of a the total spaces and their relation to Poisson gauging of the fibre.
We start with the last.

Lemma 5.3.1. Let p : P →M be a Poisson fibre bundle of fibre type (F, π). Let {Ui}i be the
open cover of M used for its trivialisation, and let {ρi}i be a partition of unity subordinate
to it. For any Poisson gauge 2-form B ∈ Ω2(F ) for (F, π), is the 2-form

B̃ =
∑
i

(ρi ◦ p)φ∗i (B),

Poisson gauging for (P, πV ).

Proof. B̃ is clearly a closed form. Recall that a 2-form is Poisson gauging for (P, πV ) if and
only if the map

(idTP −π#
V ◦ B̃#) : TP → TP

is an isomorphism. Equivalently, we proof for all p ∈ P that the restriction of this map to
TpP is injective. Note that an element in the kernel has to be vertical. So a vector X is in
the kernel if and only if dφiX is in the kernel of B for all suitable i. But this kernel is {0}
by assumption. Therefore B̃ is a Poisson gauging for (P, πV ).

5.4 Future speculations
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