Naam:	
Studentnr.:	

 \Box .

QUESTION 1 If a space is metrizable then it is also:

Goed of Fout?

(test 1, 27/11/2013)

	Fout	Goed
Hausdorff.		
1^{st} countable.		
2^{nd} countable.		

QUESTION 2 If a topological space can be embedded in some \mathbb{R}^n (for some n), then it is also:

	Fout	Goed
Hausdorff.		
metrizable.		
1^{st} countable.		
2^{nd} countable.		

QUESTION 3 A subset $A \subset \mathbb{R}$ is open in \mathbb{R} (with respect to the Euclidean topology) if an only if:

\sim		
	Fout	Goed
It is an open interval.		
It can be written as a union of a finite number of open intervals.		
It can be written as a (arbitrary) union of open intervals.		
It coincides with its interior (in \mathbb{R}).		

QUESTION 4 If we cut a Moebius band open through the middle circle then we obtain a space which is homeomorphic to:

	Fout	Goed
A Moebius band.		
A cyclinder.		
two Moebius bands.		
two cylinders.		
	Fout	Goed

		rou
QUESTION 5	A subset U of \mathbb{R}^2 is open in \mathbb{R}^2 (endowed with the	
	Euclidean topology) if and only if it is the product	
	$U_1 imes U_2$ of two opens U_1, U_2 of $\mathbb R$	

Naam:	
Studentnr.:	

Fout Goed

QUESTION 6 If a space is metrizable then it is also:

Goed of Fout?

(test 1, 27/11/2013)

	Fout	Goed
Hausdorff.		
1^{st} countable.		
2^{nd} countable.		

QUESTION 7 If a topological space can be embedded in some \mathbb{R}^n (for some n), then it is also:

	Fout	Goed
Hausdorff.		
metrizable.		
1^{st} countable.		
2^{nd} countable.		

QUESTION 8 A subset $A \subset \mathbb{R}$ is open in \mathbb{R} (with respect to the Euclidean topology) if an only if:

\sim		
	Fout	Goed
It is an open interval.		
It can be written as a union of a finite number of open intervals.		
It can be written as a (arbitrary) union of open intervals.		
It coincides with its interior (in \mathbb{R}).		

QUESTION 9 If we cut a Moebius band open through the middle circle then we obtain a space which is homeomorphic to:

	Fout	Goed
A Moebius band.		
A cyclinder.		
two Moebius bands.		
two cylinders.		

QUESTION 10	A subset U of \mathbb{R}^2 is open in \mathbb{R}^2 (endowed with the Euclidean topology) if and only if it is the product	
	$U_1 \times U_2$ of two opens U_1, U_2 of \mathbb{R}	\Box .