Goed of Fout?
(test 1, 27/11/2013)

Naam:

Studentnr.:

QUESTION 1 If a space is metrizable then it is also:

	Fout	Goed
Hausdorff.	\square	\square
$1^{\text {st }}$ countable.	\square	\square
$2^{\text {nd }}$ countable.	\square	\square

QUESTION 2 If a topological space can be embedded in some \mathbb{R}^{n} (for some n), then it is also:

Fout Goed

> Hausdorff.
> metrizable.
> $1^{1 s t}$ countable.
> $2^{\text {nd }}$ countable.

QUESTION $3 A$ subset $A \subset \mathbb{R}$ is open in \mathbb{R} (with respect to the Euclidean topology) if an only if:
Fout Goed
It is an open interval.
It can be written as a union of a finite number of open intervals.
It can be written as a (arbitrary) union of open intervals.
It coincides with its interior (in \mathbb{R}).
QUESTION 4 If we cut a Moebius band open through the middle circle then we obtain a space which is homeomorphic to:

Fout Goed
A Moebius band. A cyclinder.
two Moebius bands.
two cylinders.

QUESTION 5 $\begin{aligned} & \text { A subset } U \text { of } \mathbb{R}^{2} \text { is open in } \mathbb{R}^{2} \text { (endowed with the } \\ & \\ & \text { Euclidean topology) if and only if it is the product }\end{aligned}$
QUESTION $5 \begin{aligned} & \text { A subset } U \text { of } \mathbb{R}^{2} \text { is open in } \mathbb{R}^{2} \text { (endowed with the } \\ & \text { Euclidean topology) if and only if it is the product }\end{aligned}$
QUESTION 5 $\begin{aligned} & \text { A subset } U \text { of } \mathbb{R}^{2} \text { is open in } \mathbb{R}^{2} \text { (endowed with the } \\ & \text { Euclidean topology) if and only if it is the product }\end{aligned}$ $U_{1} \times U_{2}$ of two opens U_{1}, U_{2} of \mathbb{R}

Fout Goed

Goed of Fout?
(test 1, 27/11/2013)

Naam:

Studentnr.:

QUESTION 6 If a space is metrizable then it is also:

	Fout	Goed
Hausdorff.	\square	\square
$1^{\text {st }}$ countable.	\square	\square
$2^{\text {nd }}$ countable.	\square	\square

QUESTION 7 If a topological space can be embedded in some \mathbb{R}^{n} (for some n), then it is also:

Fout Goed

> Hausdorff.
> metrizable.
> $1^{1 s t}$ countable.
> $2^{\text {nd }}$ countable.

QUESTION 8 subset $A \subset \mathbb{R}$ is open in \mathbb{R} (with respect to the Euclidean topology) if an only if:
Fout Goed
It is an open interval.
It can be written as a union of a finite number of open intervals.
It can be written as a (arbitrary) union of open intervals.
It coincides with its interior (in \mathbb{R}).
QUESTION 9 If we cut a Moebius band open through the middle circle then we obtain a space which is homeomorphic to:

Fout Goed
A Moebius band. A cyclinder.
two Moebius bands.
two cylinders.
Fout Goed
QUESTION 10
A subset U of \mathbb{R}^{2} is open in \mathbb{R}^{2} (endowed with the Euclidean topology) if and only if it is the product $U_{1} \times U_{2}$ of two opens U_{1}, U_{2} of \mathbb{R}

