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CHAPTER 1

Introduction: some standard spaces

1. Keywords for this course

In this course we study topological spaces. One may remember that in group theory one studies
groups- and a group is a set G together with some extra-structure (the group operation) which
allows us to multiply the elements of G. Similarly, a topological space is a set X together with
some “extra-structure” which allows us to make sense of “two points getting close to each other”
or, even better, it allows us to make sense of statements like: a sequence (xn)n≥1 of elements ofX
converges to x ∈ X. Of course, if X is endowed with a “metric” (i.e. a way to measure, or to give
sense to, “the distance between two points of X”), then such statements have a clear intuitive
meaning and can easily be made precise. However, the correct extra-structure that is needed
is a bit more subtle- it is the notion of topology on X which will be explained in the next chapter.

The interesting functions in topology are the continuous functions. One may remember that,
in group theory, the interesting functions between two groups G1 and G2 are not all arbitrary
functions f : G1 −→ G2, but just those which “respect the group structure” (group homomor-
phisms). Similarly, in topology, the interesting maps between two topological spaces X and Y
are those functions f : X −→ Y which are continuous. Continuous means that “it respects
the topological structures”- and this will be made precise later. But roughly speaking, f being
continuous means that it maps convergent sequences to convergent sequences: if (xn)n≥1 is a
sequence in X converging to x ∈ X, then the sequence (f(xn))n≥1 of elements of Y converges
to f(x) ∈ Y .

The correct notion of isomorphism in topology is that of homeomorphism. In particular,
we do not really distinguish between spaces which are homeomorphic. Thinking again back at
group theory, there we do not really distinguish between groups which are isomorphic- and there
the notion of isomorphism was: a bijection which preserves the group structure. Similarly, in
topology, a homeomorphism between two topological spaces X and Y is a bijection f : X → Y
so that f and f−1 are both continuous (note the apparent difference with group theory: there,
a group isomorphism was a bijection f : G1 → G2 such that f is a group homomorphism. The
reason that, in group theory, we do not require that f−1 is itself a group homomorphism, is
simple: it follows from the rest!).

Some of the main questions in topology are:

1. how to decide whether two spaces are homeomorphic (= the same topologically) or not?
2. how to decide whether a space is metrizable (i.e. the topology comes from a metric)?
3. when can a space be embedded (”pictured”) in the plane, in the space, or in a higher Rn?

These questions played the role of a driving force in Topology. Most of what we do in this
course is motivated by these questions; in particular, we will see several results that give an-
swers to them. There are several ways to tackle these questions. The first one - and this
will keep us busy for a while- is that of finding special properties of topological spaces, called
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6 1. INTRODUCTION: SOME STANDARD SPACES

topological properties (such as Hausdorffness, connectedness, compactness, etc). For instance,
a space which is compact (or connected, or etc) can never be homeomorphic to one which is
not. Another way is that of associating topological invariants to topological spaces, so that, if
two spaces have distinct topological invariant, they cannot be homeomorphic. The topological
invariants could be numbers (such as “the number of distinct connected components”, or “the
number of wholes”, or ”the Euler characteristic”), but they can also be more complicated al-
gebraic objects such as groups. The study of such topological invariants is another field on its
own (and is part of the course ”Topologie en Meetkunde”); what we will do here is to indicate
from time to time the existence of such invariants.

In this course we will also devote quite some time to topological constructions- i.e. methods
that allow us to construct new topological spaces out of ones that we already know (such as
taking the product of two topological spaces, the cone of a space, quotients).

Finally, I would like to mention that these lecture notes are based on the book ”Topology”
by James Munkres. But please be aware that the lecture notes should be self contained (how-
ever, you can have a look at the book if you want to find out more). The reason for writing
lecture notes is that the book itself requires a larger number of lectures in order to achieve
some of the main theorems of topology. In particular, in this lecture notes we present more
direct approaches/proofs to such theorems. Sometimes, the price to pay is that the theorem we
prove are not in full generality. Our principle is that: choose the version of the theorem that
is most interesting for examples (as opposed to “most general”) and then find the shortest proof.
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2. Spaces

In this chapter we present several examples of “topological spaces” before introducing the
formal definition of “topological space” (but trying to point out the need for one). Hence please
be aware: some of the statements made in this chapter are rather loose (un-precise)- and I try
to make that clear by using quotes; the spaces that we mention here are rather explicit and
intuitive, and when saying “space” (as opposed to “set”), we have in mind the underlying set (of
elements, also called points) as well as the fact that we can talk (at least intuitively) about its
points “getting closer to each other ” (or, even better, about convergence of sequences of points
in the set). For those who insist of being precise, let us mention that, in this chapter, all our
spaces are metric spaces (so that convergence has a precise meaning); even better, although in
some examples this is not entirely obvious, all the examples from this chapter are just subspaces
of some Euclidean space Rn. Recall here:

Definition 1.1. Let X be a set. A metric on X is a function

d : X ×X → R

which associates to a pair (x, y) of points x and y of X, a real number d(x, y), called the distance
between x and y, such that the following conditions hold:

(M1) d(x, y) ≥ 0 for all x, y ∈ X.
(M2) d(x, y) = 0 if and only if x = y.
(M3) d(x, y) = d(y, x).
(M4) (triangle inequality) d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.

A metric space is a pair (X, d) consisting of a set X together with a metric d.

Metric spaces are particular cases of “topological spaces”- since they allow us to talk about
convergence and continuity. More precisely, given a metric space (X, d), and a sequence (xn)n≥1

of points of X, we say that (xn)n≥1 converges to x ∈ X (in (X, d), or with respect to d) if
limn→∞ d(xn, x) = 0. When there is no danger of confusion (i.e. most of the times), we will just
say that X is a metric space without specifying d. Given two metric spaces X and Y , a function
f : X → Y is called continuous if for any convergent sequence (xn)n≥1 in X, converging to
some x ∈ X, the sequence (f(xn))n≥1 converges (in Y ) to f(x). A continuous map f is called a
homeomorphism if it is bijective and its inverse f−1 is continuous as well. Two spaces are called
homeomorphic if there exists a homeomorphism between them.

The most intuitive examples of spaces are the real line R, the plane R2, the space R3 or, more
generally, the Euclidean space

Rk = {(x1, . . . , xk) : x1, . . . , xn ∈ R}
defined for any integer k ≥ 1. For them we use the Euclidean metric and the notion of conver-
gence and continuity with respect to this metric:

d(x, y) =
√

(x1 − y1)2 + . . .+ (xk − yk)2

(for x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ Rk). Another interesting metric on Rk is the square metric
ρ, defined by:

ρ(x, y) = max{|x1 − y1|, . . . , |xn − yn|}.
The next exercise exercise shows that, although the notion of metric allows us to talk about

convergence, metrics do not encode convergence faithfully (two very different looking metrics can
induce the same convergent sequences, hence the same “space”). The key of understanding the
“topological content” of metrics (i.e. the one that allows us to talk about convergent sequences)
is the notion of open subsets- to which we will come back later.
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Exercise 1.1. Show that a sequence of points of Rn is convergent with respect to the Euclidean
metric if and only if it is convergent with respect to the square metric.

Inside these Euclidean spaces sit other interesting topological spaces such as intervals, circles,
spheres, etc. In general, any subset

X ⊂ Rk

can naturally be viewed as a “space” (and as metric spaces with the Euclidean metric).

Exercise 1.2. Show that, for any two numbers a < b

(1) the interval [a, b] is homeomorphic to [0, 1].
(2) the interval [a, b) is homeomorphic to [0, 1) and also to [0,∞).
(3) the interval (a, b) is homeomorphic to (0, 1) and also to (0,∞) and to R.

Exercise 1.3. Explain why the three subset of the plane drawn in Figure 1 are homeomorphic.

Figure 1.

Exercise 1.4. Which of the subset of the plane drawn in Figure 2 do you think are homeo-
morphic? (be aware that, at this point, we do not have the tools to prove which two are not!).

Figure 2.
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3. The circle

In R2 one has the unit circle

S1 = {(x, y) ∈ R2 : x2 + y2 = 1},
the open disk

◦
D

2

= {(x, y) ∈ R2 : x2 + y2 < 1},
the closed disk

D2 = {(x, y) ∈ R2 : x2 + y2 ≤ 1}.
Next, we mentione the standard parametrization of the unit circle: any point on the circle

can be written as

eit := (cos(t), sin(t))

for some t ∈ R. This gives rise to a function

e : R → S1, e(t) = eit

which is continuous (explain why!). A nice picture of this function is obtained by first spiraling
R above the circle and then projecting it down, as in Figure 3.

S
1

p

|R

S

h(−1)

h(0)

h(1)

h(2)

h

Figure 3.

Exercise 1.5. Make Figure 3 more precise. More precisely, find an explicit subspace S ⊂ R3

which looks like the spiral, and a homeomorphism h between R and S, so that the map e above
is obtained by first applying h and then applying the projection p (p(x, y, z) = (x, y)).

(Hint: {(x, y, z) ∈ R3 : x = cos(z), y = sin(z)}).
Note also that, if one restricts to t ∈ [0, 2π), we obtain a continuous bijection

f : [0, 2π) → S1.

However, [0, 2π) and S1 behave quite differently as topological spaces, or, more precisely, they
are not homeomorphic. Note that this does not only mean that f is not a homeomorphism; it
means that neither f nor any other bijection between [0, 2π) and S1 is a homeomorphism. It
will be only later, after some study of topological properties (e.g. compactness), that we will be
able to prove this statement. At this point however, one can solve the following

Exercise 1.6. Show that the map f : [0, 2π) → S1 is not a homeomorphism.
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Figure 4.

0 1

Take the interval [0, 1] Start banding it 
approaching 0 and 1

Glue the end points

Figure 5.

Next, there is yet another way one can look at the unit circle: as obtained from the unit interval
[0, 1] by “banding it” and “gluing” its end points, as pictured in Figure 5. This “gluing process”
will be made more precise later and will give yet another general method for constructing
interesting topological spaces.

In general, by a (topological) circle we mean any space which is homeomorphic to S1. In
general, they may be placed in the space in a rather non-trivial way. Some examples of circles
are:

- circles S1
r with a radius r > 0 different from 1, or other circles placed somewhere else

in the plane.
- pictures obtained by twisting a circle in the space, such as in Figure 6.
- even pictures which, in the space, are obtained by braking apart a circle, knotting it,

and then gluing it back (see Figure 7).

Figure 6.

Exercise 1.7. Explain on pictures that all the spaces enumerated above are homeomorphic to
S1. If you find it strange, try to explain to yourself what makes it look strange (is it really the
circles, or is it more about the ambient spaces in which you realize the circles?).

Similarly, by a (topological) disk we we mean any space which is homeomorphic to D2. For
instance, the unit square

[0, 1] × [0, 1] = {(x, y) ∈ R2 : x, y ∈ [0, 1]}
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Figure 7.

is an important example of topological disk. More precisely, one has the following:

Exercise 1.8. Show that the unit disk D2 is homeomorphic to the unit square, by a homeo-
morphism which restricts to a homeomorphism between the unit circle S1 and the boundary of
the unit square.
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The unit disk and the square are homeomorphic 

Figure 8.
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4. The sphere and its higher dimensional versions

For each n, we have the n-sphere

Sn = {(x0, . . . , xn) ∈ Rn+1 : (x0)
2 + . . .+ (xn)2 = 1} ⊂ Rn+1,

the open (n+ 1)-disk

◦
D

n+1

= {(x0, . . . , xn) ∈ Rn+1 : (x0)
2 + . . .+ (xn)2 < 1} ⊂ Rn+1,

and similarly the closed (n+ 1)-disk Dn+1.
The points

pN = (0, . . . , 0, 1), pS = (0, . . . , 0,−1) ∈ Sn

are usually called the north and the south pole, respectively, and

Sn
+ = {(x0, . . . , xn) : xn ≥ 0, Sn

− = {(x0. . . . , xn) : xn ≤ 0}
are called the north and the south hemisphere, respectively. See figure 9.

−
n

S

S
n

−

+

n−1S

D
n

the plane x  = 0n

xn

O

pN

pS

Figure 9.

Exercise 1.9. Explain on a picture that Sn
+ ∩ Sn

− is homeomorphic to Sn−1, and Sn
+ and Sn

−

are both homeomorphic to Dn.

As with the circle, we will call a sphere (or an n-sphere) any space which is homeomorphic to
S2 (or Sn). Also, we call a disk (or n-disk, or open n-disk) any space which is homeomorphic

to D2 (or Dn, or
◦
D

n

). For instance, the previous exercise shows that the two hemispheres Sn
+

and Sn
− are n-disks, and Sn is the union of two n-disks whose intersection is an n − 1-sphere.

This also indicates that Sn can actually be obtained by gluing two copies of Dn along their
boundaries. And, still as for circles, there are many subspaces of Euclidean spaces which are
spheres (or disks, or etc), but look quite different from the actual unit sphere (or unit disk, or
etc). An important example has already been seen in Exercise 1.8 .

Another interpretation of Sn is as adding to Rn “a point at infinity”. (to be made precise
later on). This can be explained using the stereographic projection

f : Sn − {pN} → Rn

which associates to a point p ∈ Sn the intersection of the line pNp with the horizontal hyperplane
(see Figure 10).
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p

p

N

S

 The stereographic projection (sending the red points to the blue ones)

p

f(p)

Figure 10.

Exercise 1.10. Explain on the picture that the stereographic projection is a homeomorphism
between Sn − {pN} and Rn, and that it cannot be extended to a continuous function defined on
the entire Sn. Then try to give a meaning to: “Sn can be obtained from Rn by adding a point
at infinity to”. Also, find the explicit formula for f .

Here is anther construction of the n-sphere. Take a copy of Dn, grab its boundary Sn−1 ⊂ Dn

and glue it together (so that it becomes a point). You then get Sn (see Figure 11).

Sn−1D
n

S

O

(0, ... , 0, 1)

n

n
glue the boundary of D   to a point to obtain S

n

Figure 11.

Exercise 1.11. Find explicitly the function

f : D2 → S2

from Figure 11, check that f−1(pN ) is precisely S1 ⊂ D2, then generalize to arbitrary dimensions.

Another interesting way of obtaining the sphere S2 is by taking the unit disk D2, dividing its
boundary circle S1 into two equal sides and gluing the two half circles as indicated in the Figure
12.
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a a a a
glue

a

The sphere obtained from the disk by glueing the two
        half circles denoted by "a" on the picture 

<−−−−−>

Figure 12.

A related construction of the sphere, which is quite important, is the following: take the disk
D2 and divide now it boundary circle into four equal sides, or take the unit square and its sides,
and label them as in Figure 13. Glue now the two arcs denoted by a and the two arcs denoted
by b.

b

b

bb

b

a

a

a

a

a

The sphere obtained from a disk or a square glueing as indicated in the picture

Figure 13.
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5. The Moebius band

“The Moebius band” is a standard name for subspaces of R3 which are obtained from the unit
square [0, 1]× [0, 1] by “gluing” two opposite sides after twisting the square one time, as shown in
Figure 14. As in the discussion about the unit circle (obtained from the unit interval by “gluing”

IV: the Moebius band

(the orientations do not match!)
II: approach the vertical sides

III: twist so that the orientations of the
        sides match

I: Start with [0, 1]x[0, 1]

Figure 14.

its end points), this “gluing process” should be understood intuitively, and the precise meaning
in topology will be explained later. The following exercise provides a possible parametrization
of the Moebius band (inside R3).

Exercise 1.12. Consider
f : [0, 1] × [0, 1] → R3,

f(t, s) = ((2 + (2s− 1)sin(πt))cos(2πt), (2 + (2s − 1)sin(πt))sin(2πt), (2s − 1)cos(πt)).

You may want to check that f(t, s) = f(t′, s′) holds only in the following cases:

(1) (t, s) = (t′, s′).
(2) t = 0, t′ = 1 and s′ = 1 − s.
(3) t = 1, t′ = 0 and s′ = 1 − s.

(but this also follows from the discussion below). Based on this, explain why the image of f can
be considered as the result of gluing the opposite sides of a square with the reverse orientation.

To understand where these formulas come from, and to describe explicit models of the Moebius
band in R3, we can imagine the Moebius band as obtained by starting with a segment in R3

and rotating it around its middle point, while its middle point is being rotated on a circle. See
Figure 15.

The rotations take place at the same time (uniformly), and while the segment rotates by 180◦,
the middle point makes a full rotation (360◦). To write down explicit formulas, assume that

• the circle is situated in the XOY plane, is centered at the origin, and has radius R.
• the length of the segment is 2r and the starting position A0B0 of the segment is per-

pendicular on XOY with middle point P0 = (R, 0, 0).
• at any moment, the segment stays in the plane through the origin and its middle point,

which is perpendicular on the XOY plane.
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a
a/2
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P a

R

r sin(a/2)

r

O

X

Y

Z

Explicit realization of the Moebius band in |R  : M     3

      R, r

Figure 15.

We denote by MR,r the resulting subspace of R3 (note that we need to impose the condition
R > r). To parametrize MR,r, we parametrize the movement by the angle a which determines
the middle point on the circle:

Pa = (Rcos(a), Rsin(a), 0).

At this point, the precise position of the segment, denoted AaBa, is determined by the angle that
it makes with the perpendicular on the plane XOY through Pa; call it b. This angle depends
on a. Due to the assumptions (namely that while a goes from 0 to 2π, b only goes from 0 to π,
and that the rotations are uniform), we have b = a/2 (see 15). We deduce

Aa = {(R + rsin(a/2))cos(a), (R + rsin(a/2))sin(a), rcos(a/2)),

and a similar formula for Ba (obtained by replacing r by −r). Then, the Moebius band MR,r is:

(5.1) MR,r = {(R+ tsin(a/2))cos(a), (R+ tsin(a/2))sin(a), tcos(a/2)) : a ∈ [0, 2π], t ∈ [−r, r]}
Note that, although this depends on R and r, different choices of R and r produce homeomorphic
spaces. To fix one example, one usually takes R = 2 and r = 1.

Exercise 1.13. Do the following:

(1) Make a model of the Moebius band and cut it through the middle circle. You get a new
connected object. Do you think it is a new Moebius band? Then cut it again through
the middle circle and see what you get.

(2) Prove (without using a paper model) that if you cut the Moebius band through the middle
circle, you obtain a (space homeomorphic to a) cylinder. What happens if you cut it
again?
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6. The torus

“The torus” is a standard name for subspaces of R3 which look like a doughnut.
The simplest construction of the torus is by a gluing process: one starts with the unit square

and then one glues each pair of opposite sides, as shown in Figure 16.

a a aa

b

b

b

a

b

Figure 16.

As in the case of circles, spheres, disks, etc, by a torus we mean any space which is homeo-
morphic to the doughnut. Let’s find explicit models (in R3) for the torus. To achieve that, we
will build it by placing our hand in the origin in the space, and use it to rotate a rope which at
the other end has attached a non-flexible circle. The surface that the rotating circle describes
is clearly a torus (see Figure 17).

O

X

Y

Z

R

r

TR, r

b

a

Figure 17.

To describe the resulting space explicitly, we assume that the rope rotates inside the XOY
plane (i.e. the circle rotates around the OZ axis). Also, we assume that the initial position of
the circle is in the XOZ plane, with center of coordinates (R, 0, 0), and let r be the radius of
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the circle (R > r because the length of the rope is R − r). We denote by T 2
R,r the resulting

subspace of R3. A point on T 2
R,r is uniquely determined by the angles a and b indicated on the

picture (Figure 17), and we find the parametric description:

(6.1) T 2
R,r = {(R + rcos(a))cos(b), (R + rcos(a))sin(b), rsin(a)) : a, b ∈ [0, 2π]} ⊂ R3.

Exercise 1.14. Show that

(6.2) T 2
R,r = {(x, y, z) ∈ R3 : (

√

x2 + y2 −R)2 + z2 = r2}.

Although T 2
R,r depends on R and r, different choices of R and r produce homeomorphic spaces.

There is yet another interpretation of the torus, as the Cartesian product of two circles:

S1 × S1 = {(z, z′) : z, z′ ∈ S1} ⊂ R2 × R2 = R4.

Note that, priory, this product is in the 4-dimensional space. The torus can be viewed as a
homeomorphic copy inside R3.

Exercise 1.15. Show that

f : S1 × S1 → T 2
R,r, f(eia, eib) = (R+ rcos(a))cos(b), (R + rcos(a))sin(b), rsin(a))

is a bijection. Explain the map in the picture, and convince yourself that it is a homeomorphism.

Proving directly that f is a homeomorphism is not really pleasant, but the simplest way of
proving that it is actually a homeomorphism will require the notion of compactness (and we will
come back to this at the appropriate time).

The previous exercise shows that, topologically, a torus is the cartesian product of the circle
with itslef. More generally, for any integer n ≥ 1, an n-torus is any space homeomorphic to

S1 × . . .× S1
︸ ︷︷ ︸

ntimes

.

Exercise 1.16. Show that an n-torus can be embedded in Rn+1.

Related to the torus is the double torus, pictured in Figure 18. Similarly, for each g ≥ 1
integer, one can talk about the torus with g-holes.

Figure 18.

Note that the double torus can be realized from two disjoint copies of the torus, by removing
a small ball from each one of them, and then gluing them along the resulting circles (Figure 19).

glue the

circles
Cut a small
disk from 
each tori

Figure 19.
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e
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Figure 20.

Exercise 1.17. How should one glue the sides of a pentagon so that the result is a cut torus?
(Hint: see Figure 20 and try to understand it. Try to make a paper model).

Exercise 1.18. Show that the double torus can be obtained from an octagon by gluing some
of its sides. (Hint: see Figure 21 and try to understand it. Try to make a paper model).
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Figure 21.

Exercise 1.19. Show that the surface of a cup with a handle is homeomorphic to the torus
(what about a cup with no handle?).

Exercise 1.20. Inside the sphere S3 exhibit a subspace that is a torus.
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Exercise 1.21. By a full torus we mean any space homeomorphic to S1 ×D2.

• Can you explain the terminology?
• Describe a full torus inside the 3-sphere S3.

Exercise 1.22. As an analogue of Exercise 1.17 but for the Moebius band, show that if one
glues the sides of a pentagon according to Figure ?? then one obtains a Moebius band with a
hole inside.
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Figure 22.

Exercise 1.23. And, as the analogue of Exercise 1.18 show how the double Moebius band
(Figure 23) can be obtained from a (full) polygon by gluing some of its sides.

Figure 23.
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7. The Klein bottle

We have seen that, starting from an unit square and gluing some of its sides, we can produce
the sphere (Figure 13), the Moebius band (Figure 14) or the torus (Figure 16). What if we try
to glue the sides differently? The next in this list of example would be the space obtained by
gluing the opposite sides of the square but reversing the orientation for one of them, as indicated
in Figure 24. The resulting space is called the Klein bottle, denoted here by K. Trying to repeat
what we have done in the previous examples, we have trouble when “twisting the cylinder”. Is
that really a problem? It is now worth having a look back at what we have already seen:

- starting with an interval and gluing its end points, although the interval sits on the
real line, we did not require the gluing to be performed without leaving the real line
(it would not have been possible). Instead, we used one extra-dimension to have more
freedom and we obtained the circle.

- similarly, when we constructed the Moebius band or the torus, although we started in
the plane with a square, we did not require the gluing to take place inside the plane (it
wouldn’t even have been possible). Instead, we used an extra-dimension to have more
freedom for “twisting”, and the result was sitting in the space R3 = R2 × R.

Something very similar happens in the case of the Klein bottle: what seems to be a problem
only indicates the fact that the gluing cannot be performed in R3; instead, it indicates that K
cannot be pictured in R3, or, more precisely, that K cannot be embedded in R3. Instead, K can
be embedded in R4. The following exercise is an indication of that.

b b

a

a

b
b

first glue the sides a

and glue them 
then twist the sides b (not possible on |R   )3

3       The Klein botlle: fake picture in |R

Figure 24.

Exercise 1.24. Consider the map

f̃ : [0, 1] × [0, 1] → R4,

f̃(t, s) = ((2 − cos(2πs)cos(2πt), (2 − cos(2πs)sin(2πt), sin(2πs)cos(πt), sin(2πs)sin(πt)).

Explain why the image of this map in R4 can be interpreted as the space obtained from the square
by gluing its opposite sides as indicated in the picture (hence can serve as a model for the Klein
bottle).
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Exercise 1.25. Explain how can one obtain a Klein bottle by starting with two Moebius bands
and gluing them along their boundaries.

(Hint: look at Figure 25).
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8. The projective plane P2

In the same spirit as that of the Klein bottle, let’s now try to glue the sides of the square as
indicated on the left hand side of Figure 26.
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Figure 26.

Still as in the case of the Klein bottle, it is difficult to picture the result because it cannot
be embedded in R3 (but it can be embedded in R4!). However, the result is very interesting: it
can be interpreted as the set of all lines in R3 passing through the origin- denoted P2. Let’s us
adopt here the standard definition of the projective space:

P2 := {l : l ⊂ R3 is a line through the origin},
(i.e. l ⊂ R3 is a one-dimensional vector subspace). Note that this is a “space” in the sense that
there is a clear intuitive meaning for “two lines getting close to each other”. We will explain
how P2 can be interpreted as the result of the gluing that appears in Figure 26.

Step 1: First of all, there is a simple map:

f : S2 → P2

which associates to a point on the sphere, the line through it and the origin. Since every line
intersects the sphere exactly in two (antipodal) points, this map is surjective and has the special
property:

f(z) = f(z′) ⇐⇒ z = z′ or z = −z′ (z and z′ are antipodal).

In other words, P2 can be seen as the result of gluing the antipodal points of the sphere.

Step 2: In this gluing process, the lower hemisphere is glued over the upper one. We see
that, the result of this gluing can also be seen as follows: start with the upper hemisphere S2

+

and then glue the antipodal points which are on its boundary circle.

Step 3: Next, the upper hemisphere is homeomorphic to the horizontal unit disk (by the
projection on the horizontal plane). Hence we could just start with the unit disk D2 and glue
the opposite points on its boundary circle.

Step 4: Finally, recall that the unit ball is homeomorphic to the square (by a homeomor-
phism that sends the unit circle to the contour of the square). We conclude that our space can
be obtained by the gluing indicated in the initial picture (Figure 26).

Note that, since P2 can be interpreted as the result of gluing the antipodal points of S2, the
following exercise indicates why P2 can be seen inside R4:
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Exercise 1.26. Show that

f̃ : S2 → R4 , f̃(x, y, z) = (x2 − y2, xy, xz, yz)

has the property that, for p, p′ ∈ S2, f(p) = f(p′) holds if and only if p and p′ are either equal
or antipodal.

Note also that (a model of) the Moebius band can be seen as sitting inside (a model of) the
projective plane M →֒ P2. To see this, recall that P2 can be seen as obtained from D2 by gluing
the antipodal points on its boundary. Consider inside D2 the “band”

B = {(x, y) ∈ D2 : −1

2
≤ y ≤ 1

2
}. ⊂ D2.

The gluing process that produces P2 affects B in the following way: it glues the “opposite curved
sides” of B as in the picture (Figure 27), and gives us the Moebius band.

x

−x

The Moebius band inside the projective plane

Figure 27.

Paying attention to what happens to D2 − B in the gluing process, you can now try the
following.

Exercise 1.27. Indicate how P2 can be obtained by starting from a Moebius band and a disk,
and glue them along the boundary circle.
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9. Gluing (or quotients)

We have already seen some examples of spaces obtained by gluing some of their points. When
the gluing becomes less intuitive or more complicated, we start asking ourselves:

(1) What gluing really means?
(2) What is the result of such a gluing?

Here we address these questions. In examples such the circle, torus or Moebius band, the answer
was clear intuitively:

(1) Gluing had the intuitive meaning- done effectively by using paper models.
(2) the result was a new object, or rather a shape (it depends on how much we twist and

pull the piece of paper).

Emphasize again that there was no preferred torus or Moebius band, but rather models for it
(each two models being homeomorphic). Moving to the Klein bottle, things started to become
less intuitive, since the result of the gluing cannot be pictured in R3 (and things become probably
even worse in the case of the projective plane). But, as we explained above, if we use an extra-
dimension, the Klein bottle exist in R4- and Exercise 1.24 produces a subset of R4 which is an
explicit model for it.

And things become much worse if we now start performing more complicated gluing of more
complicated objects (one can even get “spaces” which cannot be “embedded” in any of the
spaces Rn!). It is then useful to a have a more conceptual (but abstract) understanding of what
“gluing” and “the result of a gluing” means.

Start with a set X and assume that we want to glue some of its points. Which points we want
to glue form the initial “gluing data”, which can be regarded as a subset

R ⊂ X ×X

consisting of all pairs (x, y) with the property that we want x and y to be glued. This subset
must have some special properties (e.g., if we want to glue x to y, y to z, then we also have to
glue x to z). This brings us to the notions of equivalence relation that we now recall.

Definition 1.2. An equivalence relation on a set X is a subset R ⊂ X × X satisfying the
following:

1. If (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R.
2. If (x, y) ∈ R then also (y, x) ∈ R.
3. (x, x) ∈ R for all x ∈ X.

Hence, as a gluing data we start with any equivalence relation on X.

Exercise 1.28. Describe explicitely the equivalence relation R on the square X = [0, 1]× [0, 1]
which describe the gluing that we performed to construct the Moebius band. Similarly for the
equivalence relation on the disk that described the gluing from Figure 11.

What should the result of the gluing be? First of all, it is going to be a new set Y . Secondly,
any point of X should give a point in Y , i.e. there should be a function π : X → Y which should
be surjective (the gluing should not introduce new points). Finally, π should really reflect the
gluing, in the sense that π(x) = π(y) should only happen when (x, y) ∈ R. Here is the formal
definition.

Definition 1.3. Given an equivalence relation R on a set X, a quotient of X modulo R is a
pair (Y, π) consisting of a set Y and a surjection π : X → Y (called the quotient map) with the
property that

π(x) = π(y) ⇐⇒ (x, y) ∈ R.
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Hence, a quotient of X modulo R can be viewed as a model for the set obtained from X by
gluing its points according to R.

Exercise 1.29. Describe the equivalence relation R on [0, 1] × [0, 1] that encodes the gluing
that we performed when constructing the torus. Then prove that the explicit model T 2

R,r of the

torus given by formula (6.2) is a quotient of [0, 1]× [0, 1] modulo R, in the sense of the previous
definition (of course, you also have to describe the map π).

One can wonder “how many” abstract quotients can one build? Well, only one- up to isomor-
phism. More precisely:

Exercise 1.30. Show that if (Y1, π1) and (Y2, π2) are two quotients of X modulo R, then there
exists and is unique a bijection f : Y1 → Y2 such that f ◦ π1 = π2.

One can also wonder: can one always build quotients? The answer is yes but, in full generality
(for arbitrary X and R), one has to construct the model abstractly. Namely, for each x ∈ X we
define the R-equivalence class of x as

R(x) := {y ∈ X : (x, y) ∈ R}
(a subset of X) and define

X/R = {R(x) : x ∈ X}
(a new set whose elements are subsets of X). There is a simple function

πR : X → X/R, πR(x) = R(x),

called the canonical projection. This is the abstract quotient of X modulo R.

Exercise 1.31. Show that:

(1) For any equivalence relation R on a set X, (X/R, πR) is a quotient of X modulo R.
(2) For any surjective map, f : X → Y , there is a unique relation R on X such that (Y, f)

is a quotient of X modulo R.

Remark 1.4. This discussion has been set-theoretical, so let’s now go back to the case that
X is a subset of some Rn, and R is some equivalence relation on X. It is clear that, in such a
“topological setting”, we do not look for arbitrary models (quotients), but only for those which
are in agreement with our intuition. In other words we are looking for “topological quotients”
(“topological models”). What that really means will be made precise later on (since it requires
the precise notion of topology). As a first attempt one could look for quotients (Y, π) of X
modulo R with the property that

(1) Y is itself is a subspace of some Rk.
(2) π is continuous.

These requirements pose two problems:

- Insisting that Y is a subspace of some Rk is too strong- see e.g. the exercise below.
(Instead, Y will be just “topological space”).

- The list of requirements is not complete. This can already be seen when R = {(x, x) :
x ∈ X} (i.e. when no gluing is required). Clearly, in this case, a “topological model”
is X itself, and any other model should be homeomorphic to X. However, the require-
ments above only say that π : X → Y is a continuous bijection which, as we have
already seen, does not imply that π is a homeomorphism.

As we already said, the precise list of requirements will be made precise later on. (There is a
good news however: if X is “compact”, then any quotient (Y, π) of X modulo R which satisfies
(1) and (2) above, is a good topological model!).



9. GLUING (OR QUOTIENTS) 27

Exercise 1.32. Let X ⊂ R2 like in Figure 28 (the shaded region). Describe an equivalence
relation on X such that the result of the gluing is a sphere S2. Then another one to get a torus.
Then one that gives a disjoint union of a sphere and a torus.
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Figure 28.

Exercise 1.33. Let X = S1, and we want to glue any two points eia, eib ∈ S1 with the property
that b = a + 2π

√
2. Show that there is no model (Y, π) with Y -a subset of some space Rn and

π : X → Y continuous.

Exercise 1.34. Let

Pn := {l : l ⊂ Rn+1 is a line through the origin},
(i.e. l ⊂ Rn+1 is a one-dimensional vector subspace). Explain how Pn (with the appropriate
quotient maps) can be seen as:

(1) a quotient of Rn+1 \ {0} modulo an equivalence relation that you have to specify (see
second part of Exercise 1.31).

(2) obtained from Sn by gluing every pairs of its antipodal points.
(3) obtained from Dn by gluing every pair of antipodal points situated on the boundary

sphere Sn−1.
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10. Metric aspects versus topological ones

Of course, most of what we discussed so far can be done withing the world of metric spaces-
a notion that did allow us to talk about convergence, continuity, homeomorphisms. There are
however several reasons to allow for more flexibility and leave this world.

One was already indicated in Exercise 1.1 which shows that metric spaces do not encode
convergence faithfully. Very different looking metrics on Rn (e.g. the Euclidean d and the
square one ρ- in that exercise) can induce the same notion of convergence, i.e. they induce
the same “topology” on Rn- the one that we sense with our intuition. Of course, that exercise
just tells us that Id : (Rn, d) → Rn, ρ) is a homeomorphism, or that d and ρ induce the same
“topology” on Rn (we will make this precise a few line below).

The key of understanding the “topological content” of metrics (i.e. the one that allows us to
talk about convergent sequences) is the notion of opens with respect to a metric. This is the
first step toward the abstract notion of topological space.

Definition 1.5. Let (X, d) be a metric space. For x ∈ X, ǫ > 0 one defines the open ball
with center x and radius ǫ (with respect to d):

Bd(x, ǫ) = {y ∈ X : d(y, x) < ǫ}.
A a set U ⊂ X is called open with respect to d if

(10.1) ∀ x ∈ U ∃ ǫ > 0 such that B(x, ǫ) ⊂ U.

The topology induced by d, denoted Td, is the collection of all such opens U ⊂ X.

With this we have:

Exercise 1.35. Let d and d′ be two metrics on the set X. Show that convergence in X with
respect to d coincides with convergence in X with respect to d′ if and only if Td = Td′.

It is not a surprise that the notion of convergence and continuity can be rephrased using opens
only .

Exercise 1.36. Let (X, d) be a metric space, (xn)n≥1 a sequence in X, x ∈ X. Then (xn)n≥1

converges to x (in (X, d)) if and only if: for any open U ∈ Td containing x, there exists an
integer nU such that

xn ∈ U ∀ n ≥ nU .

Exercise 1.37. Let (X, d) and (Y, d′) be two metric spaces, and f : X → Y a function. Then
f is continuous if and only if

f−1(U) ∈ Td ∀ U ∈ Td′ .

The main conclusion is that the topological content of a metric space (X, d) is retained by
the family Td of opens in the metric space. This is the first example of a topology. I would like
to emphasize here that our previous discussion does NOT mean that we should not use metrics
and that we should not talk about metric spaces. Not at all! When metrics are around, we
should take advantage of them and use them! However, one should be aware that some of the
simple operations that we make with metric spaces (e.g. gluing) may take us out of the world of
metric spaces. But, even when staying withing the world of metric spaces, it is extremely useful
to be aware of what depends on the metric itself and what just on the topology that the metric
induces. We give two examples here.

Compactness The first example is the notion of compactness. You have probably seen this
notion for subspaces of Rn: a subset Rn is called compact if it is bounded and closed in Rn (see
Dictaat Inleiding Analyse, Stelling 4.20, page 78). With this definiton it is very easy to work
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with compactness (... of subspaces of Rn). E.g., the torus, the Moebius band, etc, they are all
compact. However, one should be carefull here: what we can say is that all the models of the
torus, etc that we built are compact. What about the other ones? In other words, is compact-
ness a topological condition? I.e., if A ⊂ Rn and B ⊂ Rm are homeomorphic, is it true that the
compactness of A implies the compactness of B? With the previous definition of compactness,
the answer may be no, as both the condition “bounded” and “closed” make reference to the
way that A sits inside Rn, and even to the Euclidean metric on Rn (for boundedness). See also
Exercise 1.39 below. However, as we shall see, the answer is: yes, compactness if a topological
property (and this is extremely useful).

Completeness Another notion that is extremely important when we talk about metric spaces
is that of completeness. Recall (see Dictaat Inleiding Analyse, page 74):

Definition 1.6. Given a metric space (X, d) and a sequence (xn)n≥1 in X, we say that
(xn)n≥1 is a Cauchy sequence if

lim
n,m→∞

d(xn, xm) = 0,

i.e., for each ǫ > 0, there exists an integer nǫ such that

d(xn, xm) < ǫ

for all n,m ≥ nǫ. One says that (X, d) is complete if any Cauchy sequence is is convergent. We
say that A ⊂ X is complete if A, together with the restriction of d to A, is complete.

For instance, Rn with the Euclidean metric is complete, as is any closed subspace of Rn. Now,
is completeness a topological property? This time, the answer is no, as the following exercise
shows. But, again, this does not mean that we should ignore completeness in this course (and
we will not). We should be aware that it is not a topological property, but use it whenever
possible!

Exercise 1.38. On R we consider the metric d′(x, y) = |ex − ey|. Show that

(1) d′ induces the same topology on R as the Euclidean metric d.
(2) although (R, d) is complete, (R, d′) is not.

(Hint: log( 1
n )).

Exercise 1.39. For a metric space (X, d) we define d̂ : X ×X → R by

d̂(x, y) = min{d(x, y), 1}.
Show that:

(1) d̂ is a metric inducing the same topology on X as d.

(2) (X, d) is complete if and only if (X, d̂) is.
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1. Topological spaces

We start with the abstract definition of topological spaces.

Definition 2.1. A topology on a set X is a collection T of subsets of X, satisfying the
following axioms:

(T1) ∅ and X belong to T .
(T2) The intersection of any two sets from T is again in T .
(T3) The union of any collection of sets of T is again in T .

A topological space is a pair (X,T ) consisting of a set X and a topology T on X.
A subset U ⊂ X is called open in the topological space (X,T ) if it belongs to T .
A subset A ⊂ X is called closed in the topological space (X,T ) if X −A is open.
Given two topologies T and T ′ on X, we say that T ′ is larger (or finer) than T , or that T is

smaller (or coarser) than T ′, if T ⊂ T ′.

Exercise 2.1. Show that, in a topological space (X,T ), any finite intersection of open sets
is open: for each k ≥ 1 integer, U1, . . . , Uk ∈ T , one must have U1 ∩ . . . ∩ Uk ∈ T . Would it
be reasonable to require that arbitrary intersections of opens sets is open? What can you say
about intersections or union of closed subsets of (X,T )?

Terminology/Conventions 2.2. When referring to a topological space (X,T ), when no
confusion may arise, we will simply say that “X is a topological space”. Also, the opens in
(X,T ) will simply be called “opens in X” (and similarly for “closed”).

In other words, we will not mention T all the time; its presence is implicit in the statement
“X is a topological space”, which allows us to talk about “opens in X”.

Example 2.3. ( Extreme topologies) On any set X we can define the following:

(1) The trivial topology on X, Ttriv: the topology whose open sets are only ∅ and X.
(2) The discrete topology on X, Tdis: the topology whose open sets are all subsets of X.
(3) The co-finite topology on X, Tcf: the topology whose open sets are the empty set and

complements of finite subsets of X.
(4) The co-countable topology on X, Tcc: the topology whose open sets are the empty set

and complements of subsets of X which are at most countable.

An important class of examples comes from metrics.

Proposition 2.4. For any metric space (X, d), the family Td of opens in X with respect to
d is a topology on X. Moreover, this is the smallest topology on X with the property that it
contains all the balls

Bd(x; r) = {y ∈ X : d(x, y) < r} (x ∈ X, r > 0).

Proof. Axiom (T1) is immediate. To prove (T2), let U, V ∈ Td and we want to prove that
U ∩ V ∈ Td. We have to show that, for any point x ∈ U ∩ V , there exists r > 0 such that
Bd(x, r) ⊂ U ∩ V . So, let x ∈ U ∩ V . That means that x ∈ U and x ∈ V . Since U, V ∈ Td, we
find r1 > 0 and r2 > 0 such that

Bd(x, r1) ⊂ U,Bd(x, r2) ⊂ V.

Then r = min{r1, r2}, has the desired property: Bd(x, r) ⊂ U ∩ V .
To prove axiom (T3), let {Ui : i ∈ I} be a family of elements Ui ∈ Td (indexed by a set I)

and we want to prove that U := ∪i∈IUi ∈ Td. We have to show that, for any point x ∈ U , there
exists r > 0 such that Bd(x, r) ⊂ U . So, let x ∈ U . Then x ∈ Ui for some i ∈ I; since Ui ∈ Td,
we find r > 0 such that Bd(x, r) ⊂ Ui. Since Ui ⊂ U , r has the desired property Bd(x, r) ⊂ U .
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Assume now that T is a topology on X which contains all the balls and we prove that Td ⊂ T .
Let U ∈ Td and we prove U ∈ T . From the definition of Td, for each x ∈ U we find rx > 0 with

{x} ⊂ B(x; rx) ⊂ U.

Taking the union over all x ∈ U we deduce that

U ⊂ ∪x∈UB(x; rx) ⊂ U.

Hence U = ∪xB(x, rx) and then, since all the balls belong to T , U belongs itself to T . �

Definition 2.5. A topological space (X,T ) is called metrizable if there exists a metric d on
X such that T = Td.

Remark 2.6. And here is one of the important problems in topology:

which topological spaces are metrizable?

More exactly, one would like to find the special properties that a topology must have so that it
is induced by a metric. Such properties will be discussed throughout the entire course.

The most basic metric is the Euclidean metric on Rn which was behind the entire discussion of
Chapter 1. Also, the Euclidean metric can be (and was) used as a metric on any subset A ⊂ Rn.

Terminology/Conventions 2.7. The topology on Rn induced by the Euclidean metric is
called the Euclidean topology on Rn. Whenever we talk about “the space Rn” without specifying
the topology, we allways mean the Euclidean topology. Similarly for subsets A ⊂ Rn.

For other examples of topologies on R you should look at Exercise 2.19. General methods to
construct topologies will be discussed in the next chapter. Here we mention:

Example 2.8. (subspace topology) In general, given a topological space (X,T ), any subset
A ⊂ X inherits a topology on its own. More precisely, one defines the restriction of T to A, or
the topology induced by T on A (or simply the induced topology on A) as:

T |A := {B ⊂ A : B = U ∩A for some U ∈ T }.
Exercise 2.2. Show that T |A is indeed a topology.

Terminology/Conventions 2.9. Given a topological space (X,T ), whenever we deal with
a subset A ⊂ X without specifying the topology on it, we allways consider A endowed with T |A.

To remove ambiguities, you should look at Exercise 2.23.

Definition 2.10. Given a topological space (X,T ) and A,B ⊂ X, we say that B is open in A
if B ⊂ A and B is an open in the topological space (A,T |A). Similarly, we say that B is
closed in A if B ⊂ A and B is closed in the topological space (A,T |A).

Exercise 2.3. The interval [0, 1) ⊂ R:

(i) is neither open nor closed in (−1, 2).
(ii) is open in [0,∞) but it is not closed in [0,∞).
(iii) is closed in (−1, 1) but it is not open in (−1, 1).
(iv) it is both open and closed in (−∞,−1) ∪ [0, 1) ∪ (2,∞).
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2. Continuous functions; homeomorphisms

Definition 2.11. Given two topological spaces (X,TX) and (Y,TY ), and a function f : X →
Y , we say that f is continuous (with respect to the topologies TX and TY ) if:

f−1(U) ∈ TX ∀ U ∈ TY .

Exercise 2.4. Show that a map f : X → Y between two topological spaces (X with some
topology TX , and Y with some topology TY ) is continuous if and only if f−1(A) is closed in X
for any closed subspace A of Y .

Example 2.12. Some extreme examples first:

(1) If Y is given the trivial topology then, for any other topological space (X,TX), any
function f : (X,TX) → (Y,Ttriv) is automatically continuous.

(2) If X is given the discrete topology then, for any other topological space (Y,TY ), any
function f : (X,Tdis) → (Y,TY ) is automatically continuous.

(3) The composition of two continuous functions is continuous: If f : (X,TX) → (Y,TY )
and g : (Y,TY ) → (Z,TZ) are continuous, then so is g ◦ f : (X,TX) → (Z,TZ). Indeed,
for any U ∈ TZ , V := g−1(U) ∈ TZ , hence

(f ◦ g)−1(U) = g−1(f−1(U)) = g−1(V )

must be in TX .
(4) For any topological space (X,T ), the identity map IdX : (X,T ) → (X,T ) is continuous.

More generally, if T1 and T2 are two topologies on X, then the identity map IdX :
(X,T1) → (X,T2) is continuous if and only if T2 is smaller than T1.

Example 2.13. Given f : X → Y a map between two metric spaces (X, d) and (Y, d′),
Exercise 1.37 says that f : X → Y is continuous as a map between metric spaces (in the sense
discussed in the previous chapter) if and only if f : (X,Td) → (Y,Td′) is continuous as a map
between topological spaces.

That is good news: all functions f : Rn → Rm between Euclidean spaces that we knew (e.g.
from the Analysis course) to be continuous, are continuous in the sense of the previous definition
as well. This applies in particular to all the elementary functions such as polynomial ones, exp,
sin, cos, etc.

Even more, if f : Rn → Rm is continuous and A ⊂ Rn, B ⊂ Rm such that f(A) ⊂ B, then
the restriction of f to A, viewed as a function from A to B, is automatically continuous (check
that!). Finally, the usual operations of continuous functions are continuous:

Exercise 2.5. Let X be a topological space, f1, . . . , fn : X → R and consider

f := (f1, . . . , fn) : X → Rn.

Show that f is continuous if and only if f1, . . . , fn are. Deduce that the sum and the product of
two continuous functions f, g : X → R are themselves continuous.

Definition 2.14. Given two topological spaces (X,TX) and (Y,TY ), a homeomorphism be-

tween them is a bijective function f : X → Y with the property that f and f−1 are continuous.
We say that X and Y are homeomorphic if there exists a homeomorphism between them.

Remark 2.15. In the definition of the notion of homeomorphism (and as we have seen already
in the previous chapter), it is not enough to require that f : (X,TX) → (Y,TY ) is continuous
and bijective (it may happen that f−1 is not continuous!). For f−1 to be continuous, one would
need that for each U ⊂ X open, f(U) ⊂ Y is open. Functions with this property (that send
opens to opens) are called open maps.
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For instance, the function

f : [0, 2π) → S1, f(t) = (cos(t), sin(t)),

that we also discussed in the previous chapter, is continuous and bijective, but it is not a
homeomorphism. More precisely, it is not open: [0, π) is open in X, while f([0, 2π)) is a half
circle closed at one end and open at the other- hence not open (Figure 4 in the previous chapter).

Remark 2.16. We would like to emphasize that the notion of “homeomorphism” is the
correct notion “isomorphism in the topological world”. A homeomorphism f : X → Y allows us
to move from X to Y and backwards carrying along any topological argument (i.e. any argument
which is based on the notion of opens) and without loosing any topological information. For this
reason, in topology, homeomorphic spaces are not viewed as being different from each other.

Another important question in Topology is:

how do we decide if two spaces are homeomorphic or not?

Actually, all the topological properties that we will discuss in this course (the countability
axioms, Hausdorffness, connectedness, compactness, etc) could be motivated by this problem.
For instance, try to prove now that (0, 2) and (0, 1) ∪ (1, 2) are not homeomorphic (if you
managed, you have probably discovered the notion of connectedness). Try to prove that the open
disk and the closed disk are not homeomorphic (if you managed, you have probably discovered
the notion of compactness). Let us be slightly more precise about the meaning of “topological
property”.

Terminology/Conventions 2.17. We call topological property any property P of topological
spaces (that a space may or may not satisfy) such that, if X and Y are homeomorphic, then X
has the property P if and only if Y has it.

For instance, the property of being metrizable (see Definition 2.5) is a topological property:

Exercise 2.6. Let X and Y be two homeomorphic topological spaces. Show that X is
metrizable if and only if Y is.

Definition 2.18. A continuous function f : X → Y (between two topological spaces) is
called an embedding if f is injective and, as a function from X to its image f(X), it is a
homeomorphism (where f(X) ⊂ Y is endowed with the induced topology).

Example 2.19. There are injective continuous maps that are not embeddings. This is the
case already with the function f(α) = (cos(α), sin(α)) already discussed, viewed as a function
f : [0, 2π) → R2.

Remark 2.20. Again, one of the important questions in Topology is:

understand when a space X can be embedded in another given space Y

When Y = R2, that means intuitively that Xcan be pictured topologically on a piece of paper.
When Y = R3, it is about being able to make models of X in space. Of course, one of the most
interesting versions of this question is whether X can be embedded in some RN for some N .
As we have seen, the torus and the Moebius band can be embedded in R3; one can prove that
they cannot be embedded in R2; also, one can prove that the Klein bottle cannot be embedded
in R3. However, all these proofs are far from trivial.
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3. Neighborhoods and convergent sequences

Definition 2.21. Given a topological space (X,T ), x ∈ X, a neighborhood of x (in the topo-
logical space (X,T )) is any subset V ⊂ X with the property that there exists U ∈ T such that

x ∈ U ⊂ V.

When V is itself open, we call it an open neighborhood of x. We denote:

T (x) := {U ∈ T : x ∈ U}, N (x) = {V ⊂ X : ∃ U ∈ T (x) such that U ⊂ V }.
Example 2.22. In a metric space (X, d), from the definition of Td we deduce:

(3.1) N (x) = {V ⊂ X : ∃ ǫ > 0 such that B(x, ǫ) ⊂ V }.
Remark 2.23. What are neighborhoods good for? They are the “ topological pieces” which

are relevant when looking at properties which are “local”, in the sense that they depend only
on what happens “near points”. For instance, we can talk about continuity at a point.

Definition 2.24. We say that a function f : (X,TX) → (Y,TY ) is continuous at x if

(3.2) f−1(V ) ∈ NX(x) ∀ V ∈ NY (f(x).

Proposition 2.25. A function is continuous if and only if it is continuous at all points.

Proof. Assume first that f is continuous, x ∈ X. For V ∈ N (f(x)), there exists U ∈
T (f(x)) with U ⊂ V ; then f−1(U) is open, contains x and is contained in f−1(V ); hence
f−1(V ) ∈ N (x). For the converse, assume that f is continuous at all points. Let U ⊂ Y open;
we prove that f−1(U) is open. For each x ∈ f−1(U), continuity at x implies that f−1(U) is
a neighborhood of x, hence we find Ux ⊂ f−1(U), with Ux-open containing x. It follows that
f−1(U) is the union of all Ux with x ∈ f−1(U), hence it must be open. �

Neighborhoods also allow us to talk about convergence.

Definition 2.26. Given a sequence (xn)n≥1 of elements of in a topological space (X,TX),
x ∈ X, we say that (xn)n≥1 converges to x in (X,T )), and we write xn → X (or limn→∞ xn = x)
if for each V ∈ Nx, there exists an integer nV such that

(3.3) xn ∈ V ∀ n ≥ nV .

Example 2.27. Let X be a set. Then, in (X,Ttriv), any sequence (xn)n≥1 of points in X
converges to any x ∈ X. In contrast, in (X,Tdis), a sequence (xn)n≥1 converges to an x ∈ X if
and only if (xn)n≥1 is stationary equal to x, i.e. there exists n0 such that xn = x for all n ≥ n0.

To clarify the relationship between convergence and continuity, we introduce:

Definition 2.28. Let (X,TX ), (Y,TY ) be topological spaces, f : X → Y . We say that f is
sequentially continuous if, for any sequence (xn)n≥1 in X, x ∈ X, we have:

xn → x in (X,TX) =⇒ f(xn) → f(x) in (Y,TY ).

Theorem 2.29. Any continuous function is sequentially continuous.

Proof. Assume that xn → x (in (X,TX)). To show that f(xn) → f(x) (in (Y,TY ), let
V ∈ N (f(x)) arbitrary and we have to find nV such that f(xn) ∈ V for all n ≥ nV . Since f is
continuous, we must have f−1(V ) ∈ N (x); since xn → x, we find nV such that xn ∈ f−1(V ) for
all n ≥ nV . Clearly, this nV has the desired properties. �

Definition 2.30. Let (X,T ) be a topological space and x ∈ X. A basis of neighborhoods of x
(in the topological space (X,T )) is a collection Bx of neighborhoods of x with the property that

∀ V ∈ T (x) ∃ B ∈ Bx : B ⊂ V.
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Example 2.31. If (X, d) is a metric space, x ∈ X, the family of all balls centered at x,

(3.4) Bd(x) := {B(x; ǫ) : ǫ > 0},
is a basis of neighborhoods of x.

Remark 2.32. What are bases of neighborhoods good for? They are collections of neighbor-
hoods which are “rich enough” to encode the local topology around the point. I.e., instead of
proving conditions for all V ∈ N (x), it is enough to do it only for the elements of a basis. For
instance, in the the definition of convergence xn → x (Definition 2.26), if we have a basis Bx of
neighborhoods of x, it suffices to check the condition from the definition only for neighborhoods
V ∈ Bx (why?). In the case of a metric space (X, d), we recover the more familiar description
of convergence: using the basis (3.4) we find that xn → x if and only if:

∀ ǫ > 0, ∃ nǫ ∈ N : d(xn, x) < ǫ ∀ n ≥ nǫ.

A similar discussion applies to the notion of continuity at a point- Definition 2.24: if we have
a basis Bf(x) of neighborhoods of f(x), then it suffices to check (3.2) for all V ∈ Bf(x). As
before, if f is a map between two metric spaces (X, dX ) and (Y, dY ), we find the more familiar
description of continuity: using the basis (3.4) (with x replaced by f(x)), and using (3.1), we
find that f is continuous at x if and only if, for all ǫ > 0, there exists δ > 0 such that

dY (f(y), f(x)) < ǫ ∀ y ∈ X satisfying dX(y, x) < δ.

Definition 2.33. We say that (X,T ) satisfies the first countability axiom, or that it is
1st-countable, if for each point x ∈ X there exists a countable basis of neighborhoods of x.

Exercise 2.7. Show that the first-countability is a topological property.

Example 2.34. Any metric space (X, d) is 1st countable: for x ∈ X,

B′
d(x) := {B(x;

1

n
) : n ∈ N}

is a countable basis of neighborhoods of x. Hence, in relation with the metrizability problem,
we deduce: if a topological space is metrizable, then it must be 1st countable.

Exercise 2.8. Let (X,T ) be a topological space and x ∈ X. Show that if x admits a
countable basis of neighborhoods, then one can also find a decreasing one, i.e. one of type

Bx = {B1, B2, B3, . . .},with . . . ⊂ B3 ⊂ B2 ⊂ B1.

(Hint: Bn = V1 ∩ V2 ∩ . . . ∩ Vn).

The role of the first countability axiom is a theoretical one: “it is the axiom under which the
notion of sequence can be used in its full power”. For instance, Theorem 2.29 can be improved:

Theorem 2.35. If X is 1st countable (in particular, if X is a metric space) then a map
f : X → Y is continuous if and only if it is sequentially continuous.

Proof. We are left with the converse implication. Assume f -continuous. By Prop. 2.25, we
find x ∈ X such that f is not continuous at x. Hence we find V ∈ N (f(x)) such that f−1(V ) /∈
N (x). Let {Bn : n ∈ N} be a countable basis of neighborhoods of x; by the previous exercise,
we may assume it is decreasing. Since f−1(V ) /∈ N (x), for each n we find xn ∈ Bn − f−1(V ).
Since xn ∈ Bn, it follows that (xn)n≥1 converges to x (see Remark 2.32). But note that (f(xn))
cannot converge to f(x) since f(xn) /∈ V for all n. This contradicts the hypothesis. �

Another good illustration of the fact that, under the first-countability axiom, “convergent
sequences contain all the information about the topology”, is given in Exercise 2.43. Another
illustration is the characterisation of Hausdorffness (Theorem 2.46 below).
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4. Inside a topological space: closure, interior and boundary

Definition 2.36. Let (X,T ) be a topological space. Given A ⊂ X, define:

• the interior of A:
◦
A=

⋃

U−open contained in A

U.

(The union is over all the subsets U of A which are open in (X,T )). It is sometimes

denoted by Int(A). Note that
◦
A is open, is contained in A, and it is the largest set with

these properties.
• the closure of A:

A =
⋂

F−closed containing A

F.

(The intersection is over all the subsets A of X which contain A and are closed in
(X,T )). It is sometimes denoted by Cl(A). Note that A is closed, contains A, and it
is the smallest set with these properties.

• the boundary of A:

∂(A) = A−
◦
A .

x

y

z

.

..

X

A

boundary point

interior point

not in the 
  closure

Figure 1.

Lemma 2.37. Let (X,T ) be a topological space, x ∈ X, and assume that Bx is a basis of
neighborhoods around x (e.g. Bx = T (x)). Then:

(i) x ∈
◦
A if and only if there exists U ∈ Bx such that U ⊂ A.

(ii) x ∈ A if and only if, for all U ∈ Bx, U ∩A 6= ∅.
(iii) If (X,T ) is metrizable (or just 1st countable) then x ∈ A if and only if there exists a

sequence (an)n≥1 of elements of A such that an → x.

See Figure 1.

Proof. (of the lemma) You should first convince yourself that (i) is easy; we prove here (ii)
and (iii). To prove the equivalence in (ii), is sufficient to prove the equivalence of the negations,
i.e.

[x /∈ A] ⇐⇒ [∃ U ∈ Bx : U ∩A = ∅].
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From the definition of A, the left hand side is equivalent to:

∃ F − closed : A ⊂ F, x /∈ F.

Since closed sets are those of type F = X − U with U -open, this is equivalent to

∃ U − open : A ∩ U = ∅, x ∈ U,

i.e.: there exists U ∈ T (x) such that U ∩A = ∅. On the other hand, any U ∈ T (x) contains at
least one B ∈ Bx, and the condition U ∩A = ∅ will not be destroyed if we replace U by B. This
concludes the proof of (ii). For (iii), first assume that x = lim an for some sequence of elements
of A. Then, for any U ∈ T (x), we find nU such that an ∈ U for all n ≥ nU , which shows that
U ∩A 6= ∅. By (ii), x ∈ A. For the converse, one uses that fact that B(x, 1

n) ∩A 6= ∅ hence, for

each n, we find an ∈ A with d(an, x) <
1
n . Clearly an → a. �

Example 2.38. Take the “open disk” in the plane

A =
◦
D

2

(= {(x, y) ∈ R2 : x2 + y2 < 1}).
Then the interior of A is A itself (it is open!), the closure is the “closed disk”

A = D2(= {(x, y) ∈ R2 : x2 + y2 ≤ 1}),
while the boundary is the unit circle

∂(A) = S1(= {(x, y) ∈ R2 : x2 + y2 = 1}).
Example 2.39. Take A = [0, 1) ∪ {2} ∪ [3, 4) in X = R. Using the lemma (and the basis

given by open intervals) we find
◦
A= (0, 1) ∪ (3, 4), A = [0, 1] ∪ {2} ∪ [3, 4], ∂(A) = {0, 1, 2, 3, 4}.

However, considering A inside X ′ = [0, 4) (with the topology induced from R),
◦
A= [0, 1) ∪ (3, 4), A = [0, 1] ∪ {2} ∪ [3, 4), ∂(A) = {1, 2, 3}.

For the case of metric spaces, let us point out the following corollary. To state it, recall that
given a metric space (X, d), A ⊂ X, and x ∈ X, one defines the distance between x and A as

d(x,A) = inf{d(x, a) : a ∈ A}.
Corollary 2.40. If A is a subspace of a metric space (X, d), x ∈ X, then the following are

equivalent:

(1) x ∈ A.
(2) there exists a sequence (an) of elements of A such that an → x.
(3) d(x,A) = 0.

Proof. The equivalence of (1) and (2) follows directly from (iii) of the lemma. Next, the
condition (3) means that, for all ǫ > 0, there exists a ∈ A such that d(x, a) < ǫ. In other words,
A ∩ B(x, ǫ) 6= ∅ for all ǫ > 0. Using (iii) of the lemma (with Bx being the collection of all balls
centered at x), we find that (3) is equivalent to (1). �

Definition 2.41. Given a topological space X, a subset A ⊂ X is called dense in X if A = X.

Example 2.42.
◦
D

n

is dense in Dn; Q is dense in R.
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5. Hausdorffness; 2nd countability; topological manifolds

One of the powers of the notion of topological space comes from its generality, which gives
it a great flexibility when it comes to examples and general constructions. However, in many
respects the definition is “too general”. For instance, for proving interesting results one often
has to impose extra-axioms. Sometimes these axioms are rather strong (e.g. compactness),
but sometimes they are rather weak (in the sense that most of the interesting examples satisfy
them anyway). The most important such (weak) axiom is “Hausdorffness”. This axiom is also
important for the metrizability problem, for which we have to understand the special topological
properties that a topology must satisfy in order to be induced by a metric. And Hausdorffness
is the most basic one.

Definition 2.43. We say that a topological space (X,T ) is Hausdorff if for any x, y ∈ X with
x 6= y, there exist V ∈ N (x) and W ∈ N (y) such that V ∩W = ∅.

Example 2.44. Looking at the extreme topologies: Ttriv is not Hausdorff (unless X is empty
or consists of one point only), while Tdis is Hausdorff. In the light of the Hausdorffness property,
the cofinal topology Tcf becomes more interesting (see Exercise 2.62).

Exercise 2.9. Show that Hausdorffness is a topological property.

As promised, one has:

Proposition 2.45. Any metric space is Hausdorff.

Proof. Given (X, d), x, y ∈ X distinct, we must have r := d(x, y) > 0. We then choose
V = B(x; r

2), W = B(y; r
2). We claim these are disjoint. If not, we find z in their intersection,

i.e. z ∈ Z such that d(x, z) and d(y, z) are both less than r
2 . From the triangle inequality for d

we obtain the following contradiction

r = d(x, y) < d(x, z) + d(z, y) <
r

2
+
r

2
= r.

�

However, one of the main reasons that Hausdorffness is often imposed comes from the fact
that, under it, sequences behave “as expected”.

Theorem 2.46. Let (X,T ) be a topological space. If X is Hausdorff, then every sequence
(xn)n≥1 has at most one limit in X. The converse holds if we assume that (X,T ) is 1st countable.

Proof. Assume that X is Hausdorff. Assume that there exists a sequence (xn)n≥1 in X
converging both to x ∈ X and y ∈ X, with x 6= y; the aim is to reach a contradiction. Choose
V ∈ N (x) and W ∈ N (y) such that V ∩W = ∅. Then we find nV and nW such that xn ∈ V for
all n ≥ nV , and similarly for W . Choosing n > max{nV , nW}, this will contradict the fact that
V and W are disjoint.

Let’s now assume that X is 1st countable and each sequence in X has at most one limit, and
we prove that X is Hausdorff. Assume it is not. We find then x 6= y two elements of X such
that V ∩W 6= ∅ for all V ∈ N (x) and W ∈ N (y). Choose {Vn : n ≥ 1} and {Wn : n ≥ 1} bases
of neighborhoods of x and y, which we may assume to be decreasing (cf. Exercise 2.8). For each
n, we find an element xn ∈ Vn ∩Wn. As in the previous proofs, this implies that xn converges
both to x and to y- which contradicts the hypothesis. �

Besides Hausdorffness, there is another important axiom that one often imposes on the spaces
one deals with (especially on the spaces that arise in Geometry).
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Definition 2.47. Let (X,T ) be a topological space. A basis of the topological space (X,T ) is
a family B of opens of X with the property that any open U ⊂ X can be written as a union of
opens that belong to B.

We say that (X,T ) satisfies the second countability axiom, or that it is second-countable (also
written 2nd countable) if it admits a countable basis.

Exercise 2.10. Given a topological space (X,T ) and a family B of opens of X, show that B
is a basis of (X,T ) if and only if, for each x ∈ X,

Bx := {B ∈ B : x ∈ B}
is a basis of neighborhoods of x. Deduce that any 2nd countable space is also 1st countable.

Example 2.48. In a metric space (X, d), the collection of all balls

Bd := {B(x, r) : x ∈ X, r > 0}
is a basis for the topology Td (see the end of the proof of Proposition 2.4). Although metric
spaces are allways 1st countable (cf. Example 2.34), not all are 2nd countable. However:

Example 2.49. For Rn, one can restrict to balls centered at points with rational coordinates:

BQ
Eucl := {B(x,

1

k
) : x ∈ Qn, k ∈ Q+}.

This is a countable family since Q is countable and products of countable sets are countable.

Exercise 2.11. Show that BQ
Eucl is a basis of Rn. Deduce that any A ⊂ Rn is 2nd countable.

Finally, we come at the notion of topological manifold.

Definition 2.50. An n-dimensional topological manifold is any Hausdorff, 2nd countable
topological space X which has the following property: any point x ∈ X admits an open neigh-
borhood U which is homeomorphic to Rn.

Remark 2.51. Of course, the most important condition is the one requiring X to be locally
homeomorphic to Rn. A pair (U,χ) consisting of an open U ⊂ X and a homeomorphism

χ : U → Rn, x 7→ χ(x) = (χ1(x), . . . , χn(x))

is called a (local) coordinate chart for X; U is called the domain of the chart; χ1(x), . . . , χn(x)
are called the coordinates of x in the chart (U,χ). Given another chart ψ : V → Rn,

c := ψ ◦ χ−1 : χ(U ∩ V ) → ψ(U ∩ V )

(a homeomorphism between two opens in Rn) is called the change of coordinates from χ to ψ
(it satisfies ψi(x) = ci(χ1(x), . . . , χn(x)) for all x ∈ X). By definition, topological manifolds
can be covered by (domains of) coordinate charts; hence they can be thought of as obtained by
“patching together” several copies of Rn, glued according to the change of coordinates.

Remark 2.52. One may wonder why the “2nd countability” condition is imposed. Well, there
are many reasons. The simplest one: we do hope that a topological manifold can be embedded
in some RN for N large enough. However, as the previous exercise shows, this would imply that
X must be 2nd countable anyway. Also, the 2nd countability condition implies that X can be
covered by a countable family of coordinate charts (see Exercise 2.63).

Example 2.53. Of course, Rn is itself a topological manifold. Using the stereographic pro-
jection (see the previous chapter), we see that the spheres Sn are topological n-manifolds. But
note that, while the open disks are topological manifolds, the closed disks are not.

Exercise 2.12. Show that the torus is a 2-dimensional topological manifold. What about the
Klein bottle? What about the Moebius band? Try to define “manifolds with boundary”.
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6. More on separation

The Hausdorffness is jut one of the possible “separation axioms” that one may impose (the
most important one!). Such separation axioms are relevant to the metrizability problem, as they
are automatically satisfied by metric spaces. Here is the precise definition.

Definition 2.54. We say that two subspaces A and B of a topological space (X,T ) can be
separated topologically (or simply separated) if there are open sets U and V such that

A ⊂ U,B ⊂ V, and U ∩ V = ∅.
We say that A and B can be separated by continuous functions if there exists a continuous
function f : X → [0, 1] such that f |A = 0, f |B = 1 (and we say that f separates A and B).

Example 2.55. If A and B can be separated by continuous functions, then they can be
separated topologically as well. Indeed, if f separates A and B, then

U = f−1((−∞,
1

2
)), V = f−1((

1

2
,∞))

are disjoint opens (as pre-images of opens by a continuous map) containing A and B.
The separation conditions are most natural when A and B are closed in X. For instance,

inside R, [0, 1) and (1, 2] cannot be separated by continuous functions, while [0, 1) and [1, 2]
cannot be separated even topologically (see also Exercise 2.64).

In any metric space (X, d), any two disjoint closed subsets A and B can be separated: indeed,

U = {x ∈ X : d(x,A) < d(x,B)}, V = {x ∈ X : d(x,A) > d(x,B)}
are disjoint opens containing A and B. Here we use the continuity of the function dA : X → R,
x 7→ d(x,A) (see Exercise 2.32 ) and the similar function dB. Actually, one can separate A and
B even by continuous functions: take

f : X → [0, 1], f(x) =
dA(x)

dA(x) + dB(x)
.

There are several classes of separation conditions one may impose on a topological space X.
At one extreme, when the separation is required for sets of one elements, we talk about the
Hausdorffness condition. At the other extreme, one has “normality”:

Definition 2.56. A topological space is called normal if it is Hausdorff and any two disjoint
closed subsets can be separated topologically.

From our previous discussion it follows that all metrizable spaces are normal. As we shall
see, for normal spaces disjoint closed subsets can allways be separated by continuous functions
(Urysohn lemma) and 2nd countable normal spaces are metrizable (Urysohn metrization theo-
rem). That is why normal spaces are important. However, one should be aware that“normality”
is a condition that is (so) important mainly inside the field of Topology; as soon as one moves
to neighbouring fields (Geometry, Analysis, etc), although many of the topological spaces one
meets there are normal, very little attention is paid to this condition (and you will almost never
hear about “normal spaces” in other courses). For instance, in such fields, Urysohn lemma (so
important for Topology), often follows by simple tricks (e.g., as many such spaces are already
metrizable, it follows from the previous remark). For that reason we decided not to concentrate
too much on normal spaces; also, although the proof of Urysohn’s results could be presented
right away, we have decided not to do them until they are absolutely needed. Note that, in
contrast with “normality”, the other topological conditions that we will study, such as Haus-
dorffness, connectedness, compactness, local compactness and even paracompactness, show up
all over in mathematics whenever topological spaces are relevant, and they are indispensable.
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7. More exercises

7.1. On topologies.

Exercise 2.13. How many distinct topologies can there be defined on a set with two elements?
But with three?

Exercise 2.14. Consider the set N := N∪ {∞} (the set of strictly positive integers to which
we add the infinity) and, for each n ∈ N put

Un := {k ∈ N : k ≥ n} = {n, n + 1, . . .} ∪ {∞}.
Show that the following is a topology on N:

Tseq := {∅, U1, U2, U3, . . .}.
Exercise 2.15. Prove that, for any set X, Tcf and Tcc are indeed topologies.

Exercise 2.16. On R consider the family T consisting of ∅, R and all intervals of type (−∞, r)
with r ∈ R. Show that T is a topology on R and compare it with the Euclidean topology.

Exercise 2.17. On R consider the family B consisting of ∅, R and all intervals of type (−∞, r]
with r ∈ R. Show that B is not a topology on R and find the smallest topology containing B.
Is it larger or smaller than the topology from the previous exercise? But than the Euclidean
topology?

Exercise 2.18. Let T be a topology on R. Show that T is the discrete topology if and only
if {r} ∈ T for all r ∈ R.

Exercise 2.19. Let Tl be the smallest topology on R which contains all the intervals of type
[a, b) with a, b ∈ R. Similarly, define Tr using intervals of type (a, b]. Show that:

(1) A subset D ⊂ R belongs to Tl if and only if the following condition holds: for any
x ∈ D there exists an interval [a, b) such that

x ∈ [a, b) ⊂ D.

(2) Tl and Tr are finer than Teucl, but Tl and Tr are not comparable.
(3) Tdis is the only topology on R which contains both Tl and Tr.

Exercise 2.20. Consider a set X, a set of indices I and, for each i ∈ I, a topology Ti on X.
Show that T := ∩iTi (i.e. the family consisting of subsets U ⊂ X with the property that U ∈ Ti

for all i ∈ I) is a topology on X.

Exercise 2.21. Given a set X and a family S of subsets of X, prove that there exists a
topology T (S) on X which contains S and is the smallest with this property. (Hint: use the
axioms to see what other subsets of X, besides the ones from S, must T (S) contain.)

Exercise 2.22. On R2 we define the topology Tl×Tl as the smallest topology which contains
all subsets of type

[a, b) × [c, d)

with a, b, c, d ∈ R. Define similarly Tr ×Tr, Tl ×Tr and Tr ×Tl. Show that any two of these four
topologies are not comparable.

Exercise 2.23. To remove ambiguities regarding the Convention 2.9 show that, inside any
topological space (X,T ), for all A ⊂ Y ⊂ X one has

(T |Y )|A = T |A.
To remove ambiguities regarding Convention 2.7 and 2.9 show that, for A ⊂ Rn, the Euclidean
topology on A coincides with the restriction to A of the Euclidean topology of Rn.
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Exercise 2.24. Let (X, d) be a metric space, A,B subspaces of X such that

d(A,B) = 0.

(where d(A,B) := inf{d(a, b) : a ∈ A, b ∈ B}).
Is it true that A and B must have a common point (i.e. A∩B 6= ∅)? What if we assume that

both A and B are closed?

7.2. On induced topologies.

Exercise 2.25. Consider the real line R as a subset of the plane R2. Show that the induced
topology on R coincides with the Euclidean topology on the real line.

Exercise 2.26. Find an example of a topological space X and A ⊂ B ⊂ X such that A is
closed in B, B is open in X, and A is neither open nor closed in X.

Exercise 2.27. Which of the following subsets of the plane are open?

(1) A = {(x, y) : x ≥ 0}.
(2) B = {(x, y) : x = 0}.
(3) C = {(x, y) : x > 0, y < 5}.
(4) D = {(x, y) : xy < 1, x ≥ 0}.
(5) E = {(x, y) : 0 ≤ x < 5}.

Note that all these sets are contained in A. Which ones are open in A?

Exercise 2.28. Let (X,T ) be a topological space and B ⊂ A ⊂ X.

(1) If A is open in X, show that B is open in X if and only if it is open in A.
(2) If A is closed in X, show that B is closed in X if and only if it is closed in A.

Exercise 2.29. Given a topological space (X,T ) and A ⊂ X, show that the induced topology
T |A is the smallest topology on A with the property that the inclusion map i : A → X is
continuous.

7.3. On continuity.

Exercise 2.30. Consider

D := {(x, y) : ex > sin(y)cos(x)},

A := {(x, y) : x7 − sin(y7) ≥ 1

x2 + y2 + 1
}.

Show that D is open in R2, while A is closed in R2.

Exercise 2.31. Let R be endowed with the topology Tl from Exercise 2.19. Which one of
the following functions f : R → R is continuous:

(i) f(x) = x+ 1
(ii) f(x) = −x.
(iii) f(x) = x2.

Exercise 2.32. If (X, d) is a metric space and A is a subspace of X, then the function

dA : X → R, dA(x) = d(x,A)

is continuous.
Deduce that, for any closed subset A of a metric space X, there exists a continuous function

f : X → [0, 1] such that A = f−1(0).
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Exercise 2.33. The space Mn(R), of n × n matrices with real coefficients can be identified

with Rn2
and in this way has a natural topology (coming from the Euclidean metric). Prove

that:

(1) the subspace GLn(R) of invertible matrices is open in Mn(R).
(2) the subspace SLn(R) consisting of invertible matrices of determinant equal to 1 is closed

in GLn(R).
(3) the subspace

O(n) := {A ∈ GLn(Rn) : AA∗ = Id}
is also closed (where A∗ denotes the transpose of A and Id is the identity matrix).

Exercise 2.34. Let X and Y be two topological spaces, f : X → Y . We say that f is
continuous at a point x ∈ X if, for any neighborhood V of f(x) in Y there exists a neighborhood
U of x in X such that f(U) ⊂ V . Show that f is continuous if and only if it is continuous at all
points x ∈ X.

7.4. On homeomorphisms and embeddings.

Exercise 2.35. Show that the following three spaces are homeomorphic (giving the explicit
homeomorphisms):

X = {(x, y) ∈ R2 : 0 < x2 + y2 ≤ 1} ⊂ R2

Y = {(x, y) ∈ R2 :
1

2
< x2 + y2 ≤ 1} ⊂ R2

Z = S1 × (0, 1] = {(x, y, z) ∈ R3 : x2 + y2 = 1, 0 < z ≤ 1} ⊂ R3.

Then compute the interiors and the boundaries of X, Y (in R2) and Z (in R3). How comes that,
although X, Y and Z are homeomorphic, their interiors and boundaries are quite different?

Exercise 2.36. From the topologies that you found in Exercise 2.13, how many non home-
omorphic ones are there?

Exercise 2.37. Show that R endowed with the Euclidean topology is not homeomorphic to
R endowed with the topology from Exercise 2.16.

Exercise 2.38. Exhibit an embedding f : M →M of the Moebius band into itself which is
not surjective. What is the boundary of f(M) in M?

7.5. The “removing a point trick”. The first part of the following exercise is extremely
useful for some of the later exercises.

Exercise 2.39. If X and Y are homeomorphic, prove that for any x ∈ X there exists y ∈ Y
such that X − {x} is homeomorphic to Y − {y}.

Also explain that, “there exists y ∈ Y ” cannot be replaced with “for any y ∈ Y ”.

7.6. On convergence.

Exercise 2.40. Let X = (0, 1) endowed with the Euclidean topology. Is the sequence

xn =
1

n
convergent in the topological space X?

Exercise 2.41. Let R be endowed with the topology Tl from Exercise 2.19. Study the
convergence of the sequences (xn)n≥1 and (yn)n≥1 where

xn =
1

n
, yn = − 1

n
.
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Exercise 2.42. What about convergence in (X,Tcf). But about (X,Tcc)?

Exercise 2.43. We say that two topologies T1 and T2 on X have the same convergence of
sequences if, for a sequence (xn)n≥1 of elements of X, and x ∈ X, one has:

xn
T1−→ x⇐⇒ xn

T2−→ x.

Show that

• If T1 and T2 satisfy the first countability axiom and have the same convergence of
sequences, then T1 = T2.

• This is no longer true if one gives up the first countability axiom.

(Hint for the second part: This is difficult. Try Tdiscr and Tcf. If it does not work, try to change
one of them).

7.7. On closure, interior, etc.

Exercise 2.44. Let X = (−∞, 1) ∪ (1, 4) ∪ [5,∞). Find the closure, the interior and the
boundary (in X) of A = [0, 10 ∪ (1, 2) ∪ [3, 4) ∪ (5, 6).

Exercise 2.45. Find the interior and the closure of Q in R in each of the cases: when R is
endowed with

• the Euclidean topology.
• the discrete topology.
• the cofinite topology.
• the co-countable topology.

Exercise 2.46. Find the closure, the interior and the boundary of the following subsets of
the plane:

(1) {(x, y) : x ≥ 0, y 6= 0}.
(2) {(x, y) : x ∈ Q, y > 0}.

Exercise 2.47. For each of the sets from Exercise 2.27, find the interior, closure and boundary
in the plane. Then in A (i.e. as subspaces of A).

Exercise 2.48. Let Tl be the topology from Exercise 2.19. Find the closure and the interior
in (R,Tl) of each of the intervals

[0, 1), (0, 1], (0, 1), [0, 1].

Exercise 2.49. Let Tl be the topology from Exercise 2.19.

(i) In the topological space (R,Tl), find the closure, the interior and the boundary of

A = (0, 1) ∪ [2, 3].

(ii) Show that (R,Tl) and (R,Teucl) are not homeomorphic.

Exercise 2.50. Compute the interior, the closure and the boundary of

A = (0, 1] × [0, 1)

in the topological space X = R2 endowed with the topology Tl × Tl of Exercise 2.22.

Exercise 2.51. Show that, in any topological space X, for any subspace A ⊂ X, one has

∂(A) = ∂(X −A).

Exercise 2.52. Let A,B be two subsets of a topological space X. Recall that Int(A) =
◦
A

denotes the interior of A. Prove that
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1. If A ⊂ B then Int(A) ⊂ Int(B).
2. Int(A ∩B) = Int(A) ∩ Int(B).
3. Int(A ∪B) ⊃ Int(A) ∪ Int(B), but the equality may fail.

Exercise 2.53. Let A, B and {Ai : i ∈ I} denote subsets of a topological space X, where i
runs in a set of indexes I. Prove that

1. If A ⊂ B then A ⊂ B.
2. A ∪B = A ∪B.
3. If I is finite then ∪iAi = ∪iAi.
4. In general, when I is infinite, ∪iAi ⊃ ∪iAi, but the two may be different.
5. We say that {Ai : i ∈ I} is locally finite if any point x ∈ X admits a neighborhood V

which intersects all but a finite number of Ais (i.e. such that {i ∈ I : Ai ∩ V 6= ∅} is
finite). Under this assumption, show that ∪iAi = ∪iAi.

7.8. Density.

Exercise 2.54. Show that Q is dense in R.

Exercise 2.55. Show that Q × Q is dense in R2.

Exercise 2.56. Let T be the torus. Describe (on the picture) a continuous injection f : R →
T whose image is dense in T . Is f an embedding?

Exercise 2.57. Show that GLn(R) is dense in Mn(R) (see Exercise 2.33).

Exercise 2.58. Show that any continuous function f : R → R with the property that

f(x+ y) = f(x) + f(y)

for all x, y ∈ R, then f must be linear, i.e. there exists a ∈ R such that

f(x) = ax ∀ x ∈ R.

(Hint: a = f(1). For what x’s can you prove that f(x) = ax? Then use continuity and the fact
Q is dense in R.)

7.9. On Hausdorffness, 2nd countability, separation.

Exercise 2.59. How many from the topologies from Exercise 2.13 are Hausdorff?

Exercise 2.60. Is the topology from Exerc. 2.14 Hausdorff? But from 2.16? But from 2.17?

Exercise 2.61. Show that, in any Hausdorff space X, all the subspaces with one element
(i.e. of type A = {x} with x ∈ X) are closed.

Exercise 2.62. Given a set X, show that any Hausdorff topology on X contains Tcf . When
is Tcf Hausdorff? When does it exist a smallest Hausdorff topology on X (i.e. a Hausdorff
topology which is contained in all other Hausdorff topologies on X)?

Exercise 2.63. Let X be a 2nd countable space. Show that from any open cover U of X one
can extract a countable subcover. In other words, for any collection U = {Ui : i ∈ I} consisting
of opens in X such that X = ∪i∈IUi, one can find i1, i2, . . . ∈ I such that X = ∪kUik .

Exercise 2.64. Consider R with the Euclidean topology. In each of the following cases,
decide (and explain!) when A and B can be separated topologically or by continuous functions:

(1) A = [0, 1), B = (1, 2].
(2) A = [0, 1), B = [1, 2].
(3) A = [0, 1), B = (2, 3].

Exercise. Prove that the sphere Sn is an n-dimensional topological manifold. Show that it
can be covered by two coordinate charts. Compute the change of coordinates.
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1. Constructions of topologies: quotients

We now discuss another general construction of topologies. Let’s start with a surjective map
π : X → Y . Typically, (Y, π) is a quotient of X modulo an equivalence relation R on X (“gluing
data”). Assume now that X is endowed with a topology T . Then one defines

π∗(T ) := {V ⊂ Y : π−1(V ) ∈ T },
called the quotient topology on Y induced by π. A surjective map π : (X,TX) → (Y,TY )
between two topological spaces is called a topological quotient map if TY = π∗(TX).

Theorem 3.1. π∗(T ) is indeed a topology on Y . Moreover, it is the largest topology on Y
with the property that π : X → Y becomes continuous.

Proof. Axiom (T1) is immediate. For (T2), let Ui ∈ π∗(T ) (with i ∈ {1, 2}), i.e. subsets
of Y satisfying π−1(Ui) ∈ T . Then

π−1(U1 ∩ U2) = π−1(U1) ∩ π−1(U2)

must be in T , i.e. U1 ∩ U2 ∈ π∗(T ). The axiom (T3) follows similarly, using the fact that
π−1(∪iUi) = ∪iπ

−1(Ui). The last part follows from the definition of continuity and of π∗(T ). �

The following is a very useful recognition criteria for continuity of maps defined on quotients.

Proposition 3.2. Let X be a topological space, π : X → Y a surjection, and let Y be endowed
with the quotient topology. Then, for any other topological space Z, a function f : Y → Z is
continuous if and only if f ◦ π : X → Z is.

Proof. f−1(U) is open in Y if and only if π−1(f−1(U)) = (f ◦ π)−1(U) is open in X. �

There are some variations on the previous discussion, mainly terminological, when we want
to emphasize that Y is the quotient modulo an equivalence relation (see Definition 3.3).

Definition 3.3. Let R be an equivalence relation defined on a topological space (X,T ). A
quotient of (X,T ) modulo R is a pair (Y, π) consisting of a topological space Y and a topological

quotient map π : X → Y with the property that π(x) = π(x′) holds if and only if (x, x′) ∈ R.
If Y = X/R is the abstract quotient, then the resulting topological space (X/R, π∗(T )) is called

the abstract quotient of (X,T ) modulo R.

With this terminology, the last proposition translates into:

Corollary 3.4. Assume that (Y, π) is a quotient of the topological space X modulo R. Then,
for any topological space Z, there is a 1-1 correspondence between

(i) continuous maps f : Y → Z.

(ii) continuous maps f̃ : X → Z such that f̃(x) = f̃(x′) whenever (x, x′) ∈ R.

This correspondence is characterized by f̃ = f ◦ π.

Finally, we would like to point out one of the notorious problems that arises when considering
quotients: Hausdorffness may be destroyed! (this problem does not appear when we consider
subspace or product topologies!). Hence extra-care is required when we deal with quotients.

Exercise 3.1. Take two copies of the interval [0, 2], say X = [0, 2] × {0} ∪ [0, 2] × {1} (in
the plane) and glue the points (t, 0) and (t, 1) for each t ∈ [0, 2], t 6= 1. Show that the resulting
quotient space Y is not Hausdorff.
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2. Examples of quotients: the abstract torus, Moebius band, etc

In the first chapter we discussed the torus, Moebius band, etc intuitively. We can now have a
more complete discussion about them, as topological spaces. Let us concentrate, for example,
on the torus. Here are some remarks on the discussions from the first chapter:

1. when constructing it by gluing the opposite sides of a square, although the “shape” of the
result may be predicted, the actual result (as a subset of R3) depends on all the movements we
make while gluing. But even the “shape” is not completely clear: we could have performed the
same gluing in a “clumsier way” (e.g., for the Moebius band, we could have twisted the piece of
paper three times before the actual gluing).

2. when saying “torus” , we would like to think about the intrinsic space itself. The information
that this space can be embedded in R3 is interesting and nice, but there may be many such
embeddings. See Figure 1 for several different looking embeddings. The “shape” reflects the
way one embeds the torus into R3, not only the intrinsic torus.

Figure 1.

The way to deal with all these in a more precise way is the following:
1. Consider the abstract torus, defined as the abstract quotient

Tabs := [0, 1] × [0, 1]/R,

where R is the equivalence relation encoding the gluing. This defines Tabs as a topological space.
2. Embed the abstract torus: realizing the torus more concretely in R3, i.e. finding

explicit models of it, translates now into the question of describing embeddings

f : Tabs → R3.

By Corollary 3.4, continuous f ’s correspond to continuous maps

f̃ : [0, 1] × [0, 1] → R3

with the property that f̃(t, s) = f̃(t′, s′) for all ((t, s), (t′, s′)) ∈ R. The injectivity of f is
equivalent to the condition that the last equality holds if and only if ((t, s), (t′, s′)) ∈ R.

Example 3.5. Such f̃ ’s arise in the explicit realizations of the torus (see Chapter 1):

f̃(t, s) = (R+ rcos(2πt))cos(2πs), (R + rcos(2πt))sin(2πs), rsin(2πt)).

The induced f is a continuous injection of Tabs into R3 whose image is the geometric model
TR,r from Section 6. But please note: while we now know that f : Tabs → TR,r is a continuous
bijection, one still has to show that the inverse is continuous. The best proof of this, which
applies immediately to all examples of this type, not only to the torus, and not only to our
explicit f , follows from one of the basic properties of compact spaces, which will be discussed in
the next chapter.

Exercise 3.2. Fill in the details; do the same for the Moebius band, Klein bottle, P2.
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3. Special classes of quotients I: quotients modulo group actions

In this section we discuss quotients by group actions. Let X be a topological space. We denote
by Homeo(X) the set of all homeomorphisms from X to X. Together with composition of maps,
this is a group. Let Γ be another group, whose operation is denoted multiplicatively.

Definition 3.6. An action of the group Γ on the topological space X is a group homomorphism

φ : Γ → Homeo(X), γ 7→ φγ .

Hence, for each γ ∈ Γ, one has a homeomorphism φγ of X (“the action of γ on X”), so that

φγγ′ = φγ ◦ φγ′ ∀ γ, γ′ ∈ X.

Sometimes φγ(x) is also denoted γ(x), or simply γ · x, and one looks at the action as a map

Γ ×X → X, (γ, x) → γ · x.
The action induces an equivalence relation RΓ on X defined by:

(x, y) ∈ RΓ ⇐⇒ ∃ γ ∈ Γ s.t. y = γ · x.
The resulting topological quotient is called the quotient of X by the action of Γ, and is denoted
by X/Γ. Note that the RΓ-equivalence class of an element x ∈ X is precisely its Γ-orbit:

Γ · x := {γ · x : γ ∈ Γ}.
Hence X/Γ consists of all such orbits, and the quotient map sends x to Γx.

Example 3.7. The additive group Z acts on R by

Z × R → R, (n, r) 7→ φn(r) = n · r := n+ r.

The resulting quotient is (homeomorphic to) S1. More precisely, one uses Corollary 3.4 again to

see that the map f̃ : R → S1, t 7→ (cos(2πt), sin(2πt)) induces a continuous bijection f : R/Z →
S1; then one proves directly (e.g. using sequences) that f is actually a homeomorphism, or one
waits again until compactness and its basic properties are discussed.

Here is a fortunate case in which Hausdorffness is preserved when passing to quotients.

Theorem 3.8. If X is a Hausdorff space and Γ is a finite group acting on X, then the quotient
X/Γ is Hausdorff.

Proof. Let Γx,Γy ∈ X/Γ be two distinct points (x, y ∈ X). That they are distinct means
that, for each γ ∈ Γ, x 6= γy. Hence, for each γ ∈ Γ, we find disjoint opens Uγ , Vγ ⊂ X
containing x, and γy, respectively. Note that

Wγ = φ−1
γ (Vγ)

is an open containing y, and what we know is that

Uγ ∩ φγ(Wγ) = ∅.
Since Γ is finite, U := ∩γUγ , V := ∩γWγ will be open neighborhoods of x and y, respectively,
with the property that

U ∩ φa(V ) = ∅, ∀ a ∈ Γ.

Using the quotient map π : X → X/Γ, we consider π(U), π(V ), and we claim that they are
disjoint opens in X/Γ separating Γx and Γy. That they are disjoint follows from the previous
property of U and V . To see that π(U) is open, we have to check that π−1(π(U)) is open, but

π−1(π(U)) = ∪γ∈Γφγ(U)

(check this!) is a union of opens, hence opens. Similarly, π(V ) is open. Clearly, Γx = π(x) ∈
π(U) and Γy = π(y) ∈ π(V ). �
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4. Another example of quotients: the projective space Pn

A very good illustration of the use of quotient topologies is the construction of the projective
space, as a topological space (a set theoretical version of which appeared already in Exercise
1.34).

Recall that, set theoretically, Pn is the set of all lines through the origin in Rn+1:

Pn = {l ⊂ Rn+1 : l − one dimensional vector subspace}.
To realize it as a topological space, we relate it to topological spaces that we already know.
There are several ways to handle it.

4.1. As a quotient of Rn+1 − {0}: For this, we use a simple idea: for each point in
Rn+1−{0} there is (precisely) one line passing through the origin and that point. This translates
into the fact that there is a surjective map

π : Rn+1 → Pn, x 7→ lx,

where lx is the line through the origin and x:

lx = Rx = {λx : λ ∈ R} ⊂ Rn+1.

The projective space Pn can now be defined as the set Pn endowed with the quotient topology.
Note also that the equivalence relation underlying π comes from a group action. This is based
on the remark that π(x) = π(y), i.e. lx = ly, happens if and only if x = λy for some λ ∈ R∗.
Hence, taking Γ = R∗ (a group with usual multiplication), it acts on Rn+1 − {0} by:

φλ(x) = λx for λ ∈ R∗, x ∈ Rn+1 − {0}
and the projective space becomes

Pn = (Rn+1 − {0})/R∗.

4.2. As a quotient of Sn: This is based on another simple remark: a line in Rn+1 through
the origin is uniquely determined by its intersection with the unit sphere Sn ⊂ Rn+1- which is
a set consisting of two antipodal points (the first picture in Figure 2). This indicates that Pn

can be obtained from Sn by identifying (gluing) its antipodal points. Again, this is a quotient
that arises from a group action: the group Z2 acting on Sn. Using the multiplicative description
Z2 = {1,−1}, the action is: φ1 is the identity map, while φ−1 is the map sending x ∈ Sn to its
antipodal point −x. Hence the discussion indicates:

Proposition 3.9. Pn is homeomorphic to Sn/Z2.

Proof. The conclusion of the previous discussion is that there is a set-theoretical bijection:

φ : Sn/Z2 → Pn,

which sends the Z2-orbit of x ∈ Sn to the line lx through x, with the inverse

ψ : Pn → Sn/Z2

which sends the line l to Sn ∩ l (a Z2-orbit!). We have to check that they are continuous. We
use Proposition 3.2 and its corollary. To see that φ is continuous, we have to check that the
composition with the quotient map Sn → Sn/Z2 is continuous. But this composition is precisely
the restriction of the quotient map Rn+1 − {0} → Pn to Sn, hence is continuous. In conclusion,
φ is continuous.

To see that ψ is continuous, we have to check that its composition with the quotient map
Rn+1 − {0} → Pn is continuous. But this composition- which is a map from Rn+1 − {0} to
Sn/Z2 can be written as the composition of two other maps which we know to be continuous:

• The map Rn+1 − {0} → Sn sending x to x/||x||.
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• The quotient map Sn → Sn/Z2.

In conclusion ψ is continuous. �

Corollary 3.10. The projective space Pn is Hausdorff.

4.3. As a quotient of Dn: Again, the starting remark is very simple: the orbits of the
action of Z2 on Sn always intersect the upper hemisphere Sn

+ (for notations, see Section 4 in the
first chapter). Moreover, such an orbit either lies entirely in the boundary of Sn

+, or intersects
its interior in a unique point. See the second picture in Figure 2. This indicates that Pn can be
obtained from Sn

+ by gluing the antipodal points that belong to its boundary. On the other hand,
the orthogonal projection onto the horizontal hyperplane defines a homeomorphism between Sn

+

and Dn (see Figure 2). Passing to Dn, we obtain an equivalence relation R on Dn given by:

(x, y) ∈ R⇐⇒ (x = y) or (x, y ∈ Sn−1 and x = −y),
and we have done a part of the following:

Exercise 3.3. Show that Pn is homeomorphic to Dn/R. What happens when n = 1?

Corollary 3.11. Pn for n = 2 is homeomorphic to the projective plane as defined in Chapter
1 (Section 8), i.e. obtained from the square by gluing the opposite sides as indicated in Figure
3.

Retain the important
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5. Constructions of topologies: products

In this section we explain how the Cartesian product of two topological spaces is naturally a
topological space itself. Given two sets X and Y we consider their Cartesian product

X × Y = {(x, y) : x ∈ X, y ∈ Y }.
Given a topology TX on X and a topology TY on Y , one defines a topology on X × Y , the
“product topology” TX ×TY , as follows. We say that a subset D ⊂ X × Y is open if and only if

(5.1) ∀ (x, y) ∈ D ∃ U ∈ TX , V ∈ TY such that x ∈ U, y ∈ V,U × V ⊂ D.

We denote by TX × TY the collection of all such D’s and we call it the product topology.

Proposition 3.12. Given (X,TX) and (Y,TY ), TX × TY is indeed a topology on X × Y .
Moreover, it is the smallest topology on X × Y with the property that the two projections

prX : X × Y → X, prY : X × Y → Y

(sending (x, y) to x, and y, respectively) are continuous.

Proof. Axiom (T1) is clear. For (T2), let D1,D2 be in the product topology, and we show
that D := D1 ∩D2 is as well. To check (5.1), let (x, y) ∈ D. Since D1 and D2 satisfy (5.1), for
each i ∈ {1, 2}, we find Ui ∈ TX and Vi ∈ TY such that

(x, y) ∈ Ui × Vi ⊂ Di.

Then U := U1 ∩ U2 ∈ TX (axiom (T2) for TX), and similarly V := V1 ∩ V2 ∈ TY , while clearly
we have x ∈ U , y ∈ V , U × V ⊂ D. The proof of the axiom (T3) is similar.

For the second part, note that a topology T on X ×Y has the property that both projections
are continuous if and only if U × Y ∈ T and X × V ∈ T for all U ∈ TX and V ∈ TY . Clearly
TX × TY has the property, hence the projections are continuous with respect to the product
topology. For an arbitrary topology T on X × Y with the same property, since

U × V = (U × Y ) ∩ (X × V ),

we deduce that U × V ∈ T for all U ∈ TX , V ∈ TY . To show that TX × TY ⊂ T , let D be an
open in the product topology and we show that it must belong to T . Since D satisfies (5.1), for
each z = (x, y) ∈ D we find Uz ∈ TX , Vz ∈ TY such that

{z} ⊂ Uz × Vz ⊂ D.

Taking the union over all z ∈ D, we deduce that

D = ∪z∈DUz × Vz.

But, as we have already seen, all members Uz × Vz must be in T hence, using axiom (T3) for
T , we deduce that D ∈ T . �

Exercise 3.4. Show that, if (Z,TZ) is a third topological space, then a function

h = (f, g) : Z → X × Y, h(z) = (f(z), g(z))

is continuous if and only if its components f : Z → X and g : Z → Y are both continuous.

Example 3.13. In R3 we have the cylinder

C = {(x, y, z) ∈ R3 : x2 + y2 = 1, 0 ≤ z ≤ 1},
which is pictured in Figure 4. According to our conventions, C is considered with the topology
induced from R3. On the other hand, since

C = S1 × [0, 1],
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(0. 0. 1)

The cyclinder in |R3

Figure 4.

where S1 is the unit circle in R2, C carries yet another natural topology, namely the product
topology. These two topologies are the same. This can be proven in a much greater generality,
as described in Exercise 3.27.

Exercise 3.5. A topological group is a group (G, ·) endowed with a topology on G such that
all the group operations, i.e.

(1) the inversion map τ : G→ G, g 7→ g−1,
(2) the composition map m : G×G→ G, (g, h) 7→ g · h

are continuous (where G×G is endowed with the product topology).
Note that the sets of matrices GLn(R), SLn(R), O(n) that appear in Exercise 2.33, together

with multiplication of matrices, are groups. The same exercise describe natural topologies on
them (induced fromMn(R)). Show that, with respect to these topologies, they are all topological
groups.
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6. Special classes of quotients II: collapsing a subspace, cones, suspensions

Another class of quotient spaces are quotients obtained by collapsing a subspace to a point.

Definition 3.14. Let X be a topological space and let A ⊂ X. We define X/A as the topo-
logical space obtained from X by collapsing A to a point (i.e. by identifying to each other all the
points of A). Equivalently,

X/A = X/RA,

where RA is the equivalence relation on X defined by

RA = {(x, y) : x = y or x, y ∈ A}.
Here are some more constructions of this type. Let X be a topological space.
The cylinder on X is defined as

Cyl(X) := X × [0, 1],

endowed with the product topology (and the unit interval is endowed with the Euclidean topol-
ogy). It contains two interesting copies of X: X × {1} and X × {0}.

The cone on X is defined as the quotient obtained from Cyl(X) by collapsing X × {1} to a
point:

Cone(X) := X × [0, 1]/(X × {1})
(endowed with the quotient topology). Intuitively, it looks like a cone with basis X.The cone
contains the copy X × {0} of X (the basis of the cone).

The suspension of X is defined as the quotient obtained from Cone(X) by collapsing the basis
X × {0} to a point:

S(X) := Cone(X)/(X × {0}).

1

0

2
1

Xx{ −}

The suspension of XThe cone of XThe cylinder of X

1

Xx{0}

Xx{1}

Xx{0}

Figure 5.

Example 3.15. The general constructions of quotients, such as the quotient by collapsing a
subspace to a point, the cone construction and the suspension construction, are nicely illustrated
by the various relations between the closed unit balls Dn ⊂ Rn and the unit spheres Sn ⊂ Rn+1.
We mention here the following:

(i) Dn is homeomorphic to Cone(Sn−1)- the cone of Sn−1.
(ii) Sn is homeomorphic to S(Sn−1)- the suspension of Sn.
(iii) Sn is homeomorphic to Dn/Sn−1- the space obtained from Dn by collapsing its bound-

ary to a point.
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Sn−1
Dn

The cone of S     is homeomorphic to the ball D
  n−1       n

Figure 6.

Proof. The first homeomorphism is indicated in Figure 6 (project the cone down to the
disk). It is not difficult to make this precise: we have a map

f̃ : Sn−1 × [0, 1] → Dn, f̃(x, t) = (1 − t)x.

This is clearly continuous and surjective, and it has the property that

f̃(x, t) = f̃(x′, t′) ⇐⇒ (x, t) = (x′, t′) or t = 1,

which is precisely the equivalence relation corresponding to the quotient defining the cone. Hence
we obtain a continuous bijective map

f : Cone(Sn−1) = Sn−1 × [0, 1]/(Sn−1 × {1}) → Dn.

After we will discuss the notion of compactness, we will be able to conclude that also f−1 is
continuous, hence f is a homeomorphism. Note that this f sends Sn−1 × {1} to the boundary
of Dn, hence (ii) will follow from (iii). In turn, (iii) is clear on the picture (see Figure 11 in the
previous Chapter); the map from Dn to Sn indicated on the picture can be written explicitly as

g̃ : Dn → Sn, x 7→ (
x1

||x||sin(π||x||), . . . , xn

||x||sin(π||x||), cos(π||x||))

(well defined for x 6= 0) and which sends 0 to the north pole (0, . . . , 0, 1).
One can check directly that

g̃(x) = g̃(x′) ⇐⇒ x = x′ or x, x′ ∈ Sn−1,

which is the equivalence relation corresponding to the quotient Dn/Sn−1. We deduce that we
have a bijective continuous map:

g : Dn/Sn−1 → Sn

but, again, we leave it to after the discussion of compactness the final conclusion that g is a
homeomorphism. �
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7. Constructions of topologies: Bases for topologies

In the construction of metric topologies, the balls were the building pieces. Similarly for the
product topology, where the building pieces were the subsets of type U × V with U ∈ TX ,
V ∈ TY . In both cases, the collection of “building pieces” was not a topology, but “generated”
a topology. The abstract notion underlying these constructions is that of topology basis.

Definition 3.16. Let X be a set and let B be a collection of subsets of X. We say that B is
a topology basis if it satisfies the following two axioms:

(B1) for each x ∈ X there exists B ∈ B such that x ∈ B.
(B2) for each B1, B2 ∈ B, and x ∈ B1 ∩B2, there exists B ∈ B such that x ∈ B ⊂ B1 ∩B2.

In this case, we define the topology induced by B as the collection

T (B) := {U ⊂ X : ∀ x ∈ U ∃ B ∈ B s.t. x ∈ B, B ⊂ U}.
Exercise 3.6. Show that, indeed, for any metric d on X, the collection Bd of all open balls is

a topology basis and topology T (Bd) = Td. Prove a similar statement for the product topology.

We still have to prove that T (B) is, indeed, a topology (the next proposition). Here we point
out a different description of T (B) (which we have already seen in the case of metric an product
topologies- and this is a hint for the next exercise!).

Exercise 3.7. Let X be a set and let B be a collection of subsets of X. Then a subset U ⊂ X
is in T (B) if and only if there exist Bi ∈ B with i ∈ I (I-an index set) such that U = ∪i∈IBi.

Proposition 3.17. Given a collection B of subsets of a set X, the following are equivalent:

(1) B is a topology basis.
(2) T (B) is a topology on X.

In this case T (B) is the smallest topology on X which contains B; moreover, B is a basis for the
topological space (X,T (B)), in the sense of Definition 2.47.

Proof. We prove that the axioms (T1), (T2) and (T3) of a topology (applied to T (B)) are
equivalent to axioms (B1) and (B2) of a topology basis (applied to B). First of all, the previous
exercise shows that (T3) is satisfied without any assumption on B. Next, due to the definition
of T (B), (B1) is equivalent to X ∈ T (B). Since clearly ∅ ∈ T (B), (B1) is equivalent to (T1).
Hence it suffices to prove that (T2) (for T (B)) is equivalent to (B2) (for B). That (T2) implies
(B2) is immediate: given B1, B2 ∈ B, since they are in T (B) so is their intersection, i.e. for
all x ∈ B1 ∩ B2 there exists B ∈ B such that x ∈ B, B ⊂ B1 ∩ B2. For the converse, assume
that (B2) holds. To prove (T2) for T (B), we start with U, V ∈ T (B) and we want to prove that
U ∩V ∈ T (B). I.e., for an arbitrary x ∈ U ∩V , we have to find B ∈ B such that x ∈ B ⊂ U ∩V .
Since x ∈ U ∈ T (B), we find B1 ∈ B such that x ∈ B1 ⊂ U . Similarly, we find B2 ∈ B such
that x ∈ B2 ⊂ V . By (B2) we find B ∈ B such that x ∈ B ⊂ B1 ∩ B2. We deduce that
x ∈ B ⊂ U ∩V , proving (T2). Finally, the last part of the proposition follows from the previous
exercise, as any topology which contains B must contain all unions of sets in B. �

Next, since many topologies are defined with the help of a basis, it is useful to know how to
compare topologies by only looking at basis elements (see Exercises 3.29 and 3.31).

Lemma 3.18. Let B1 and B2 be two topology bases on X. Then T1 is smaller than T2 if and
if and only if: for each B1 ∈ B1 and each x ∈ B1, there exists B2 ∈ B2 such that x ∈ B2 ⊂ B1.

Proof. What we have to show is that T1 ⊂ T2 is equivalent to B1 ⊂ T2. The direct
implication is clear since B1 ⊂ T1. For the converse, we use the fact that every element in
T1 = T (B1) can be written as a union of elements of B1; hence, if B1 ⊂ T2, every element of T1

can be written as a union of elements of T2 hence is in itself in T2. �
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8. Constructions of topologies: Generating topologies

8.1. Generated Topologies. There is a slightly more general recipe for generating topolo-
gies. What it may happen is that we have a set X, and we are looking for a topology on X
which contains certain (specified) subsets of X. In other words,

• we start with a set X and a collection S of subsets of X

and we are looking for a (interesting) topology T on X which contains S. Of course, the discrete
topology Tdis on X is always a choice, but it is not a very interesting one (it does not even depend
on S). Is there a “best” one? More precisely:

• is there a smallest possible topology on X which contains S?

Example 3.19. If S = B is a topology basis on the set X, Proposition 3.17 shows that the
answer is positive, and the resulting topology is precisely T (B).

The answer to the question is always “yes”, for any collection S. Indeed, Exercise 2.20 of
the previous chapter tells us that intersections of topologies is a topology. Hence one can just
proceed abstractly and define:

〈S〉 :=
⋂

T −topology on X containing S

T

This is called the topology generated by S. By Exercise 2.20, it is a topology. By construction, it
is the smallest one containing S. Of course, this abstract description is not the most satisfactory
one. However, using exactly the same type of arguments as in the proof of Proposition 3.17:

Proposition 3.20. Let X be a set, let S be a collection of subsets. Define B(S) as the
collection of subsets of X which can be written as finite intersections of subsets that belong to
S. Then B(S) is a topology basis and the associated topology is precisely 〈S〉. In conclusion, a
subset U ⊂ X belongs to 〈S〉 if and only if it is a union of finite intersections of members of S.

8.2. Initial topologies. Here is a general principle for constructing topologies. Many
topological constructions are what we call “natural”, or “canonical” (in any case, not arbitrary).
Very often, when one looks for a topology, one wants certain maps to be continuous. This
happens e.g. with induced and product topologies. A general setting is as follows.

• start with a set X and a collection of maps {fi : X → Xi}i∈I (I is an index set), where
each Xi is endowed with a topology Ti.

We are looking for (interesting) topologies TX on X such that all the maps fi become continuous.
As before, this has an obvious but unsatisfactory answer: TX = Tdis (which does not reflect the
functions fi). One should also remark that the smaller TX becomes, the smaller are the chances
that fi are continuous. With these, the really interesting question is to

• find the smallest topology on X such that all the functions fi become continuous.

Now, by the definition of continuity, a topology on X makes the functions fi continuous if and
only if all subsets of type f−1

i (Ui) with i ∈ I, Ui ∈ Ti, are open. Hence, denoting

S := {U ⊂ X : ∃ i ∈ I,∃ Ui ∈ Ti such that U = f−1
i (Ui)}

the answer to the previous question is: the topology 〈S〉 generated by S. This is called the initial
topology on X associated to the starting data (the topological spaces Xi and the functions fi).

Example 3.21. Given a subset A of a topological space (X,T ), the natural map here is the
inclusion i : A→ X. The associated initial topology on A is the induced topology T |A .

Given two topological spaces (X,TX) and (Y,TY ), the Cartesian product X × Y comes with
two natural maps: the projections prX : X × Y → X, prY : X × Y → Y . The associated initial
topology is the product topology on X × Y .



9. EXAMPLE: SOME SPACES OF FUNCTIONS 61

9. Example: some spaces of functions

Given two sets X and Y we denote by F(X,Y ) the set of all functions from X to Y . In
many parts of mathematics, when interested in a certain problem, one deals with subsets of
F(X,Y ), endowed with a topology which is relevant to the problem; the topology is dictated
by the type of convergence one has to deal with. The list of examples is huge; we will look at
some topological examples, i.e. at the set of continuous functions C(X,Y ) ⊂ F(X,Y ) between
two spaces. The general setting will be discussed later. Here we treat the particular case

X = I ⊂ R an interval, Y = Rn endowed with the Euclidean metric d.

Here I could be any interval, open or not, closed or not, equal to R or not.
There are several notions of convergence on the set F(I,Rn) of functions from I to Rn.

Definition 3.22. Let {fn}n≥1 be a sequence in F(I,Rn), f ∈ F(I,Rn). We say that:

• fn converges pointwise to f , and we write fn
pt→ f , if fn(x) → f(x) for all x ∈ I.

• fn converges uniformly to f , and we write fn ⇉ f , if for any ǫ > 0, there exists nǫ s.t.

d(fn(x), f(x)) < ǫ ∀ n ≥ nǫ, ∀ x ∈ I.

• fn converges uniformly on compacts to f , and we write fn
cp→ f if, for any compact

sub-interval K ⊂ I, fn|K ⇉ f |K .

We show that these convergences correspond to certain topologies on F(I,Rn). First the
pointwise convergence. For x ∈ I, U ⊂ Rn open, we define

S(x,U) := {f ∈ F(I,Rn) : f(x) ∈ U} ⊂ F(I,Rn).

These form a family S. The topology of pointwise convergence, denoted Tpt, is the topology on
F(I,Rn) generated by S. Hence S defines a topology basis, consisting of finite intersections of
members of S, and Tpt is the associated topology.

Proposition 3.23. The pointwise convergence coincides with the convergence in (F(I,Rn),Tpt).

Proof. Rewrite the condition that fn → f with respect to Tpt. It means that, for any
neighborhood of f of type S(x,U) there exists an integer N such that fn ∈ S(x,U) for n ≥ N .
I.e., for any x ∈ I and any open U containing f(x), there exists an integer N such that fn(x) ∈ U
for all n ≥ N . I.e., for any x ∈ I, fn(x) → f(x) in Rn. �

For uniform convergence, the situation is more fortunate: it is induced by a metric. Given
two functions f, g ∈ F(I,Rn), we define the sup-distance between f and g by

dsup(f, g) = sup{d(f(x), g(x)) : x ∈ I}.
Since this supremum may be infinite for some f and g (and only for that reason!), we define

d̂sup(f, g) = min(dsup(f, g), 1).

Note that dsup and d̂sup are morally the same when it comes to convergence (dsup(f, g) is“ small”

if and only if d̂sup(f, g) is); they are actually the same on C(I,Rn) if I is compact (why?). The
associated topology is called the topology of uniform convergence.

Exercise 3.8. Show that d̂sup is a metric on F(I,Rn).

Proposition 3.24. The uniform convergence coincides with the convergence in (F(I,Rn), d̂sup).

Proof. According to the definition of uniform convergence, fn ⇉ f if and only if for each
ǫ > 0, we find nǫ such that dsup(f, g) ≤ ǫ for all n ≥ nǫ. Of course, only ǫ’s small enough matter

here, hence we recover the convergence with respect to d̂sup. �
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We now move to uniform convergence on compacts. Given K ⊂ I a compact subinterval,
ǫ > 0, f ∈ F(I,Rn), we define

BK(f, ǫ) := {g ∈ F(I,Rn) : d(f(x), g(x)) < ǫ ∀ x ∈ K}.
The toplogy of compact convergence, denoted Tcp, is the topology on F(I,Rn) generated by the
family of all the subsets BK(f, ǫ). As above, the definitions immediately imply:

Proposition 3.25. The uniform convergence on compacts coincides with the convergence in
the topological space (F(I,Rn),Tcp).

In topology, we are interested in continuous functions. The situation is as follows:

Theorem 3.26. For a sequence of continuous functions fn ∈ C(I,Rn), and f ∈ F(I,Rn):

(9.1) (fn ⇉ f) =⇒ (fn
cp→ f) =⇒ (f ∈ C(I,Rn)).

More precisely, one has an inclusion of topologies

(pointwise) ⊂ (uniform on compacts) ⊂ (uniform)

and C(I,Rn) is closed in (F(I,Rn),Tcp) (hence also in (F(I,Rn), d̂sup)).

Proof. The comparison between the three topologies is again a matter of checking the
definitions. Also, the first implication in (9.1) is trivial; the second one follows from the last
part of the theorem, on which we concentrate next. We first show that C(I,Rn) is closed in

(F(I,Rn), d̂sup). Assume that f is in the closure, i.e. f : I → Rn is the uniform limit of a
sequence of continuous functions fn. We show that f is continuous. Let x0 ∈ I and we show
that f is continuous at x0. I.e., we fix ǫ > 0 and we look for a neighborhood Vǫ of x0 such that
d(f(x), f(x0)) < ǫ for all x ∈ Vǫ. Since fn ⇉ f , we find N such that d(fn(x), f(x)) < ǫ/3 for
all n ≥ N and all x ∈ I. Since fN is continuous at x0, we find a neighborhood Vǫ such that
d(fN (x), fN (x0)) < ǫ/3 for all x ∈ Vǫ. But then, for all x ∈ Vǫ,

d(f(x), f(x0)) ≤ d(f(x), fN (x)) + d(fN (x), fN (x0)) + d(fN (x0), f(x0)) < 3 × ǫ/3 = ǫ.

Finally, we show that C(I,Rn) is closed in (F(I,Rn),Tcp). Assume that f is in the closure.
Remark that, for f to be continuous, it suffices that f |K is continuous for any compact sub-
interval K ⊂ I. Fx such a K. Considering neighborhoods of type BK(f, 1/n), we find fn ∈
C(I,Rn) lying in this neighborhood. But then fn|K ⇉ f |K hence f |K is continuous. �

Here is the most important property of the uniform topology (Tcp will be discussed later).

Theorem 3.27. (F(I,Rn), d̂sup)) and (C(I,Rn), d̂sup)) are complete metric spaces.

Proof. Using the previous theorem and the simple fact that closed subspaces of complete

metric spaces are complete, we are left with showing that (F(I,Rn), d̂sup) is complete. So, let

(fn)n≥1 be a Cauchy sequence with respect to d̂sup (as mentioned above, for such arguments

there is no difference between using d or d̂). Since for all x ∈ I,
d(fn(x), fm(x)) ≤ dsup(fn, fm),

it follows that (fn(x))n≥1 is a Cauchy sequence in (Rn, d), for all x ∈ X. Denoting by f(x) the
limit, we obtain f ∈ F(I,Rn) (to which fn converges pointwise). To show that fn ⇉ f , let ǫ > 0
and we look for nǫ such that dsup(fn, f) < ǫ for all n ≥ nǫ. For that, use that (fn)n≥1 is Cauchy
and choose nǫ such that dsup(fn, fm) < ǫ/2 for all n,m ≥ nǫ. Combininig with the previous
displayed inequality, we have d(fn(x), fm(x)) < ǫ/2 for all such n,m and all x ∈ I. Taking
m → ∞, we find that d(fn(x), f(x)) ≤ ǫ/2 < ǫ for all n ≥ nǫ and x ∈ I, i.e. dsup(fn, f) < ǫ for
all n ≥ nǫ. �
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10. More exercises

10.1. Quotients.

Exercise 3.9. Let T be a model for the torus, with quotient map π : [0, 1]×[0, 1] → T (choose
your favourite). Give an example of a function f : [0, 1] → [0, 1] × [0, 1] with the property that
f is not continuous, but π ◦ f is.

Exercise 3.10. Start with the interval [0, 2] and glue the points 0, 1 and 2. Describe the
equivalence relation R encoding this gluing and let X = [0, 2]/R. Describe an embedding of X
in R2.

Exercise 3.11. Show that the space obtained from R by collapsing [−1, 1] to a point is
homeomorphic to R.

Exercise 3.12. Show that the space obtained from R by collapsing (−1, 1) to a point is not
Hausdorff.

Exercise 3.13. Let X = (0,∞). Show that

φn(r) := 2nr

defines an action of Z on X and X/Z is homeomorphic to S1.
(hint: see Example 3.7 and Exercise 1.2).

Exercise 3.14. Consider the unit circle in the complex plane

S1 = {z ∈ C : |z| = 1}.
Let n be a positive integer, consider the n-th root of unity

ξ = cos(
2π

n
) + isin(

2π

n
) ∈ C

and let Zn be the (additive) group of integers modulo n. Show that

φk̂(z) := ξkz

defines an action of Zn on S1, explain its geometric meaning, and show that S1/Zn is homeo-
morphic to S1. What do you obtain when n = 2?

Exercise 3.15. Let R be the equivalence relation on R consisting of those pairs (r, s) of real
numbers with the property that there exist two integers m and n such that r − s = m + n

√
2.

Show that the resulting quotient space is not Hausdorff.

Exercise 3.16. Let Γ = Z × Z with the usual group operation

(m,n) + (m′, n′) = (m+m′, n + n′).

Show that
φm,n(x, y) := (x+m, y + n)

defines an action of Γ on R2 and R2/Γ is homeomorphic to the torus.

Exercise 3.17. Do the same for the same group but the new action:

φm,n(x, y) := (x+my + n+
m(m− 1)

2
, y +m).

Exercise 3.18. Consider the following groups:

(1) Γ = 〈a, b; bab = a〉 (the group in two generators a and b, subject to the relation bab = a).
(2) Γ′ = Z × Z with the operation

(m,n) ◦ (m′, n′) = (m+m′, n+ (−1)mn′).
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(3) Γ′′ is the subgroup of (Homeo(R2), ◦) (the group of homeomorphisms of the plane
endowed with the composition of functions) generated by the transformations

φ(x, y) = (x+ 1,−y), ψ(x, y) = (x, y + 1).

Show that:

(1) these three groups are isomorphic.
(2) one obtains an action of these groups on R2; write it down explicitly.
(3) the resulting quotient is homeomorphic to the Klein bottle.

Exercise 3.19. Compose ad solve a similar exercise in which the resulting quotient is home-
omorphic to the Moebius band.

Exercise 3.20.

(i) Write the Moebius band as a union of two subspaces M and C where M is itself a
Moebius band, C is a cylinder (i.e. homeomorphic to S1 × [0, 1]) and M ∩C is a circle.

(ii) Similarly, decompose P2 as the union of a Moebius band M and another subspace Q,
such that Q is a quotient of the cylinder and M ∩Q is a circle.

(iii) Deduce that P2 can be obtained from a Moebius band and a disk D2 by gluing them
along their boundary circles.

Exercise 3.21. Show that

(1) Pn is an n-dimensional topological manifold.

(2) The map f : Pn → R
(n+1)(n+2)

2 which sends the line lx through x = (x0, . . . , xn) to

f(lx) = (x0x0, x0x1, . . . , x0xn, x1x1, x1x2, . . . , x1xn, . . . , xnxn)

is an embedding.

10.2. Product topology.

Exercise 3.22. Show that

(Rn,Teucl) × (Rm,Teucl) = (Rn+m,Teucl).

Exercise 3.23. Show that if X and Y are both Hausdorff, then so is X × Y . Similarly for
metrizability and first countability.

Exercise 3.24. Look at exercise 2.22 and show that there is no conflict in the notation; i.e.
the topology Tl × Tl defined in that exercise does coincide with the product topology.

Exercise 3.25. Show that if n is an odd number, then GLn(R) is homeomorphic to GL1(R)×
SLn(R) (see Exercise 2.33).

Exercise 3.26. Show that a topological space X is Hausdorff if and only if

∆ := {(x, x) : x ∈ X}
is closed in X ×X.

Exercise 3.27. Let X and Y be two topological spaces, A ⊂ X, B ⊂ Y . Then the following
two topologies on A×B coincide:

(i) The product of the topology of A (induced from X) and that of B (induced from Y ).
(ii) The topology induced on A×B from the product topology on X × Y .

Exercise 3.28. Let X be the cone of the interval (0, 1). Construct an explicit continuous
injection

f : X → R2

and let C be its image. Is f a homeomorphism?
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10.3. Topology bases.

Exercise 3.29. Using Lemma 3.18, prove again that the Euclidean and the square metrics
induce the same topology.

Exercise 3.30. Go back to exercise 2.17 and show that B there is a topology basis. Then
using Lemma 3.18, show again that the resulting topology is larger than the topology from
Exercise 2.16.

Exercise 3.31. Show that
Bl := {[a, b) : a, b ∈ R}

is a topology basis and T (Bl) is the topology Tl from Exercise 2.19. Then use Lemma 3.18 to
prove again that Tl is finer than TEucl.

Exercise 3.32. Do again Exercise 2.22 using Lemma 3.18.

Exercise 3.33. Consider the unit circle S1 and the functions

α, β : S1 → R, α(x, y) = x, β(x, y) = y.

Show that:

(1) S1, endowed with the smallest topology which makes α continuous, is not Hausdorff.
(2) the smallest topology on S1 which makes both α and β continuous is the Euclidean

one.

10.4. Spaces of functions.

Exercise 3.34. Let fn : R → R, fn(x) = 1
nsin(nx). Show that (fn) is uniformly convergent.

Exercise 3.35. Let fn : R → R, fn(x) = xn. Is (fn) pointwise convergent? But uniformly
on compacts? But uniformly?

Exercise 3.36. Let fn : R → R, fn(x) = x
n . Is (fn) pointwise convergent? But uniformly on

compacts? But uniformly?

Exercise 3.37. (Dini’s theorem) Let fn : I → R be an increasing sequence of continuous
functions defined on an interval I, which converges pointiwse to a continuous function f . Show
that fn ⇉ f . Is the same true if we do not assume that f is continuous?

Exercise 3.38. Let pn ∈ C([0, 1],R) be the sequence of functions (even polynomials!) defined
inductively by

pn+1(t) = pn(t) +
1

2
(t− pn(t)2), p1 = 0.

Show that (pn) converges uniformly to the function f(t) =
√
t.

(Hint: first show that pn(t) ≤
√
t, then that pn(t) is increasing, then that it converges pointwise

to
√
t, then look above).

Exercise 3.39. Now, did you know that there are continuous surjective functions f : [0, 1] →
[0, 1] × [0, 1]??? (yes, continuous curves in the plane which fill up an entire square!). Actually,
you now have all the knowledge to show that (using Theorem 3.27); it is not obvious but, once
you see the pictures, the proof is not too difficult; have a look at Munkres’ book.
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1. Connectedness

1.1. Definitions and examples.

Definition 4.1. We say that a topological space (X,T ) is connected if X cannot be written
as the union of two disjoint non-empty opens U, V ⊂ X.

We say that a topological space (X,T ) is path connected if for any x, y ∈ X, there exists a
path γ connecting x and y, i.e. a continuous map γ : [0, 1] → X such that γ(0) = x, γ(1) = y.

Given (X,T ), we say that a subset A ⊂ X is connected (or path connected) if A, together with
the induced topology, is connected (path connected).

As we shall soon see, path connectedness implies connectedness. This is good news since, unlike
connectedness, path connectedness can be checked more directly (see the examples below).

Example 4.2.

(1) X = {0, 1} with the discrete topology is not connected. Indeed, U = {0}, V = {1} are
disjoint non-empty opens (in X) whose union is X.

(2) Similarly, X = [0, 1) ∪ [2, 3] is not connected (take U = [0, 1), V = [2, 3]). More
generally, if X ⊂ R is connected, then X must be an interval. Indeed, if not, we find
r, s ∈ X and t ∈ (r, s) such that t /∈ X. But then U = (−∞, t)∩X,V = (t,∞)∩X are
opens in X, nonempty (as r ∈ U , s ∈ V ), disjoint, with U ∪ V = X (as t /∈ X).

(3) However, although true, the fact that any interval I ⊂ R is connected is not entirely
obvious. In contrast, the path connectedness of intervals is clear: for any x, y ∈ I,

γ : [0, 1] → R, γ(t) = (1 − t)x+ ty

takes values in I (since I is an interval) and connects x and y.
(4) Similarly, any convex subset X ⊂ Rn is path connected (recall that X being convex

means that for any x, y ∈ X, the whole segment [x, y] is contained in X).
(5) X = R2 − {0}, although not convex, is path connected: if x, y ∈ X and the segment

[x, y] does not contain the origin, we use the linear path from x to y. But even if [x, y]
contains the origin, we can join them by a path going around the origin (see Figure 1).

O

|R
2
−{0} is path connected

y

x

y’

Figure 1.

Lemma 4.3. The unit interval [0, 1] is connected.

Proof. We assume the contrary: ∃ disjoint non-empty U, V , opens in [0, 1] such that U∪V =
[0, 1]. Since U = [0, 1]−V , U must be closed in [0, 1]. Hence, as a limit of points in U , R := supU
must belong to U . We claim that R = 1. If not, we find an interval (R− ǫ,R+ ǫ) ⊂ U and then
R+ 1

2ǫ is an element in U strictly greater than its supremum- which is impossible. In conclusion,
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1 ∈ U . But exactly the same argument shows that 1 ∈ V , and this contradicts the fact that
U ∩ V = ∅. �

1.2. Basic properties.

Proposition 4.4.

(i) If f : X → Y is a continuous map and X is connected, then f(X) is connected.
(ii) Given (X,T ), if for any two points x, y ∈ X, there exists Γ ⊂ X connected such that

x, y ∈ Γ, then X is connected.

Proof. For (i), replacing Y by f(X), we may assume that f is surjective, and we want to
prove that Y is connected. If it is not, we find U, V ⊂ Y disjoint nonempty opens whose union
is Y . But then f−1(U), f−1(V ) ⊂ X are disjoint (since U and V are), nonempty (since U and V
are and f is surjective) opens (because f is continuous) whose union is X- and this contradicts
the connectedness of X. For (ii) we reason again by contradiction, and we assume that X is
not connected, i.e. X = U ∪ V for some disjoint nonempty opens U and V . Since they are
non-empty, we find x ∈ U , y ∈ V . By hypothesis, we find Γ connected such that x, y ∈ Γ. But
then

U ′ = U ∩ Γ, V ′ = V ∩ Γ

are disjoint non-empty opens in Γ whose union is Γ- and this contradicts the connectedness of
Γ. �

Theorem 4.5. Any path connected space X is connected.

Proof. We use (ii) of the proposition. Let x, y ∈ X. We know there exists γ : [0, 1] → X
joining x and y. But then Γ = γ([0, 1]) is connected by using (i) of the proposition and the fact
that [0, 1] is connected; also, x, y ∈ Γ. �

Since we have already remarked that a connected subset of R must be an interval, and that
any interval is path connected, the theorem implies:

Corollary 4.6. The only connected subsets of R are the intervals.

Combining with part (i) of Proposition 4.4 we deduce the following:

Corollary 4.7. If X is connected and f : X → R is continuous, then f(X) is an interval.

Corollary 4.8. If X is connected, then any quotient of X is connected.

Example 4.9. There are a few more consequences that one can derive by combining con-
nectedness properties with the “removing one point trick” (Exercise 2.39 in Chapter 2).

(1) R cannot be homeomorphic to S1. Indeed, if we remove a point from R the result is
disconnected, while if we remove a point from S1, the result stays connected.

(2) R cannot be homeomorphic to R2. The argument is similar to the previous one (recall
that R2 − {0} is path connected, hence connected).

(3) The more general statement that Rn and Rm cannot be homeomorphic if n 6= m is much
more difficult to prove. One possible proof is a generalization of the argument given
above (when n = 1, m = 2)- but that is based on “higher versions of connectedness”,
a notion which is at the core of algebraic topology.

Exercise 4.1. Show that [0, 1) and (0, 1) are not homeomorphic.
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1.3. Connected components.

Definition 4.10. Let (X,T ) be a topological space. A connected component of X is any
maximal connected subset of X, i.e. any connected C ⊂ X with the property that, if C ′ ⊂ X is
connected and contains C, then C ′ must coincide with C.

Proposition 4.11. Let (X,T ) be a topological space. Then

(i) Any point x ∈ X belongs to a connected component of X.
(ii) If C1 and C2 are connected components of X then either C1 = C2 or C1 ∩ C2 = ∅.
(iii) Any connected component of X is closed in X.

Proof. To prove the proposition we will use the following

Exercise 4.2. If A,B ⊂ X are connected and A ∩B 6= ∅, then A ∪B is connected.

For (i) of the proposition, let x ∈ X and define C(x) as the union of all connected subsets of
X containing x. We claim that C(x) is a connected component. The only thing that is not clear
is the connectedness of C(x). To prove that, we will use the criterion given by (ii) of Proposition
4.4. For y, z ∈ C(x) we have to find Γ ⊂ X connected such that y, z ∈ Γ. Due to the definition of
C(x), we find Cy and Cz- connected subsets of X, both containing x, such that y ∈ Cy, z ∈ Cz.
The previous exercise implies that Γ := Cy ∪ Cz is connected containing both y and z.

To prove (ii), we use again the previous exercise applied to A = C1 and B = C2, and the
maximality property of connected components.

To prove (iii), due to the maximality of connected components, it suffices to prove that if
C ⊂ X is connected, then C is connected. Assume that Y := C is not connected. We find
D1,D2 nonempty opens in Y , disjoint, such that Y = D1 ∪D2. Take Ui = C ∩Di. Clearly, U1

and U2 are disjoint opens in C, with C = U1 ∪ U2. To reach a contradiction (with the fact that
C is connected) it suffices to show that U1 and U2 are nonempty. To show that Ui is non-empty
(i ∈ {1, 2}), we use the fact that Di is non-empty. We find a point xi ∈ Di. Since xi is in the
closure of C in Y , we have U ∩ C 6= ∅ for each neighborhood U of xi in Y . Choosing U = Di,
we have C ∩Di 6= ∅. �

Remark 4.12. From the previous proposition we deduce that, for any topological space
(X,T ), the family {Ci}i∈I of connected components of (X,T ) (where I is an index set) give a
partition of X:

X = ∪i∈ICi, Ci ∩ Cj = ∅ ∀ i 6= j,

called the partition of X into connected components.

Exercise 4.3. Let X be a topological space and assume that {X1, . . . ,Xn} is a finite partition
of X, i.e.

X = X1 ∪ . . . ∪Xn, Xi ∩Xj = ∅ ∀ i 6= j.

Then the following are equivalent:

(i) All Xi’s are closed.
(ii) All Xi’s are open.

If moreover each Xi is connected, then {X1, . . . ,Xn} coincides with the partition of X into
connected components.
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1.4. Connected versus path connected, again. Theorem 4.5 shows that path connect-
edness implies connectedness. However, the converse does not hold in general. The standard
example is “the flea and comb”, drawn in Figure 2. Explicitely, X = C ∪ {f}, where

C = [0, 1] ∪ {( 1

n
, y) : y ∈ [0, 1], n ∈ Z>0}, f = (0, 1).

The flea and comb

Figure 2.

Exercise 4.4. Show that, indeed, X from the picture is connected but not path connected.

However, there is a partial converse to Theorem 4.5.

Theorem 4.13. Let (X,T ) be a topological space with the property that any point of X has a
path connected neighborhood. Then X is path connected if and only if it is connected.

Proof. We still have to prove that, if X is connected, then it is also path connected. We
define on X the following relation ∼: x ∼ y if and only if x and y can be joined by a (continuous)
path. This is an equivalence relation. Indeed, for x, y, z ∈ X:

• x ∼ x: consider the constant path.
• if x ∼ y then y ∼ x: if γ is a path from x to y, then γ−(t) = γ(1 − t) is a path from y

to x.
• if x ∼ y and y ∼ z, then x ∼ z. Indeed, if γ1 is a path from x to y, while γ2 from y to
z, then

γ(t) =

{

γ1(2t) if x ∈ [0, 1
2 ]

γ2(2t− 1) if x ∈ [12 , 1]

is a path from x to z.

For x ∈ X, we denote by C(x) the equivalence class of x:

C(x) = {y ∈ X : y ∼ x}.
Note that each C(x) is path connected. We claim that C(x) = X for any x ∈ X. The fact that
∼ is an equivalence relation implies that

{C(x) : x ∈ X}
is a partition of X: if C(x) ∩ C(x′) 6= ∅, then C(x) = C(x′). What we want to prove is that
this partition consists of one set only. Since X is connected, it is enough to prove that C(x) is
open for each x ∈ X. Fixing x, we want to prove that for any y ∈ C(x), there is an open U
such that y ∈ U ⊂ C(x). To see this, we use the hypothesis and we choose any path connected
neighborhood V of y. Since y ∼ x and z ∼ y fro any z ∈ V , we deduce that z ∼ x fro any
z ∈ V , hence V ⊂ C(x). Since V is a neighborhood of y, we find U open such that y ∈ U ⊂ V ,
and this U clearly has the desired properties. �

Exercise 4.5. Find a subspace X ⊂ R2 which is connected but not path connected.
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2. Compactness

2.1. Definition and first examples. Probably many of you have seen the notion of com-
pact space in the context of subsets of Rn, as sets which are closed and bounded. Although not
obviously at all, this is a topological property (it can be defined using open sets only).

Definition 4.14. Given a topological space (X,T ) an open cover of X is a family U = {Ui :
i ∈ I} (I-some index set) consisting of open sets Ui ⊂ X such that

X = ∪i∈IUi.

A subcover is any cover V with the property that V ⊂ U .
We say that a topological space (X,T ) is compact if from any open cover U = {Ui : i ∈ I} of

X one can extract a finite open subcover, i.e. there exist i1, . . . , ik ∈ I such that

X = Ui1 ∪ . . . ∪ Uik .

Remark 4.15. Given a topological space (X,T ) and A ⊂ X, the compactness of A (viewed
as a topological space with the topology induced from X (cf. Example 2.8 in Chapter 2) can be
expressed using “open coverings of A in X”, i.e. families U = {Ui : i ∈ I} (I-some index set)
consisting of open sets Ui ⊂ X such that

A ⊂ ∪i∈IUi.

A subcover is any cover (of A in X) V with the property that V ⊂ U . With these, A is compact
if and only if from any open cover of A in X one can extract a finite open subcover. This follows
immediately from the fact that the opens for the induced topology on A are of type A∩U with
U ∈ T and from the fact that, for a family {Ui : i ∈ I}, we have

⋃

i

(A ∩ Ui) = A⇐⇒ A ⊂
⋃

i

Ui,

Example 4.16.

(1) (X,Tdiscr) is compact if and only if X is finite (use the cover of X by the open-point
opens).

(2) R is not compact. Indeed,

R =
⋃

k∈Z

(−k, k)

is an open cover from which we cannot extract a finite open subcover. By the same
argument, any compact A ⊂ Rn must be bounded (e.g., when n = 1, write A ⊂
∪k(−k, k)).

(3) [0, 1) is not compact. Indeed,

[0, 1) ⊂
⋃

k

(−∞, 1 − 1

k
)

defines an open cover of [0, 1) in R, from which we cannot extract a finite open subcover.
By a similar argument, any compact A ⊂ Rn must be closed in Rn. To show this, assume
for simplicity that n = 1. We proceed by contradiction and assume that there exists
a ∈ A−A. Since a /∈ A,

Uǫ := R − [a− ǫ, a+ ǫ]

form an open cover of A in R indexed by ǫ > 0. Extracting a finite subcover, we find

A ⊂ Uǫ1 ∩ . . . ∩ Uǫk
= Uǫ where ǫ = min{ǫ1, . . . , ǫk}.

But this implies that A ∩ (a− ǫ, a+ ǫ) = ∅ which contradicts a ∈ A.
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(4) [0, 1] is compact.

Proof. Assume the contrary, i.e. there exists a “bad cover of [0, 1]”, i.e. an open
cover U of [0, 1] in R which does not admit any finite open subcover (of [0, 1] in R).
Divide [0, 1] into two intervals of equal length. Then U will be a bad cover for at least
one of the two intervals, call it I1. Divide now I1 into two intervals of equal length and,
again, choose one of them, call it I2, so that U is a bad cover of I2. Continuing this
process, we find intervals Ik with

Ik+1 ⊂ Ik,diam(Ik) =
1

2k
,

(where the diameter of an interval [a, b] is (b− a)) and such that U is a bad open cover
of Ik in R. Choosing xk ∈ Ik, we have

d(xk, xk+1) ≤
1

2k

for all k, where d denotes the Euclidean metric (d(a, b) = |a − b|). We claim that the
sequence of real numbers (xk)k≥1 is a Cauchy sequence, i.e. d(xk, xk+n) can be made
arbitrarily small for k big enough and all n. To see this, we use the triangle inequality
and the previous inequality repeatedly:

d(xk, xk+n) ≤
k+n−1∑

i=k

d(xi, xi+1) ≤
k+n−1∑

i=k

1

2i
=

1

2k−1
(1 − 1

2n
),

and deduce

d(xk, xk+n) <
1

2k−1

for all k, n ≥ 0 integers. This shows that (xk)k≥1 is a Cauchy sequence, so, from the
known properties of the real line, the sequence will be convergent. Let x be its limit.
Since xk ∈ [0, 1] for all k, we deduce that x ∈ [0, 1]. Taking n → ∞ in the previous
inequality we also deduce that

d(xk, x) ≤
1

2k−1
.

We deduce that, for each k,

Ik ⊂ [x− 3

2k
, x+

3

2k
].

Indeed, if y ∈ Ik, since xk ∈ Ik and the diameter of Ik is 1/2k, we have d(y, xk) ≤ 1/2k,
hence

d(y, x) ≤ d(y, xk) + d(xk, x) ≤
1

2k
+

1

2k−1
=

3

2k
.

We now use the cover U . Let U ∈ U such that x ∈ U . Since U is open, we find
r > 0 such that

(x− r, x+ r) ⊂ U.

But then, choosing k such that 3
2k < r, we will have Ik ⊂ (x − r, x + r) ⊂ U , i.e. the

open cover U of Ik in R will have a finite subcover- namely the one consisting of the
open set U alone. This contradicts the fact that U was a bad cover for Ik. �

Exercise 4.6. Show that the set

{0, 1, 1
2
,
1

3
,
1

4
, . . .}

is compact in R.
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2.2. Topological properties of compact spaces. In this section we point out some
topological properties of compact spaces.

The first one says that “closed inside compact is compact”.

Proposition 4.17. If (X,T ) is a compact space, then any closed subset A ⊂ X is compact.

The second one says that “compact inside Hausdorff is closed”.

Theorem 4.18. In a Hausdorff space (X,T ), any compact set is closed.

The third one says that “disjoint compacts inside a Hausdorff can be separated”.

Proposition 4.19. In a Hausdorff space (X,T ), any two disjoint compact sets A and B can
be separated topologically, i.e. there exist opens U, V ⊂ X such that

A ⊂ U, B ⊂ V, U ∩ V = ∅.
Corollary 4.20. Any compact Hausdorff space is normal.

Proof. (of Proposition 4.17) If U is an open cover of A in X, then adding X − A to U
(which is open since A is closed), we get an open cover of X. Extracting a finite subcover (which
may or may not contain X − A), denoting by U1, . . . , Un the elements of this finite subcover
which are different from X − A, this will define a finite subcover of the original cover of A in
X. �

Proof. (of Proposition 4.19): We introduce the following notation: given Y,Z ⊂ X we
write Y |Z if Y and Z can be separated, i.e. if there exist opens U and V (in X) such that
Y ⊂ U , Z ⊂ V and U ∩ V = ∅. We claim that, if Z is compact and Y |{z} for all z ∈ Z, then
Y |Z.

Proof. (of the claim) We know that for each z ∈ Z we find opens Uz and Vz such that
Y ⊂ Uz, z ∈ Vz and Uz ∩ Vz = ∅. Note that {Vz : z ∈ Z} is an open cover of Z in X: indeed,
any z ∈ Z belongs at least to one of the opens in the cover (namely Vz). By compactness of Z,
we find a finite number of points z1, . . . , zn ∈ Z such that

Z ⊂ Vz1 ∪ . . . ∪ Vzn .

Denoting by V the last union, and considering

U = Uz1 ∩ . . . ∩ Uzn ,

V is an open containing Z, U is an open containing Y . Moreover, U ∩ V = ∅: indeed, if x is
in the intersection, since x ∈ V we find k such that x ∈ Vzk

; but x ∈ U hence x ∈ Uz, which is
impossible since Uzk

∩Vzk
= ∅. In conclusion, U and V show that Y and Z can be separated. �

Back to the proof of the proposition, let a ∈ A arbitrary. Now, since X is Hausdorff, we have
{a}|{b} for all b ∈ B. Since B is compact, the claim above implies that {a}|B, or, equivalently,
B|{a}. This holds for all a ∈ A, hence using again the claim (and the fact that A is compact)
we deduce that A|B. �

Proof. (of Theorem 4.18) For Theorem 4.18, assume that A ⊂ X is compact, and we prove
that A ⊂ A: if x ∈ A, then, for any neighborhood U of x, U ∩ A 6= ∅, and this shows that x
cannot be separated from A; using the proposition, we conclude that x ∈ A. �

Exercise 4.7. Deduce that a subset A ⊂ R is compact if and only if it is closed and bounded.
What is missing to prove the same for subsets of Rn?
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2.3. Compactness of products, and compactness in Rn. Next, we are interested in
the compactness of the product of two compact spaces. We will use the following:

Lemma 4.21. (the Tube Lemma) Let X and Y be two topological spaces, x0 ∈ X, and let
U ⊂ X × Y be an open (in the product topology) such that

{x0} × Y ⊂ U.

If Y is compact, then there exists W ⊂ X open containing x0 such that

W × Y ⊂ U.

Proof. Due to the definition of the product topology, for each y ∈ Y , since (x0, y) ∈ U ,
there exist opens Wy ⊂ X, Vy ⊂ Y such that

Wy × Vy ⊂ U.

Now, {Vy : y ∈ Y } will be an open cover of Y , hence we find y1, . . . , yn ∈ Y such that

Y = Vy1 ∪ . . . ∪ Vyn .

Choose W = Wy1 ∩ . . .∩Wyn , which is an open containing x0, as a finite intersection of such. To
check W ×Y ⊂ U , let (x, y) ∈W ×Y . Since the Vyi

’s cover Y , we find i s.t. y ∈ Vyi
. But x ∈W

implies x ∈Wyi
, hence (x, y) ∈Wyi

×Vyi
. But Wz × Vz ⊂ U for all z ∈ Y , hence (x, y) ∈ U . �

Theorem 4.22. If X and Y are compact spaces, then X × Y is compact.

Proof. Let U be an open cover of X × Y . For each x ∈ X,

{x} × Y ⊂ X × Y

is compact (why?), hence we find a Ux ⊂ U finite such that

(2.1) {x} × Y ⊂
⋃

U∈Ux

U.

Using the previous lemma, we find Wx open containing x such that

(2.2) Wx × Y ⊂
⋃

U∈Ux

U.

Now, {Wx : x ∈ X} is an open cover of X, hence we find a finite subcover

X = Wx1 ∪ . . . ∪Wxp .

Then

V = Ux1 ∪ . . . ∪ Uxp

is finite union of finite collections, hence finite. Moreover, V still covers X × Y : given (x, y)
arbitrary, using (2.2), we find i such that x ∈Wxi

. Hence (x, y) ∈Wxi
× Y , and using (2.1) we

find U ∈ Uxi
such that (x, y) ∈ U . Hence we found U ∈ V such that (x, y) ∈ U , �

Corollary 4.23. A subset A ⊂ Rn is compact if and only if it is closed and bounded.

Proof. The direct implication was already mentioned in Example 4.16 (and that A is closed
follows also from Theorem 4.18). For the converse, since A is bounded, we find R, r ∈ R such
that A ⊂ [r,R]n. The intervals [r,R] are homeomorphic to [0, 1], hence compact. The previous
theorem implies that [r,R]n, hence A must be compact as closed inside a compact. �

Example 4.24. In particular, spaces like the spheres Sn, the closed disks Dn, the Moebius
band, the torus, etc, are compact.
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2.4. Compactness and continuous functions.

Theorem 4.25. If f : X → Y is a continuous function and A ⊂ X is compact, then f(A) ⊂ Y
is compact.

Proof. If U is an open cover of f(A) in Y , then f−1(U) := {f−1(U) : U ∈ U} is an open
cover of A in X, hence it has a finite subcover {f−1(Ui) : 1 ≤ i ≤ n} with Ui ∈ U . But then
{Ui} will be a finite subcover of U . �

Finally, we can state the property of compact spaces that we referred to several times when
having to prove that certain continuous injections are homeomorphisms.

Theorem 4.26. If f : X → Y is continuous and bijective, and if X is compact and Y is
Hausdorff, then f is a homeomorphism.

Proof. We have to show that the inverse g of f is continuous. For this we show that if U is
open in X then the pre-image g−1(U) is open in Y . Since the open (or closed) sets are just the
complements of closed (respectively open) subsets, and g−1(Y − U) = X − g−1(U), we see that
the continuity of g is equivalent to: if A is closed in X then the pre-image g−1(A) is closed in Y .
To prove this, let A be a closed subset of X. Since g is the inverse of f , we have g−1(A) = f(A),
hence we have to show that f(A) is closed in Y . Since X is compact, Proposition 4.17 implies
that A is compact. By the previous theorem, f(A) must be compact. Since Y is Hausdorff,
Theorem 4.18 implies that f(A) is closed in Y . �

Corollary 4.27. If f : X → Y is a continuous injection of a compact space into a Hausdorff
one, then f is an embedding.

Example 4.28. Here is an example which shows the use of compactness. We will show that
there is no injective continuous map f : S1 → R.

Proof. Assume there is such a map. Since S1 is connected and compact, its image is a closed
interval [m,M ]; f becomes a continuous bijection f : S1 → [m,M ], hence a homeomorphism
(cf. the previous theorem). Then use the “removing a point trick”. �

Example 4.29. (back to the torus, Moebius band, etc) In the previous chapter we produced
several continuous injective maps without being able to give a simple proof of the fact that they
are embeddings: when embedding the abstract torus into Rn (Example 3.5 in subsection 2),
when realizing S1 as R/Z (Example 3.7), or in our examples of cones and suspensions discussed
in Example 3.15 (all the references are to the previous chapter). In all these cases, the previous
theorem and its corollary immediately complete the proofs.

For clarity, let’s now give a final overview of our discussions on the torus. First, in Chapter
1, Section 6, we introduced the torus intuitively, by gluing the opposite sides of a square. The
result was a subspace of R3 (or rather a shape). After the definition of topological spaces,
we learned that these subspaces of R3 are topological spaces on their own- endowed with the
induced topology. In the previous chapter, in section 2, we gave a precise meaning to the process
of gluing and introduced the abstract torus Tabs, endowed with the quotient topology. In the
same example we also produced one (of the many possible) continuous injections

f : Tabs → R3

whose image was one of the explicit models TR,r ⊂ R3 of the torus, described already in the
first chapter. Hence the previous corollary implies that f defines a homeomorphisms between
the abstract Tabs and the explicit model TR,r.

Exercise 4.8. Have a similar discussion for the Moebius band, Klein bottle, etc.

Exercise 4.9. Prove that the torus is homeomorphic to S1 × S1.
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2.5. Embeddings of compact manifolds.

Theorem 4.30. Any n-dimensional compact topological manifold can be embedded in RN , for
some integer N .

Proof. We use the Euclidean distance in Rn and we denote by Br and Br the resulting
open and closed balls of radius r centered at the origin. We choose a function

η : Rn → [0, 1] such that η|B1 = 1, η|Rn−B2 = 0.

For instance, we could choose

η(x) =
d(x,Rn −B2)

d(x,B1) + d(x,Rn −B2)
.

For a coordinate chart
χ : U → Rn

and any radius r > 0, we consider:

U(r) := χ−1(Br), U [r] = U(r) = χ−1(Br).

Since X is compact, we find a finite number of coordinate charts

χi : Ui → Rn, 1 ≤ i ≤ k,

such that {Ui(1) : 1 ≤ i ≤ k} cover X. For each i, consider η ◦ χi : Ui → [0, 1]; since it vanishes
on Ui − Ui(2), extending it to be 0 outside Ui will give us a continuous map

ηi : X → [0, 1].

Similarly, since the product ηi · χi : Ui → Rn vanishes on Ui − Ui(2), extending it by 0 gives us
continuous maps

χ̃i : X → Rn.

Finally, we define

f = (η1, . . . , ηk, χ̃1, . . . , χ̃k) : X → R(1+k)n.

It is continuous by construction hence, by Theorem 4.26, it suffices to show that f is injective.
Assume that f(x) = f(y) with x, y ∈ X. From the choice of the charts, we find i such that
x ∈ Ui(1). Then ηi(x) = 1. But f(x) = f(y) implies that ηi(y) = ηi(x) = 1. On one hand, this
implies that ηi(y) 6= 0, hence y must be inside Ui (even inside Ui(2)). But these imply

χ̃i(x) = ηi(x)χi(x) = χi(x)

and similarly for y. Finally, f(x) = f(y) also implies that χ̃i(x) = χ̃i(y). Hence x and y are in
the domain of χi and are send by χi into the same point. Hence x = y. �

Corollary 4.31. Any n-dimensional compact topological manifold is metrizable.



78 4. TOPOLOGICAL PROPERTIES

2.6. Sequential compactness. When one deals with sequences, one often sees statements
of type “we now consider a subsequence with this property”. Compactness is related to the
existence of convergent subsequences. In general, given a topological space (X,T ), one says
that X is sequentially compact if any sequence (xn)n≥1 of elements of X has a convergent
subsequence. Recall that a subsequence of (xn)n≥1 is a sequence (yk)k≥1 of type

yk = xnk
, with n1 < n2 < n3 < . . . .

However, we have already mentioned (and seen in various other cases) that topological properties
involving sequences usually require the axiom of first countability.

Theorem 4.32. Any first countable compact space is sequentially compact.

Proof. Let X be first countable and compact, and assume that (xn)n≥1 is an arbitrary
sequence in X. For each integer n ≥ 1 we put

Un = X − {xn, xn+1, . . .}.
Note that these define an increasing sequence of open subsets of X:

U1 ⊂ U2 ⊂ U3 ⊂ . . . .

We now claim that ∪nUn 6= X. If this is not the case, {Un : n ≥ 1} is an open cover of X hence
we find a finite set F such that {Ui : i ∈ F} covers X. Since our cover is increasing, we find
that Up = X where p = maxF , and this is clearly impossible. In conclusion, ∪nUn 6= X. Hence
there exists x ∈ X such that, for all n ≥ 1, x /∈ Un. Choose a countable basis of neighborhoods
of x

V1, V2, V3, . . . .

Since x /∈ U1, we have V ∩ {x1, x2, . . .} 6= ∅ for all neighborhoods V of x. Choosing V = V1, we
find n1 such that

xn1 ∈ V1.

Next, we use the fact that x /∈ Un for n = n1 + 1. This means that V ∩ {xn, xn+1, . . .} 6= ∅ for
all neighborhoods V of x. Choosing V = V2, we find n2 > n1 such that

xn2 ∈ V2.

We continue this process inductively (e.g. the next step uses x /∈ Un for n = n1 + n2 + 1) and
we find n1 < n2 < . . . such that

xnk
∈ Vk

for all k ≥ 1. Then (xnk
)k≥1 is a subsequence of (xn)n≥1 converging to x. �

Corollary 4.33. Any compact metrizable space is sequentially compact.

Actually, as we shall see in the next subsection, for metric spaces compactness is equivalent
to sequential compactness.
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3. Local compactness and the one-point compactification

3.1. Local compactness.

Definition 4.34. A topological space X is called locally compact if any point of X admits a
compact neighborhood.

We will be mainly interested in locally compact spaces which are Hausdorff.

Exercise 4.10. Prove that, in a locally compact Hausdorff space X, for each x ∈ X the
collection of all compact neighborhoods of x is a basis of neighborhoods of x (i.e. for any open
neighborhood U of x, there exists a compact neighborhood N of x such that N ⊂ U).

Example 4.35.

(1) Any compact Hausdorff space (X,T ) is locally compact Hausdorff.
(2) Rn is locally compact (use closed balls as compact neighborhoods).
(3) any open U ⊂ Rn is locally compact (use small enough closed balls). In general, any

open subset of a locally compact Hausdorff space is locally compact (use the previous
exercise).

(4) any closed A ⊂ Rn is locally compact. Indeed, for any a ∈ A, B[a, 1]∩A is a neighbor-
hood of a (in A) which is compact (use again that closed inside compact is compact).
Similarly, a closed subset of a locally compact Hausdorff space is locally compact.

(5) the interval (0, 1] is locally compact (combine the arguments from (2) and (3)).
(6) Q is not locally compact. To show this, assume that 0 has a compact neighborhood N .

Then (−ǫ, ǫ)∩Q ⊂ N , for some ǫ > 0. Passing to closures in R we find [−ǫ, ǫ] ⊂ N = N ,
where we used that N is compact (hence closed). This contradicts N ⊂ Q.

Locally compact Hausdorff spaces which are 2nd countable deserve special attention: they
include topological manifolds and, as we shall see later on, they are easier to handle. The most
basic property (to be used several times) is that they can be “exhausted” by compact spaces.

Definition 4.36. Let (X,T ) be a topological space. An exhaustion of X is a family {Kn :

n ∈ Z+} of compact subsets of X such that X = ∪nKn and Kn ⊂
◦
Kn+1 for all n.

Theorem 4.37. Any locally compact, Hausdorff, 2nd countable space admits an exhaustion.

Proof. Let B be a countable basis and consider V = {B ∈ B : B − compact}. Then V is
a basis: for any open U and x ∈ X we choose a compact neighborhood N inside U ; since B is
a basis, we find B ∈ B s.t. x ∈ B ⊂ N ; this implies B ⊂ N and then B must be compact;
hence we found B ∈ V s.t. x ∈ B ⊂ U . In conclusion, we may assume that we have a basis
V = {Vn : n ∈ Z+} where V n is compact for each n. We define the exhaustion {Kn} inductively,
as follows. We put K1 = V 1. Since V covers the compact K1, we find i1 such that

K1 ⊂ V1 ∪ V2 ∪ . . . ∪ Vi1 .

Denoting by D1 the right hand side of the inclusion above, we put

K2 = D1 = V 1 ∪ V 2 ∪ . . . ∪ V i1 .

This is compact because it is a finite union of compacts. Since D1 ⊂ K2 and D1 is open, we

must have D1 ⊂
◦
K2; since K1 ⊂ D1, we have K1 ⊂

◦
K2. Next, we choose i2 > i1 such that

K2 ⊂ V1 ∪ V2 ∪ . . . ∪ Vi2 ,

we denote by D2 the right hand side of this inclusion, and we put

K3 = D2 = V 1 ∪ V 2 ∪ . . . ∪ V i2 .
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As before, K3 is compact, its interior contains D2, hence also K2. Continuing this process, we
construct the family Kn, which clearly covers X. �

3.2. The one-point compactification. Intuitively, the idea of the one-point compactifi-
cation of a space is to “add a point at infinity” to achieve compactness.

Definition 4.38. Let (X,T ) be a topological space. A one-point compactification of X is a

compact Hausdorff space (X̃, T̃ ) together with an embedding i : X → X̃, with the property that

X̃ −X consists of one point only.

From the remarks above it follows that, if X admits a one-point compactification, then it must
be locally compact and Hausdorff. Conversely, we have:

Theorem 4.39. If X is a locally compact Hausdorff space, then

1. It admits a one-point compactification X+.
2. Any two one-point compactifications of X are homeomorphic.

Moreover, if X is 2nd countable, then so is X+.

Example 4.40.

(1) If X = (0, 1], then X+ is (homeomorphic to) [0, 1]. Indeed, X̃ = [0, 1] is compact, and
the inclusion i : (0, 1] → [0, 1] satisfies the properties from the previous proposition.

(2) If X = (0, 1), then X+ is (homeomorphic to) the circle S1. Indeed, i : (0, 1) → S1

as in Figure 3 (e.g. i(t) = (cos(2πt), sin(2πt)) has the properties from the previous
proposition.

 

0 1

i(t)

t infinity

Figure 3.

(3) If X = [−1, 0) ∪ (1, 2) ⊂ R, X+ is shown in Figure 4.

(4) If X =
◦
D

n

the one-point compactification is Sn.

Proof. (of Theorem 4.39) For the existence, choose a symbol ∞ /∈ X and consider

X+ = X ∪ {∞}.
Since X ⊂ X+, any subset of X is a subset of X+. We consider the family of subsets of X+:

T + = T ∪ T (∞), where T (∞) = {X+ −K : K ⊂ X,K − compact}.
We claim that T + is a topology on X+. First, we show that U ∩ V ∈ T + whenever U, V ∈ T +.
We have three cases. If U, V ∈ T , we know that U ∩V ∈ T . If U and V are both in T (∞), then
so is their intersection because union of two compacts is compact (show this!). Finally, if U ∈ T
and V = X+ −K ∈ T (∞), then U ∩ V = U ∩ (X −K) is open in X because V and X −K are.
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−1 1 2 −1 0 −1 0

infinity

0

the space X its compactification

Figure 4.

Next, we show that arbitrary union of sets from T + is in T +. This property holds for T , and
also for T (∞) since intersection of compacts is compact (why?). Hence it suffices to show that
U ∪V ∈ T + whenever U ∈ T , V ∈ T (∞). Writing V = X+ −K with K ⊂ X compact, we have

U ∪ V = X+ −K ′,

where K ′ = K ∩ (X −U). Since K −K ′ = K ∩U , K −K ′ is open in K, i.e. K ′ is closed in the
compact K, hence K ′ is compact (Proposition 4.17 again!). Hence U ∪ V ∈ T +.

We show that (X+,T +) is compact. Let U be an open cover of X+. Choose U = X+−K ∈ U
containing ∞ and let U ′ = {V ∩X : V ∈ U , V 6= U}. Then U ′ is an open cover of the compact
K in X+. Choosing V ⊂ U ′ finite which covers K, V ∪ {U} ⊂ U is finite and covers X+.

Next, we show that X+ is Hausdorff. So, let x, y ∈ X+ distinct, and we are looking for
U, V ∈ T + such that U ∩V = ∅, x ∈ U, y ∈ V . When x, y ∈ X, just use the Hausdorffness of X.
So, let’s assume y = ∞. Then choose a compact neighborhood K of x and we consider U ⊂ X
open such that x ∈ U ⊂ K. Then x ∈ U , ∞ ∈ X −K and U ∩ (X+ −K) = ∅.

Next, we show that the inclusion i : X → X+ is an embedding, i.e. that T +|X = T . Now,

T +|X = T ∪ {U ∩X : U ∈ T (∞)}
(just apply the definition!), and just remark that, for U = X+−K ∈ T (∞), U∩X = X−K ∈ T .

This concludes the proof of 1. For 2, let X̃ be another one-point compactification and we
prove that it is homeomorphic to X. Choose y∞ ∈ X̃ such that X̃ = i(X) ∪ {y∞} and define

f : X̃ → X+, f(y) =

{
x if y = i(x) ∈ i(X)
∞ if y = y∞

Since f is bijective, X̃ is compact and X+ is Hausdorff, it suffices to show that f is continuous
(Theorem 4.26). Let U ∈ T +; we prove f−1(U) ∈ T̃ . If U ∈ T , then f−1(U) ⊂ i(X) and then

f−1(U) = {y = i(x) : f(y) ∈ U} = {i(x) : x ∈ U} = i(U)

is open in i(X) since i is an embedding. But, since X̃ is Hausdorff, i(X) = X̃ − {y∞} is open

in X̃ , hence so is f−1(U). The other case is when U = X+ −K with K ⊂ X compact. Then

f−1(U) = f−1(y∞) ∪ f−1(X −K) = {∞} ∪ (i(X) − i(K)) = X+ − i(K)

is again open in X+ (i(K) is compact as the image of a compact by a continuous function).
Finally, we prove the last part of the theorem. Let {Kn : n ∈ Z+} be an exhaustion of X, B

a countable basis of X and we claim that the following is a basis of X+:

B+ := B ∪ B(∞), where B(∞) = {X+ −Kn : n ∈ Z+}.
To show: for any U ∈ T + and any x ∈ U , there exists B ∈ B+ such that x ∈ B ⊂ U . If U ∈ T ,
just use that B is a basis. Similarly, if U = X+−K ∈ T (∞), the interesting case is when x = ∞.
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Then we look for B = X −Kn such that B ⊂ U (i.e. K ⊂ Kn). But {
◦
Kn} is an open cover of

X, hence also of K; since K is compact and Kn ⊂ Kn+1, we find n such that K ⊂
◦
Kn. �
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4. More exercises

4.1. Connectedness.

Exercise 4.11. In Exercise 1.4 you showed that four of the spaces in the picture are home-
omorphic to each other, but they did not seem to be homeomorphic to the fifth one. You now
have the tool to prove the last assertion (so do it!).

Exercise 4.12. Prove that the following spaces are not homeomorphic:

(1) S1 and [0, 1).
(2) [0, 1) and R.
(3) S1 and S2.
(4) S1 and a bouquet of two circles (the space from Figure 5).

Exercise 4.13. Show that there exists a real number r ∈ (2, 3) such that

r7 − 2r4 − r2 − 2r = 2011.

Exercise 4.14. Show that any continuous fuction f : [0, 1] → [0, 1] admits at least one fixed
point (i.e. there exists t ∈ [0, 1] such that f(t) = t).

(Hint: g(t) = f(t) − t positive or negative?)

Exercise 4.15. Assuming that the temperature on the surface of the earth is a continuous
function, prove that, at any moment in time, on any great circle of the earth, there are two
antipodal points with the same temperature.

Exercise 4.16. Assuming that you know that S1 × (0, 1) is not homeomorphic to R2, show
that the sphere S2 is not homeomorphic to the space obtained from S2 by gluing two antipodal
points.

Exercise 4.17. Is (R,Tl) from Exercise 2.19 connected? But [0, 1) with the induced topology?
But (0, 1]?

Exercise 4.18. Recall that by a circle we mean any topological space which is homeomorphic
to S1, and by a circle embedded in a topological space X we mean any subset A ⊂ X which,
when endowed with the induced topology, is a circle. Similarly, by a bouquet of two circles
we mean any space which is homeomorphic to the space drawn in Figure 5, and we talk about
embedded bouquets of circles. Let T be a a torus.

Figure 5.

(1) Describe a circle C embedded in T such that the complement of T − C is connected.
(2) Describe a bouquet of two circle B embedded in T such that T −B is connected.

Exercise 4.19. Show that the group GLn(R) of n×n invertible matrices with real coefficients
(see Exercise 2.33) is not connected.
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Exercise 4.20. Show that any two of the three spaces drawn in Figure 6 are not homeomor-
phic.

Figure 6.

Exercise 4.21. Prove that if X ⊂ Rn is connected then its closure is also connected but its
interior may fail to be connected.

Exercise 4.22. Show that the cone of any space is connected.

Exercise 4.23. For a topological space (X,T ), show that the following are equivalent:

(1) X is connected.
(2) ∅ and X are the only subsets of X which are both open and closed.
(3) the only continuous functions f : X → {0, 1} are the constant ones (where {0, 1} is

endowed with the discrete topology).

Exercise 4.24. Prove that if X and Y are homeomorphic, then they have the same number
of connected components.

4.2. Compactness.

Exercise 4.25. Assume that X is a topological space and (xn)n≥1 is a sequence in X,
convergent to x ∈ X. Show that

A = {x, x1, x2, x3, . . .}
is compact.

Exercise 4.26. Let Tl be the topology from Exercise 2.19. With the topology induced from
(R,Tl) is [0, 1) compact? But [0, 1]?

Exercise 4.27. Let (X,T ) be a Hausdorff space, A,B ⊂ X. If A and B are compact, show
that A ∩B is compact. Is the Hausdorffness assumption on X essential?

Exercise 4.28. Let X be a topological space and A,B ⊂ X. If A and B are compact, show
that A ∪B is compact.

Exercise 4.29. Given a set X, when is (X,Tcf) compact?

Exercise 4.30. Show that the sequence xn = 2011sin(5n) (in R with the Euclidean topology)
has a convergent subsequence.

Exercise 4.31. Recall that the graph of a function f : R → R is

Gr(f) = {(x, f(x)) : x ∈ R} ⊂ R2.

If f is bounded, show that f is continuous if and only if Gr(f) is closed in R2. What if f is not
bounded.

(hint: for the first part, use sequences; for the last part: 1/x).



4. MORE EXERCISES 85

Exercise 4.32. Find a topological space (X,T ) which is compact but is not Hausdorff. In
the example that you found, exhibit a compact set A ⊂ X such that A is not closed.

Exercise 4.33. Find an example which shows that the Tube Lemma fails if Y is not compact.

Exercise 4.34. Let (X,T ) be a second countable topological space. Show that X is compact
if and only if for any decreasing sequence of nonempty closed subsets

. . . ⊂ F3 ⊂ F2 ⊂ F1 ⊂ X,

one has ∩∞
n=1Fn 6= ∅.

(Hint: restate the property in terms of opens; then try to use Exercise 2.63).

Exercise 4.35. If X is a Hausdorff space, and A ⊂ X is compact, show that the quotient
X/A (obtained from X by collapsing A to a point) is Hausdorff.

Exercise 4.36. Show that P2 can be embedded in R4 (see Exercise 1.26 in the first chapter).
Then do again Exercise 3.3 from Chapter 3.

Exercise 4.37. Show that the cone and the suspension of any compact topological space are
compact.

Exercise 4.38. If X is connected and compact and f : X → R is continuous, show that
f(X) = [m,M ] for some m,M ∈ R.

Exercise 4.39.

(i) Is it true that any continuous surjective map f : S1 → S1 is a homeomorphism?
(ii) Show that S1 cannot be embedded in R.
(iii) Show that any continuous injective map f : S1 → S1 is a homeomorphism.

4.3. Local compactness and the one-point compactification.

Exercise 4.40. What is the one-point compactification of X = (0, 1) ∪ (2, 3)?

Exercise 4.41. What is the one-point compactification of R2?

Exercise 4.42. Show that the following subspace of R2 is locally compact and find its one-
point compactification:

X = S1 ∪ ((0, 2) × {0}) ⊂ R2.

Exercise 4.43. Show that, for any circle C embedded in the Klein bottle K, K−C is locally
compact. Then describe such a circle C such that (K − C)+ is homeomorphic to P2.

Exercise 4.44. Show that there exists a Hausdorff space X and an embedded circle C in X,
such that the one-point compactification of X − C is homeomorphic to X.

Exercise 4.45. Consider

X = [0, 1] × [0, 1)

with the topology induced from R2. Prove that X is a locally compact Hausdorff space and
describe its one-point compactification (use a picture). What happens if we replace X by
Y = X ∪ {(1, 1)}?

Exercise 4.46. For any continuous map f : S1 → T 2 we define

Xf := T 2 − f(S1).

(i) Is it true that, for any continuous function f , Xf is compact? But locally compact?
But metrizable? But connected?
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(ii) Describe two embeddings f1, f2 : S1 → T 2 such that Xf1 and Xf2 are not homeomor-
phic.

(iii) Describe the one-point compactifications X+
f1

and X+
f2

.

(iv) Describe f : S1 → T 2 continuous such that X+
f is homeomorphic to S2.

Exercise 4.47. Describe an embedding of the cylinder S1× [0, 1] into the space X, show that
its complement is locally compact, and find the one-point compactification of the complement,
in each of the cases:

(i) X is a torus.
(ii) X is the plane R2.

Exercise 4.48. Let X be a connected, locally compact, Hausdorff space. Show that X is
compact if and only if X+ is not connected.

Exercise 4.49. Let X be a Hausdorff compact space and A ⊂ X be a closed subset. Show
that

(1) X −A is locally compact.
(2) X/A is compact and Hausdorff.
(3) X/A is (homeomorphic to) the one-point compactification of X −A.
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1. Some axioms for sets of functions

The theory of “partitions of unity” is the most important tool that allows one to pass “from
local to global”. As such, it is widely used in many fields of mathematics, most notably in many
branches of Geometry and Analysis. The word “unity” stands for the constant function equal
to 1, on some given space X. A “partition of unity” is a decomposition

∑

i

ηi = 1

of the constant function into a sum of continuous functions ηi. One is interested in such partitions
of unity with the extra-requirement that each ηi is “concentrated in a given (usually very small)
open Ui”. The Ui’s form a (given) open cover of X and one is interested in the existence of
partitions of unity “subordinated” to the cover.

Let us also mention that, when it comes to applications to Geometry and Analysis, one deals
with topological spaces that have extra-structure and the “partitions of unity” are required to
be more than continuous (in most cases one can talk about differentiable functions, and the
partitions are required to be so). Ironically, the existence of such “special” partitions of unity is
easier to establish than the existence of the continuous partitions for general topological spaces.
To include such applications, we will include in our discussion a given set A of continuous
functions. To specify the axioms for A, we consider the space of continuous functions on X:

C(X) = C(X,R) = {f : X → R : f is continuous}.
We use some of the structure present on C(X). First, we can take sums of continuous functions:

(f + g)(x) = f(x) + g(x).

Secondly, we can take quotients f/g, whenever g is nowhere vanishing:

f

g
(x) :=

f(x)

g(x)
,

Definition 5.1. Given a topological space X, we say that a subset A ⊂ C(X):

• is closed under finite sums if f + g ∈ A whenever f, g ∈ A.
• is closed under quotients if f/g ∈ A whenever f, g ∈ A and g is nowhere vanishing.

There are more operations that we can perform on C(X)- multiplication by real numbers, or
multiplication of continuous functions; in examples, A is usually closed under all these opera-
tions. However, the most important condition on A is the following topological one:

Definition 5.2. Given a topological space X and A ⊂ C(X), we say that A is normal if for
any two closed disjoint subsets A,B ⊂ X, there exists f : X → [0, 1] which belongs to A and
such that f |A = 0, f |B = 1.

As we remarked in Section 6 of Chapter 2, the existence of such continuous functions implies
that X must be normal: any two closed disjoint subsets A,B ⊂ X can be separated topologically.
In what follows we will repeatedly make use of the following:

Lemma 5.3. In a normal space X, if A ⊂ U ⊂ X with A-closed and U -open in X, then there
exists an open V in X such that A ⊂ V ⊂ V ⊂ U .

Proof. Since A ⊂ U , A and X −U are disjoint. They are both closed, hence we know that
we can find disjoint opens W and V such that A ⊂ V , X − U ⊂W . The condition V ∩W = ∅
is equivalent to V ⊂ X −W . Since X −W is a closed containing V , this implies V ⊂ X −W .
On the other hand, X −U ⊂W can be re-written as X −W ⊂ U . Hence V ⊂ X −W ⊂ U . �
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2. Finite partitions of unity

In this section we give a precise meaning to the statement that a continuous function η : X → R

is “concentrated” in an open U ⊂ X. We will use the notation:

{f 6= 0} := {x ∈ X : f(x) 6= 0}.
Definition 5.4. Given a topological space X and η : X → R, define the support of η as

supp(η) := {f 6= 0} ⊂ X.

We say that η is supported in an open U if supp(η) ⊂ U .

It is important that the support is defined as the closure of {f 6= 0}. This condition allows us
to perform “globalization”, as the following exercise indicates.

Exercise 5.1. Let (X,T ) be a topological space, U ⊂ X open and η ∈ C(X) supported in
U . Then, for any continuous map g : U → R,

(η · g) : X → R, (η · g)(x) =

{
η(x)g(x) if x ∈ U
0 if x /∈ U

.

is continuous. Show that this statement fails if we only assume that {f 6= 0} ⊂ U .

Next we discuss finite partitions of unity.

Definition 5.5. Let X be a topological space, U = {U1, . . . , Un} a finite open cover of X. A
partition of unity subordinated to U is a family of functions ηi : X → [0, 1] satisfying:

η1 + . . . + ηn = 1, supp(ηi) ⊂ Ui.

Given A ⊂ C(X), we say that {ηi} is an A-partition of unity if ηi ∈ A for all i.

Exercise 5.2. Show that, given A ⊂ C(X), the following are equivalent:

1. any 2-open cover U = {U1, U2} admits an A-partition of unity subordinated to it.
2. A separates the closed subsets of X.

Theorem 5.6. Let X be a topological space and assume that A ⊂ C(X) is normal and closed
under finite sums and quotients.

Then, for any finite open cover U , there exists an A-partition of unity subordinated to U .

Proof. The main topological ingredient in the proof is the following “shrinking lemma’.’

Lemma 5.7. (the finite shrinking lemma) For any finite open covering U = {Ui : 1 ≤ i ≤ n}
of a normal space X, there exists a covering V = {Vi : 1 ≤ i ≤ n} such that

V i ⊂ Ui, ∀ i = 1, . . . , n.

Proof. Let
A = X − (U2 ∪ . . . ∪ Un),D = U1.

Then A is closed, D is open, and A ⊂ D. By Lemma 5.3 from the end of Chapter 2, we find V1

open such that
A ⊂ V1 ⊂ V 1 ⊂ D(= U1).

This means that
{V1, U2, . . . , Un}

is a new open cover of X with V 1 ⊂ U1. In other words, we have managed to “refine U1”.
Applying the same argument to this new cover (to refine U2), we find a new open cover

{V1, V2, U3, . . . , Un}
with V 1 ⊂ U1, V 2 ⊂ U2. Continuing this argument, we obtain the desired open cover V. �
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We now prove the theorem. Let U = {Ui} be the given finite open cover. Apply the previous
lemma twice and choose open covers V = {Vi}, W = {Wi}, with V i ⊂ Ui, W i ⊂ Vi. For
each i, we use the separation property of A for the disjoint closed sets (W i,X − Vi). We find
fi : X → [0, 1] that belongs to A, with fi = 1 on W i and fi = 0 outside Vi. Note that

f := f1 + . . .+ fn

is nowhere zero. Indeed, if f(x) = 0, we must have fi(x) = 0 for all i, hence, for all i, x /∈ Wi.
But this contradicts the fact that W is a cover of X. From the properties of A, each

ηi :=
fi

f1 + . . . + fn
: X → [0, 1]

is continuous. Clearly, their sum is 1. Finally, supp(ηi) ⊂ Ui because V i ⊂ Ui and{x : ηi(x) 6=
0} = {x : fi(x) 6= 0} ⊂ Vi. �

3. Arbitrary partitions of unity

For arbitrary partitions of unity one has to deal with infinite sums
∑

i fi of continuous functions
on X (indexed by some infinite set I). In such cases it is natural to require that, for each x ∈ X,
the sum

∑

i fi(x) is finite (i.e. fi(x) = 0 for all but a finite number of i’s). Although the sum is
then well defined as a function on X, to retain continuity, a slightly stronger notion is needed.

Definition 5.8. Let (X,T ) be a topological space and let S = {Si} be a family of subsets of
X. We say that S is locally finite (in the space X) if for any x ∈ X, there exists a neighborhood
Vx of x such that Vx intersects only finitely many subsets that belong to S.

Example 5.9. The collection S = {(0, 1/n) : n ∈ Z} is locally finite in (0, 1), but not in R.

Definition 5.10. Given a topological space X, a family {g̃i : i ∈ I} of continuous functions
g̃i : X → R is called a locally finite family of continuous functions if {suppX(g̃i) : i ∈ I} is
locally finite.

Exercise 5.3. Show that if {g̃i : i ∈ I} is a locally finite family of continuous functions, then

X ∋ x 7→
∑

i

g̃i(x)

gives a well-defined continuous function
∑

i gi : X → R.

Definition 5.11. Given a topological space X and A ⊂ C(X), we say that A is closed under
locally finite sums if for any locally finite family {g̃i : i ∈ I} of functions from A,

∑
fi ∈ A.

Definition 5.12. Let X be a topological space, U = {Ui : i ∈ I} an open cover of X.
A partition of unity subordinated to U is a locally finite family of functions ηi : X → [0, 1]
satisfying:

∑

i

ηi = 1, supp(ηi) ⊂ Ui.

Given A ⊂ C(X), we say that {ηi} is an A-partition of unity if ηi ∈ A for all i.

The existence of partitions of unity (for arbitrary covers) forces X to have a special topological
property, called “paracompactness”, which we discuss next. As in the case of compactness,
paracompactness is best characterized in terms of open covers.

Definition 5.13. Let X be a topological space and let A be a cover of X. A refinement of A
is any other cover B with the property that any B ∈ B is contained in some A ∈ A.

Example 5.14. For X = R and A = {(0, ǫ) : ǫ ∈ (0, 1)}, B = {(0, 1/n) : n ∈ Z+}, B is
subcover (hence also a refinement) of A but, at the same time, A is a refinement of B.



3. ARBITRARY PARTITIONS OF UNITY 91

As a motivation for the next definition, note that if {ηi} is a partition of unity subordinated
to U , then {ηi 6= 0} is an open refinement of U (which still covers X!), which is locally finite.

Definition 5.15. A topological space X is called paracompact if any open cover admits a
locally finite refinement.

Example 5.16. Compact spaces are paracompact (use again that any subcover is a refine-
ment). As we will prove in the next section, any locally compact, Hausdorff, 2nd countable space
(hence also any topological manifold) is paracompact. One can also show that all metric spaces
are paracompact. Hence paracompactness is shared by the most important classes of spaces.

As in the previous subsection, for partitions of unity, we will need a “shrinking lemma”.

Lemma 5.17. (shrinking lemma) If X is a paracompact Hausdorff space then X is normal
and, for any open cover U = {Ui : i ∈ I} there exists a locally finite open cover V = {Vi : i ∈ I}
with the property that V i ⊂ Ui for all i ∈ I.

Proof. We first show that X is normal. The proof is very similar to the compact case, i.e.
the proof of Proposition 4.19. We use the same idea and the same notations. We see that it
suffices to show that, for Y,Z ⊂ X, if Z is closed and Y |{z} for all z ∈ Z, then Y |Z. To prove
this, we first make a general remark: the condition Y |Z is implies (and it is actually equivalent
to) the existence of an open neighborhood V of Z such that Y ∩ V = ∅. Indeed, if U ∩ V = ∅
for some open neighborhoods U of Y and V of Z, then V ⊂ X −U where the last set is closed,
hence V ⊂ X − U , hence V ∩ U 6= ∅; since Y ⊂ U , we must have V ∩ Y = ∅ (for the converse,
just take U = X − V ).

Hence we assume now that Y |{z} for all z ∈ Z and we prove Y |Z. For each z ∈ Z choose
an open neighborhood Vz such that Y ∩ V z = ∅. Then {Vz : z ∈ Z} ∪ {X − Z} is an open
cover of X. Let U be a locally finite refinement and let W = {Wi : i ∈ I} consisting of those
members of U which intersect Z. Define V = ∪iWi. This is an open neighborhood of Z. Note
that Y ∩W i = ∅ for all i (since each Wi is inside some Vz and Y ∩ V z = ∅ by construction).
Also, due to local finiteness (and Exercise 2.53),

V = ∪iW i.

Hence V ∩ Y = ∅, proving that Y |Z. In conclusion X must be normal.
We now prove the second part. Consider A := {V ⊂ X open : V ⊂ Ui for some i ∈ I}. Since

X is normal, Lemma 5.3 implies that A is an open cover of X. Let B = {Bj : j ∈ J} be a locally
finite refinement of A which is an open cover of X. Then, for each j ∈ I, we find an element
f(j) ∈ I such that Bj ⊂ Uf(j) (and this defines a function f : J → I). We define

Vi := ∪j∈f−1(i)Bj

(by convention, this is empty if f−1(i) is empty). Using Exercise 2.53, we have V i ⊂ Ui for all
i. Finally, remark that {Vi} is locally finite: if a neighborhood of a point intersects Vi then it
intersects Bj for some j ∈ f−1(i), hence it intersects an infinite number of Vi’s, then it would
also intersect an infinite number of Bj ’s. �

Theorem 5.18. Let X be a paracompact Hausdorff space and assume that A ⊂ C(X) is
normal, closed under locally finite sums and closed under quotients.

Then, for any open cover U of X, there exists an A-partition of unity subordinated to U .

Proof. The proof is completely similar to the proof from the finite case. Apply the shrinking
lemma twice to find coverings {Vi} and {Wi} with V i ⊂ Ui, W i ⊂ Vi. Then choose φi : X → [0, 1]
such that φi = 1 on W i and 0 on X − Vi, with φi ∈ A. Finally, since our families are locally
finite, ηi = φi/

∑

j φj makes sense and is our desired partition of unity (fill in the details!). �
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4. The locally compact case

The locally compact Hausdorff case is nicer. First of all the condition on A ⊂ C(X) to separate
the closed subsets of X (which may be difficult to prove!) can be reduced to a local condition.

Theorem 5.19. Let X be a Hausdorff paracompact space and A ⊂ C(X) closed under locally
finite sums and under quotients. If X is also locally compact, then the following are equivalent:

1. A is normal.
2. ∀ (x ∈ U ⊂ X with U open), ∃ (f ∈ A positive, supported in U , with f(x) > 0 ).

Secondly, 2nd countability and local compactness imply paracompactness:

Theorem 5.20. Any Hausdorff, locally compact and 2nd countable space is paracompact.

Proof. (of Theorem 5.20) We use an exhaustion {Kn} of X (Theorem 4.37). Let U be an
open cover of X. For each n ∈ Z+ there is a finite family Vn which covers Kn − Int(Kn−1),
consisting of opens V with the properties: V ⊂ Int(Kn+1) − Kn−1, V ⊂ U for some U ∈ U .
Indeed, for any x ∈ Kn − Int(Kn−1) let Vx be the intersection of Int(Kn+1) − Kn−1 with any
member of U containing x; since Kn − Int(Kn−1) is compact, just take a finite subcollection
Vn of {Vx}, covering Kn − Int(Kn−1). Set V = ∪nVn; it covers X since each Kn − Kn−1 ⊂
Kn − Int(Kn−1) is covered by Vn. Finally, it is locally finite: if x ∈ X, choosing n and V such
that V ∈ Vn, x ∈ V , we have V ⊂ Int(Kn+1) − Kn−1, hence V can only intersect members of
Vm with m ≤ n+ 1 (a finite number of them!). �

Proof. (of Theorem 5.19) That 1 implies 2 is clear: apply the separation property to {x}
and X − V . Assume 2. We claim that for any C ⊂ X compact and any open U such that
C ⊂ U , there exists f ∈ A supported in U , such that f |C > 0. Indeed, by hypothesis, for any
c ∈ C we can find an open neighborhood Vc of c and fc ∈ A positive such that fc(c) > 0; then
{fc 6= 0}c∈C is an open cover of C in X, hence we can find a finite subcollection (corresponding
to some points c1, . . . , ck ∈ C) which still covers C; finally, set f = fc1 + . . .+ fck

.
To prove 1, let A,B ⊂ X be two closed disjoint subsets. As terminology, D ⊂ X is called

relatively compact if D is compact. Since X is locally compact, any point has arbitrarily
small relatively compact open neighborhoods (why?). For each y ∈ X − A, we choose such a
neighborhood Dy ⊂ X −A. For each a ∈ A, since a ∈ X −B, by Lemma 5.17 and Lemma 5.3,

we find an open Da such that a ∈ Da ⊂ X − B. Again, we may assume that Da is relatively
compact. Then {Dx : x ∈ X} is an open cover of X; let U = {Ui : i ∈ I} be a locally finite
refinement. We split the set of indices as I = I1 ∪ I2, where I1 contains those i for which
Ui ∩ A 6= ∅, while I2 those for which Ui ⊂ X − A. Using Lemma 5.17 we also choose an open
cover of X, V = {Vi : i ∈ I}, with V i ⊂ Ui. Note that, by construction, each Ui (hence also each
Vi) is relatively compact. Hence, by the claim above, we can find ηi ∈ A such that

ηi|V i
> 0, supp(ηi) ⊂ Ui.

Finally, we define

f(x) =

∑

i∈I1
ηi(x)

∑

i∈I ηi(x)

From the properties of A, f ∈ A. Also, f |A = 1. Indeed, for a ∈ A, a cannot belong to the Ui’s
with i ∈ I2 (i.e. those ⊂ X−A); hence ηi(a) = 0 for all i ∈ I2, hence f(a) = 1. Finally, f |B = 0.
To see this, we show that ηi(b) = 0 for all i ∈ I1, b ∈ B. Assume the contrary. We find i ∈ I1
and b ∈ B ∩ Ui. Now, from the construction of U , Ui ⊂ Dx for some x ∈ X. There are two
cases. If x = a ∈ A, then the defining property for Da, namely Da ∩ B = ∅, is in contradiction
with our assumption (b ∈ B ∩ Ui). If x = y ∈ X − A, then the defining property for Dy, i.e.
Dy ⊂ X −A, is in contradiction with the fact that i ∈ I1 (i.e. Ui ∩A 6= ∅). �
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5. Urysohn’s lemma

This section is devoted to the proof of what is known as “the Urysohn lemma”:

Theorem 5.21. If X is a normal space then for any two closed disjoint subsets A,B ⊂ X,
there exists a continuous function f : X → [0, 1] such that f |A = 0, f |B = 1.

In other words, if X is normal, then C(X) is normal. Hence one can construct continuous
partitions of unity.

Corollary 5.22. If X is Hausdorff and paracompact then, for any open cover U of X, there
exists a continuous partition of unity subordinated to U .

We start with the proof. Fix A and B disjoint closed subsets. From now on, when saying
that “A is closed” or “D is open”, we mean that they are closed (open) in the given topological
space (X,T ). We will repeatedly use Lemma 5.3 from this chapter.

Claim 1: Then there is a family of opens sets {Uq : q ∈ Q} such that

(C1) Uq = ∅ for q < 0, U0 contains A, U1 = X −B, Uq = X for q > 1.

(C2) U q ⊂ Uq′ for all q < q′.

Proof. The condition (C1) force the definition of Uq for q < 0 and for q ≥ 1. For q = 0,
we choose U0 to be any open set such that

A ⊂ U0 ⊂ U0 ⊂ U1.

This is possible since A ∩B = ∅ means that A ⊂ X −B = U1 hence we can apply Lemma 5.3.
We are left with the construction of Uq for q ∈ Q ∩ (0, 1). Writing

Q ∩ [0, 1] = {q0, q1, q2, . . .},
with q0 = 0, q1 = 1, we will define Uqn by induction on n such that (C2) holds for all q = qi,
q′ = qj with 0 ≤ i, j ≤ n. Assume that Uq is constructed for q ∈ {q0, . . . , qn} and we construct
it for q = qn+1. Looking at all intervals of type (qi, qj) with 0 ≤ i, j ≤ n, there is a smallest one
containing qn+1. Call it (qa, qb). Since qa < qb, by the induction hypothesis we have

Ua ⊂ Ub

hence, by Lemma 5.3, we find an open U such that

Ua ⊂ U ⊂ U ⊂ Ub.

Define Uqn+1 = U . We have to check that (C2) holds for q, q′ ∈ {q0, . . . , qn+1}. Fix q, q′. If

q 6= qn+1 and q′ 6= qn+1, U q ⊂ Uq′ holds by the induction hypothesis. Hence we may assume
that q = qn+1 or q′ = qn+1. We treat the case q = qn+1, the other one being similar. Write
q′ = qj with j ∈ {0, 1, . . . , n}. The assumption is that qn+1 < qj and we want to show that

U qn+1 ⊂ Uqj
.

But, since qn+1 < qj and (qa, qb) is the smallest interval of this type containing qn+1, we must
have qj ≥ qb. But then

U qn+1 = U ⊂ Uqb
⊂ Uqj

.

�

Claim 2: The function f : X → [0, 1], f(x) = inf{q ∈ Q : x ∈ Uq} satisfies:

(1) f(x) > q =⇒ x /∈ U q.
(2) f(x) < q =⇒ x ∈ Uq.

(in particular, f(x) = q for x ∈ ∂Uq).
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Proof. For (1), we prove its negation, i.e. that x ∈ U q implies f(x) ≤ q. Hence assume

that x ∈ U q. From (C2) we deduce that x ∈ Uq′ for all q′ > q. Hence f(x) ≤ q′ for all q′ > q.
This implies f(x) ≤ q. For (2), we assume that f(x) < q. By the definition of f(x) (as an
infimum), there exists q′ < q such that x ∈ Uq′ . But q′ < q implies Uq′ ⊂ Uq, hence x ∈ Uq. �

Claim 3: f |A = 0, f |B = 1, and f is continuous.

Proof. The first two conditions are immediate from the definition of f and properties (C1)
of the first claim. We now prove that f is continuous. We have to prove that for any open
interval (a, b) in R, and any x ∈ f−1((a, b)), there exists an open U containing x such that
f(U) ⊂ (a, b). Fix (a, b) and x such that f(x) ∈ (a, b) and look for U satisfying the desired
condition. Choosing p, q ∈ Q such that

a < p < f(x) < q < b,

then U := Uq − Up will do the job. Indeed:

(1) using Claim 2, f(x) > p implies x /∈ Up, while f(x) < q implies x ∈ Uq. Hence x ∈ U .
(2) for y ∈ U arbitrary, we have f(y) ∈ (a, b) because:

• y ∈ Uq ⊂ U q which, by the previous claim, implies f(y) ≤ q < b.

• y /∈ Up, hence y /∈ Up which, by the previous claim, implies f(y) ≥ p > a.

�
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6. More exercises

Exercise 5.4. Let A be the following collection of subsets of R:

A = {(n, n + 2) : n ∈ Z}.
Which of the following collections refine A?

B = {(x, x+ 1) : x ∈ R},

C = {(n, n+
3

2
) : n ∈ Z},

C = {(x, x+
3

2
) : x ∈ R}.

Exercise 5.5. Which of the collections from the previous exercise is locally finite?

Exercise 5.6. Show that if a family {pi : i ∈ I} of non-zero polynomial functions pi : R → R

is locally finite, then it must be finite.

Exercise 5.7. Let P ⊂ C(R) be the space of all polynomial functions on R. Is P normal?

Exercise 5.8. Show that the space C1(R) ⊂ C(R) of functions of class C1 is normal. What
do you conclude from this?

Exercise 5.9. Do the same for the space C∞(R) of smooth (i.e. infinitely differentiable)
functions on R.

Exercise 5.10. Now do the same for C∞(Rn).

It is very tempting now to talk about smooth manifolds. These are manifolds on which we can
talk about smoothness. More precisely, a smooth manifold is a topological manifold X together
with a specified family of coordinate charts {χi : Ui → Rn}, such that {Ui} is an open cover of
X, ci,j := χi ◦ χ−1

j is a smooth function. Here, ci,j plays the role of the “change of coordinates”
since

χi(x) = ci,j(χj(x)).

Also, ci,j is a function defined on an open in Rn (namely χj(Ui∩Uj)) with values in Rn; hence it
makes sense to talk about its smoothness. Given such a smooth manifold, a function f : X → R

is called smooth if its representation in each chart, i.e. each f ◦χ−1
i : Rn → R is smooth. Denote

by C∞(X) the space of smooth functions on X; of course, C∞(X) ⊂ C(X). Once you get used
to all these definitions, the following should not be too difficult now:

Exercise 5.11. Show that, for any smooth manifold X, C∞(X) is normal. Deduce that any
open cover admits a smooth partition of unity subordinated to it.

In this context, a map f : X → RN is called smooth if all its components are smooth.
Adapting the proof of Theorem 4.30 and using Exercise 5.10 above, one can now try a more
difficult exercise:

Exercise 5.12. Show that, for any smooth compact manifold X, there exists a smooth
embedding f : X → RN , for N large enough.

Exercise 5.13. Let X and Y be two topological spaces and assume that Y is normal. Show
that a function

f : X → Y

is continous if and only if, for each continuous function φ : Y → R, the function φ ◦ f : X → R

is continuous.
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Exercise 5.14. Let (X,T ) be a topological space. Denote by C(X) the space of all continuous
functions f : X → R. For f ∈ C(X) we define

V (f) := {x ∈ X : f(x) 6= 0}.
Show that:

(1) The collection B := {V (f) : f ∈ C(X)} is a topology basis on X.
(2) If X is normal, then T = T (B).
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1. Completeness and the Baire property

Probably the most important metric property is that of completeness which we now recall.

Definition 6.1. Given a metric space (X, d) and a sequence (xn)n≥1 in X, we say that
(xn)n≥1 is a Cauchy sequence if

lim
n,m→∞

d(xn, xm) = 0,

i.e., for each ǫ > 0, there exists an integer nǫ such that

d(xn, xm) < ǫ

for all n,m ≥ nǫ. One says that (X, d) is complete if any Cauchy sequence is convergent.

Very simple examples (see e.g Exercise 1.38 from the first chapter) show that completeness is
not a topological property. However, it does have topological consequences. The first one is a
relative topological property for complete spaces.

Proposition 6.2. If (X, d) is a complete metric space then A ⊂ X is complete (with respect
to the restriction of d to A) if and only if A is closed in X.

Proof. Assume first that A is complete and show that A = A. Let x ∈ A. Then we
find a sequence (an) in A converging (in (X, d)) to x. In particular, (an) is Cauchy. But the
completeness of A implies that the sequence is convergent (in A!) to some a ∈ A. Hence
x = a ∈ A. This proves that A is closed. For the converse, assume A is closed and let (an) be
a Cauchy sequence in A. Of course, the sequence is Cauchy also in X. Since X is complete, it
will be convergent to some x ∈ X. Since A is closed, x ∈ A, i.e. (an) is convergent in A. �

The next topological property that complete metric spaces automatically have is:

Proposition 6.3. Any complete metric space (X, d) has the Baire property, i.e. for any
countable family {Un}n≥1 consisting of open sets Un ⊂ X, if Un is dense in X for all n, then
∩nUn is dense in X.

Proof. Assume now that {Un}n≥1 consists of open dense subsets of X. We show that any
x ∈ X is in the closure of ∩nUn. Let U be an open containing x; we have to show that U
intersects ∩nUn. First, since U1 is dense in X, U ∩ U1 6= ∅; choosing x1 in this intersection,
we find r1 > 0 such that B[x1, r1] ⊂ U ∩ U1. We may assume r1 < 1. Next, since U2 is
dense in X, B(x1, r1) ∩ U2 6= ∅; choosing x2 in this intersection, we find r2 > 0 such that
B[x2, r2] ⊂ B(x1, r1) ∩ U2. We may assume r2 < 1/2. Similarly, we find x3 and r3 < 1/3 such
that B[x3, r3] ⊂ B(x2, r2)∩U3 and we continue inductively. Then the resulting sequence (xn) is
Cauchy because d(xn, xm) < rn for n ≤ m. This implies that (xn) is convergent to some y ∈ X
and d(xn, y) ≤ rn for all n. Hence y ∈ B[xn, rn] ⊂ Un, i.e. y ∈ ∩nUn. Also, since B[x1, r1] ⊂ U ,
y ∈ U . Hence U ∩ (∩nUn) 6= ∅, as we wanted. �
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2. Boundedness and totally boundedness

Another notion that strongly depends on a metric is the notion of boundedness.

Definition 6.4. Given a metric space (X, d), we say that A ⊂ X is

(1) bounded in (X, d) (or with respect to d) if there exists x ∈ X and R > 0 such that
A ⊂ B(x,R).

(2) totally bounded in (X, d) if, for any ǫ > 0, there exist a finite number of balls in X of
radius ǫ covering A.

When A = X, we say that (X, d) is bounded, or totally bounded, respectively.

You should convince yourself that, when X = Rn and d is the Euclidean metric, total bound-
edness with respect to d is equivalent to the usual notion of boundedness.

A few remarks are in order here. First of all, these properties are not really relative properties
(i.e. they did not depend on the way that A sits inside X), but properties of the metric space
(A, dA) itself, where dA is the induced metric on A.

Exercise 6.1. Given a metric space (X, d) and A ⊂ X, A is bounded in (X, d) if and only
if (A, dA) is bounded. Similarly for totally bounded.

Another remark is that the property of “totally bounded” is an improvement of that of
“bounded”. The following exercise shows that, by a simple trick, a metric d can always be
made into a bounded metric d̂ without changing the induced topology; although the notion of
boundedness is changed, totally boundedness with respect to d and d̂ is the same.

Exercise 6.2. As in Exercise 1.39, for a metric space (X, d) we define d̂ : X ×X → R by

d̂(x, y) = min{d(x, y), 1}.
We already know that d̂ is a metric inducing the same topology on X as d, and that (X, d̂) is

complete if and only if (X, d) is. Also, it is clear that (X, d̂) is always bounded. Show now that

(X, d̂) is totally bounded if and only if (X, d) is.

Finally, here is a lemma that we will use later on:

Lemma 6.5. Given a metric space (X, d) and A ⊂ X, then A is totally bounded if and only if
A is.

Proof. Let ǫ > 0. Choose x1, . . . , xk such that A is covered by the balls B(xi, ǫ/2). Then
A will be covered by the balls B(xi, ǫ). Indeed, if y ∈ A, we find x ∈ A such that d(x, y) < ǫ/2;
also, we find xi such that x ∈ B(xi, ǫ/2); from the triangle inequality, y ∈ B(xi, ǫ). �
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3. Compactness

The main criteria to recognize when a subspace A ⊂ Rn is compact is by checking whether it
is closed and bounded in Rn. For general metric spaces:

Theorem 6.6. A subset A of a complete metric space (X, d) is compact if and only if it is
closed (in X) and totally bounded (with respect to d).

This theorem will actually be an immediate consequence of another theorem, which also
clarifies the relationship between compactness and sequential compactness for metric spaces.

Theorem 6.7. For a metric space (X, d), the following are equivalent:

1. X is compact.
2. X is sequentially compact.
3. X is complete and totally bounded.

Proof. We first prove Theorem 6.7. The implication 1=⇒ 2 is Corollary 4.33. For 2=⇒ 3,
assume that X is sequentially compact. We first prove that X is complete. Let (xn)n≥1 be a
Cauchy sequence. By hypothesis, we find a convergent subsequence (xnk

)k≥1. Let x be its limit.
We prove that the entire sequence (xn) converges to x. Let ǫ > 0. We look for an integer Nǫ

such that d(xn, x) < ǫ for all n > Nǫ. Since (xn) is Cauchy we find N ′
ǫ such that

d(xn, xm) < ǫ/2

for all n,m ≥ N ′
ǫ. Since (xnk

)k≥1 converges to x, we find kǫ such that

d(xnk
, x) < ǫ/2

for all k ≥ kǫ. Choose Nǫ = max{N ′
ǫ, nkǫ

}. Then, for n > Nǫ, choosing k such that nk > n
(such a k exists since n1 < n2 < . . . is a sequence that tends to ∞), we must have k > kǫ and
nk > N ′

ǫ, hence
d(xn, xnk

) < ǫ/2, d(xnk
, x) < ǫ/2.

Using the triangle inequality, we obtain d(xn, x) < ǫ, and this holds for all n ≥ Nǫ. This
proves that (xn) converges to x. We now prove that X is totally bounded. Assume it is not.
Then we find r > 0 such that X cannot be covered by a finite number of balls of radius r.
Construct a sequence (xn)n≥1 as follows. Start with any x1 ∈ X. Since X 6= B(x1, r), we
find x2 ∈ X − B(x1, r). Since X 6= B(x1, r) ∪ B(x2, r), we find x3 ∈ X − B(x1, r) ∪ B(x2, r).
Continuing like this we find a sequence with xn /∈ B(xm, r) for n > m. Hence d(xn, xm) > r for
all n 6= m. But by hypothesis, (xn) has a subsequence (xnk

)k≥1 which converges to some x ∈ X.
But then we find N such that d(xnk

, x) < r/2 for all k ≥ N , hence

d(xnk
, xnl

) ≤ d(xnk
, x) + d(x, xnl

) < r

for all k, l ≥ N , and this contradicts the condition “d(xn, xm) > r for all n 6= m”.
3=⇒ 1: Assume that (X, d) is complete and totally bounded. The last condition ensures that

for each integer n ≥ 0, there is a finite set Fn ⊂ X such that

X =
⋃

x∈Fn

B(x,
1

2n
).

Let U = {Ui : i ∈ I} be an open cover of X, and we want to prove that we can extract a finite
subcover of U . Assume this is not possible. We construct a sequence (xn)n≥1 inductively as
follows. Since ∪x∈F1B(x, 1

2) = ∪iUi, and the first union is a finite union (F1 is finite), we find

x1 ∈ F1 such that B(x1,
1
2) cannot be covered by a finite number of opens from U . Now, since

B(x1,
1

2
) =

⋃

x∈F2

(B(x1,
1

2
) ∩B(x,

1

4
))
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we find x2 ∈ F2 such that

B(x1,
1

2
) ∩B(x2,

1

4
) 6= ∅

and B(x2,
1
4) cannot be covered by a finite numbers of opens from U . Continuing this, at step

n we find xn ∈ Fn such that

B(xn−1,
1

2n−1
) ∩B(xn,

1

2n
) 6= ∅

and B(xn,
1
2n ) cannot be covered by a finite number of opens from U . Note that, choosing an

element y in the (non-empty) intersection above, the triangle inequality implies that

d(xn−1, xn) <
1

2n−1
+

1

2n
=

3

2n
,

from which we deduce that (xn)n≥1 is a Cauchy sequence (why?). By hypothesis, it will converge
to en element x ∈ X. Choose U ∈ U such that x ∈ U . Since U is open, we find ǫ > 0 such
that B(x, ǫ) ⊂ U . Since xn → x, we find nǫ such that d(xn, x) < ǫ/2 for all n > nǫ. Using
the triangle inequality, we deduce that B(xn, ǫ/2) ⊂ U for all n ≥ nǫ. Choosing n so that also
1/2n < ǫ/2, we deduce that B(xn, 1/2

n) ⊂ U , which contradicts the fact that B(xn,
1
2n ) cannot

be covered by of finite number of opens from U .
This ends the proof of Theorem 6.7. For Theorem 6.6, one uses the equivalence between 1

and 3 above, applied to the metric space (A, dA), and Proposition 6.2. �

We now derive some more properties of compactness in the metric case. In what follows, given
F ⊂ X, we say that F is relatively compact in X if the closure F in X is compact.

Corollary 6.8. For a subset F of a complete metric space (X, d), the following are equivalent

1. F is relatively compact in X.
2. any sequence in F admits a convergent subsequence (with some limit in X).
3. F is totally bounded.

Proof. We apply Theorem 6.7 to F . We know that 3 is equivalent to the same condition
for F (Lemma 6.5). We prove the same for 2; the non-obvious part is to show that F satisfies 2
if F does. So, let (yn) be a sequence in F . For each n we find xn ∈ F such that d(xn, yn) < 1/n.
After eventually passing to a subsequence, we may assume that (xn) is convergent to some x ∈ X
and d(xn, yn) → 0 as n→ ∞. But this implies that (yn) itself must converge to x. �

Corollary 6.9. Any compact metric space (X, d) is separable, i.e. there exists A ⊂ X which
is at most countable and which is dense in X.

Proof. For each n choose a finite set An such that X is covered by B(a, 1
n) with a ∈ An.

Then A := ∪An is dense in X: for x ∈ X and ǫ we have to show that B(x, ǫ) ∩ A 6= ∅; but we
find n with 1

n < ǫ and a ∈ An such that x ∈ B(a, 1
n); then a ∈ B(x, ǫ) ∩A. �

Proposition 6.10. (the Lebesgue lemma) If (X, d) is a compact metric space then, for any
open cover U of X, there exists δ > 0 such that

A ⊂ X, diam(A) < δ =⇒ ∃ U ∈ U such that A ⊂ U.

(δ is called a Lebesgue number for the cover U).

Proof. It suffices to show that there exists δ such that each ball B(x, δ) is contained in some
U ∈ U . If no such δ exists, we find δn → 0 such that B(xn, δn) is not inside any U ∈ U . Using
(sequential) compactness we may assume that (xn) is convergent, with some limit x ∈ X (if not,
pass to a convergent subsequence). Let U ∈ U with x ∈ U and let r > 0 with B(x, r) ⊂ U .
Since δn → 0, xn → x, we find n s.t. δn < r/2, d(xn, x) < r/2. From the triangle inequality,
B(xn, δn) ⊂ B(x, r) (⊂ U) which contradicts the choice of xn and δn. �
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4. Paracompactness

Finally, we show that:

Theorem 6.11. Any metric space is paracompact.

Proof. Start with an arbitrary open cover U = {Ui : i ∈ I} of X. We consider an order
relation “≤” on I, which makes I into a well-ordered set (i.e. so that any subset of I has a
smallest element). We will construct a locally finite refinement of type V = ∪n∈NVn where, for
each n, the family V(n) will have one member for each i ∈ I; i.e. it is of type:

V(n) = {Vi(n) : i ∈ I}.
We set X(n) = ∪iVi(n). The definition of V(n) is by induction on n. For n = 1:

Vi(1) :=
⋃

a∈Ui−(∪j<iUj) with B(a, 3
2
)⊂Ui

B(a,
1

2
).

Assuming that V(1), . . . , V(n− 1) have been constructed, we define, for each i ∈ I:

Vi(n) =
⋃

a∈Ui−(∪j<iUj) with B(a, 3
2n )⊂Ui, a/∈X(1)∪...∪X(n−1)

B(a,
1

2n
).

It is clear that V is a refinement of U . Next, we claim that X = ∪nX(n) (i.e. V is a cover): for
x ∈ X, choose the smallest i such that x ∈ Ui and choose n such that B(x, 3/2n) ⊂ Ui; then
either x ∈ X(1) ∪ . . . ∪X(n − 1) and we are done, or x can serve as an index in the definition
of Vi(n), hence x ∈ X(n). Before showing local finiteness, we remark that, for each n:

(4.1) d(Vi(n), Vj(n)) ≥ 1

2n
∀ i 6= j.

To see this, assume that i < j and let x ∈ Vi(n), y ∈ Vj(n). Then x ∈ B(a, 1
2n ) for some a ∈ X

with B(a, 3
2n ) ⊂ Ui and y ∈ B(b, 1

2n ) for some b ∈ X with b /∈ Ui. These imply that b /∈ B(a, 3
2n ),

i.e. d(a, b) ≥ 3
2n . From the triangle inequality:

d(x, y) ≥ d(a, b) − d(a, x) − d(b, y) >
3

2n
− 1

2n
− 1

2n
=

1

2n
.

We now show local finiteness. Let x ∈ X. Fix n0 ≥ 1 integer, i0 ∈ I with x ∈ Vi0(n0). Also,
choose n1 ≥ 1 integer with

(4.2) B(x,
1

2n1
) ⊂ Vi0(n0).

We claim that

V := B(x, r) where r =
1

2n0+n1

intersects only a finite number of members of V. This follows from the following two remarks

1. For n < n0 + n1, V intersects at most one member of the family V(n).
2. For n ≥ n0 + n1, V intersects no member of the family V(n).

Part 1 follows from (4.1): if V intersects both Vi(n) and Vj(n) with i 6= j, we would find a, b ∈ V

with d(a, b) ≥ 1
2n but d(a, b) ≤ d(a, x) + d(x, b) < 2r ≤ 1

2n for all a, b ∈ V .
For part 2, assume that n ≥ n0 + n1. Assume that V ∩ Vi(n) = ∅ for some i ∈ I. From the

definition of Vi(n), we then find B(a, 1
2n )∩V 6= ∅ for some a ∈ Ui−(∪j<iUj), with B(a, 3

2n ) ⊂ Ui,
a /∈ X(1)∪ . . .∪X(n−1). Since n > n0, we have a /∈ X(n0), hence a /∈ Vi0(n0). From the choice
of n1 (see (4.2) above), a /∈ B(x, 1

2n1 ), hence d(a, x) ≥ 1
2n1 . But, by the triangle inequality again,

this implies that B(a, 1
2n ) ∩ B(x, r) = ∅. I.e., for any a which contributes to the definition of

Vi(n), its contribution B(a, 1
2n ) does not intersect V . Hence V ∩ Vi(n) = ∅. �
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5. More exercises

Exercise 6.3. Let (X, d) be a metric space. Show that any sequence (xn)n≥1 in X with the
property that

d(xn+1, xn) ≤ d(xn, xn−1)

2
for all n, is Cauchy.

Exercise 6.4. Let (x, d) be a complete metric space and let f : X → X be a map with the
property that there exists λ ∈ (0, 1) such that

d(f(x), f(y)) ≤ λd(x, y)

for all x, y ∈ X. Show that f has a unique fixed point (i.e. a ∈ X with f(a) = a).
(Hint: the difficult part is the existence. Start with any x0 and consider xn+1 = f(xn)).

Exercise 6.5. We say that a topological space X is separable if there exists A ⊂ X countable
and dense in X.

(1) Show that if X is 2nd countable, then it is separable.
(2) Show that a metric space is 2nd countable if and only if it is separable.
(3) Deduce that (R,Tl) is not metrizable (see exercise 2.19).
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1. The Urysohn metrization theorem

In following is known as the Urysohn metrization theorem.

Theorem 7.1. Any topological space which is normal and second countable is metrizable.

The rest of this section is devoted to the proof of this theorem.

Claim 1: ∃ a countable family (fn)n≥0 of continuous functions fn : X → [0, 1] satisfying:

(1.1) (∀ U − open, x ∈ U), (∃ N ∈ Z) such that: (fN (x) = 1, fN = 0 outside U).

Proof. Let B = {B1, B2, . . .} be a countable basis for the topology T . Consider

I = {(n,m) : Bn ⊂ Bm} ⊂ N × N.

This is countable (subset of countable is countable), hence we can enumerate it as (n0,m0),
(n1,m1), . . .. For each i, using Urysohn’s lemma, we find a continuous function fi : X → [0, 1]
such that fi|Bni

= 1, fi|X−Bmi
= 0. Then (fi)i≥0 has the desired properties: for U ∈ T and

x ∈ U , we can choose m such that x ∈ Bm ⊂ U . By Lemma 5.3, we find V -open containing
x such that x ∈ V ⊂ V ⊂ Bm. Since B is a basis, we find n such that x ∈ Bn ⊂ V . Then
Bn ⊂ V ⊂ Bm, hence (n,m) ∈ I. Writing (n,m) = (nN ,mN ) with N ∈ N, since x ∈ Bn we
have fN (x) = 1, and since Bm ⊂ U , we have fN = 0 outside Bm hence also outside U . �

Claim 2: The following is a metric on X inducing the topology of X:

d : X ×X → R, d(x, y) = sup{|fn(x) − fn(y)|
n

: n ≥ 1 integer}.

Proof. Note that d(x, y) is finite since 0 ≤ fn ≤ 1. For the triangle inequality, we use:

|fn(x) − fn(y)|
n

≤ |fn(x) − fn(z)|
n

+
|fn(z) − fn(y)|

n
≤ d(x, z) + d(z, y)

for all n. To see that d(x, y) 6= 0 whenever x 6= y, choose U ∈ T containing x and not containing
y, choose N as in (1.1) and remark that |fN (x) − fN (y)| = 1 hence d(x, y) ≥ 1/N > 0.

Next, we show that T ⊂ Td. Let U ∈ T and we have to show that:

∀ x ∈ U, ∃ ǫ > 0 : Bd(x, ǫ) ⊂ U.

Let x ∈ U and choose N as in (1.1). Then ǫ := 1
N does the job. Indeed, if y ∈ Bd(x, ǫ), then

|1 − fN (y)|
N

=
|fN (x) − fN(y)|

N
≤ d(x, y) <

1

N
,

hence fN (y) 6= 0 and this can only happen if y ∈ U .
Finally, we show that Td ⊂ T . It suffices to prove that, for each ball B(x, ǫ), there exists

U = Ux,ǫ ∈ T such that x ∈ U ⊂ B(x, ǫ). This will imply that B(x, ǫ) is open in X: indeed, for
any y ∈ B(x, ǫ) we can choose r > 0 such that B(y, r) ⊂ B(x, ǫ) (e.g. take r = ǫ − d(x, y) and
use the triangle inequality), and then Uy,r will be an open in X contained in B(x, ǫ).

So, let us fix x ∈ X, ǫ > 0 and look for U ∈ T with x ∈ U ⊂ B(x, ǫ). Choose n > 2/ǫ and set

U :=

n0⋂

n=1

{y ∈ X :
|fn(y) − fn(x)|

n
< ǫ}.

Since this is a finite intersection and each fn is continuous, we have U ∈ T . Clearly, x ∈ U .
Note also that, from the choice of n0 and the fact that 0 ≤ |fn| ≤ 1,

|fn(x) − fn(y)|
n

≤ 2

n0
< ǫ ∀ n ≥ n0.

We deduce that d(x, y) < ǫ for all y ∈ U , i.e. U ⊂ B(x, ǫ). �
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2. The Smirnov Metrization Theorem

In following is known as the Smirnov Metrization Theorem.

Theorem 7.2. A space X is metrizable iff it is Hausdorff, paracompact and locally metrizable.

Theorem 6.11 takes care of the direct implication. Here we prove the converse. The proof is
very similar to the proof of the Urysohn metrization theorem.

Claim 1: There exists a basis B for the topology of X, of type B = ∪n∈N∗Bn, where each Bn

is a locally finite family. Moreover, for each B ∈ B, there is a continuous function

fB : X → [0, 1] such that B = {x ∈ X : fB(x) 6= 0.}.
Proof. From the hypothesis it follows that there is a cover U = {Ui : i ∈ I} of X by opens

in X, on which the topology is induced by a metric di; we may assume that di ≤ 1 (cf. e.g.
Exercise 1.39). For each i ∈ I, we denote by Bi(x, r) the balls induced by di. They are open
subsets of Ui, hence also open in X. By the shrinking lemma (Lemma 5.17), we can find another
locally finite cover {Vi : i ∈ I} with V i ⊂ Ui. For each integer n, we consider the open cover of
X

{Bi(x,
1

n
) ∩ Vi : i ∈ I, x ∈ Ui}.

Let Bn be a locally finite refinement of it and B = ∪nBn. For each B ∈ B, we find i such that
B ⊂ Vi and then fB(x) := di(x,Ui − B) is a well-defined continuous function on Ui with which
is zero outside B; since B ⊂ V i ⊂ Ui (where all the closures are in X), extending fB by zero
outside Ui, it will give us a function with the desired properties.

Finally, we show that B is a basis. Consider U ⊂ X open, x ∈ U ; we show that x ∈ B ⊂ U for
some B ∈ B. Since U is locally finite, there is only a finite set of indices i with x ∈ Ui; call it Fx.
For each i ∈ Fx, U ∩Ui is open in (Ui, di) hence we find ǫi such that Bi(x, ǫi) ⊂ U ∩Ui. Choose
m with 2/m < ǫi for all i ∈ Fx. Choose B ∈ Bm such that x ∈ B; due to the definition of Bm,
we have B ⊂ Bi(y, 1/m) for some i ∈ I, y ∈ Ui. In particular, x ∈ Ui, hence i ∈ Fx. From the
choice of m, we have Bi(y, 1/m) ⊂ Bi(x, ǫi); from the choice of ǫi, these are inside U . �

Claim 2: The following is a metric on X inducing the topology T of X.

d : X ×X → R, d(x, y) = sup{ 1

n
|fB(x) − fB(y)| : n ≥ 1 integer, B ∈ Bn}.

Proof. By the same argument as in the Urysohn metrization theorem, d is a metric. Next,
we show that T ⊂ Td. Let U ⊂ X open, x ∈ U . We have to find r > 0 such that Bd(x, r) ⊂ U .
Since B is a basis, we find B ∈ Bn for some n, with x ∈ B ⊂ U . We claim that r = 1

n |fB(x)|
does the job. Indeed, if y ∈ Bd(x, r), we have 1

n |fB(y) − fB(x)| < 1
n |fB(x)|, hence fB(y) 6= 0,

hence y ∈ B, hence y ∈ U .
Finally, we show that Td ⊂ T . It suffices to show that, for any x ∈ X, r > 0, there exists

U ∈ T such that x ∈ U ⊂ B(x, r). Let n0 > 2/r be an integer. Since each Bn is locally finite,
we find a neighborhood V of x which intersects only a finite number of Bs with B ∈ Bn, n ≤ n0.
Call these members B1, . . . , Bk. Choose U ⊂ V such that

(2.1) |fBi
(y) − fBi

(x)| < r ∀ y ∈ U, ∀ i ∈ {1, . . . , k}.
We claim that U ⊂ B(x, r). That means that, for any y ∈ U , we have 1

n |fB(y) − fB(x)| < r
for all n ≥ 1 and B ∈ Bn. If n ≥ n0 this is automatically satisfied since |fB| ≤ 1 and
2/n ≤ 2/n0 < r. Assume now that n ≤ n0. If B is not one of the B1, . . . , Bk, then U ∩ B = ∅
hence fB(y) = fB(x) = 0 and we are done. Finally, if B = Bi for some i, then the desired
inequality follows from (2.1). �
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3. Consequences: the compact case, the locally compact case, manifolds

Here are some consequences of the metrization theorems from the previous sections. First
of all, since topological manifolds are paracompact (see e.g. 5.20), the Smirnov metrization
theorem immediately implies

Theorem 7.3. Any topological manifold is metrizable.

This theorem follows also from the Urysohn metrization theorem (but note that the proof
base on Smirnov’s result is somehow more satisfactory: it uses paracompactness to pass from
the local information to the global one; in particular, the Urysohn lemma is not used!). The
Urysohn metrization theorem has however two more interesting consequences. First, for the
compact case, we obtain:

Theorem 7.4. If X is a compact Hausdorff space, then the following are equivalent

1. X is metrizable.
2. X is second countable.

Using the one-point compactification, for locally compact spaces we will obtain the following
(which provides another proof to Theorem 7.3).

Theorem 7.5. Any locally compact Hausdorff and 2nd countable space is metrizable.

In what follows, we will provide the missing proofs.

Proof. (of Theorem 7.4) The reverse implication follows from the Urysohn metrization
theorem since compact spaces are normal (Corollary 4.20). We now prove 1=⇒ 2. Let d be a
metric inducing the topology of X. Since X is totally bounded (cf. Theorem 6.7), for each n
we find a finite set Fn such that

X =
⋃

x∈Fn

B(x,
1

n
).

The set A = ∪nFn is a countable union of finite sets, hence it is countable. We deduce that

B = {B(a,
1

n
) : a ∈ A,n ≥ 1 integer}

is a countable family of open sets of X. We claim it is a basis for the topology of X. Let U be
an arbitrary open and x ∈ U . We have to prove that there exists B ∈ B such that x ∈ B ⊂ U .
Since x ∈ U , we find an integer n such that B(x, 1

n) ⊂ U . Using the defining property for F2n,

we see that there exists a ∈ A such that x ∈ B(a, 1
2n). Using the triangle inequality, we deduce

that for each y ∈ B(a, 1
2n),

d(x, y) ≤ d(x, a) + d(a, y) <
1

2n
+

1

2n
=

1

n
,

hence y ∈ B(x, 1
n) ⊂ U . In conclusion, B = B(a, 1

2n) ∈ B satisfies x ∈ B ⊂ U . �

Proof. (of Theorem 7.5) We apply the Theorem 7.4 to the one-point compactification (see
Theorem 4.39) to deduce that X+ is metrizable. Since X is a subspace of X+, it is itself
metrizable. �
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1. The algebra C(X) of continuous functions

We start this chapter with a discussion of continuous functions from a Hausdorff compact
space to the real or complex numbers. It makes no difference whether we work over R or C, so
let’s just use the notation K for one of these base fields and we call it the field of scalars. For
each z ∈ K, we can talk about |z| ∈ R- the absolute value of z in the real case, or the norm of
the complex number z in the complex case.

For a compact Hausdorff space X, we consider the set of scalar-valued functions on X:

C(X) := {f : X → K : f is continuous}.
When we want to make a distinction between the real and complex case, we will use the more
precise notations C(X,R) and C(X,C).

In this section we look closer at the “structure” that is present on C(X). First, there is a
topological one. When X was an interval in R, this was discussed in Section 9, Chapter 3 (there
n = 1 in the real case, n = 2 in the complex one). As there, there is a metric on C(X):

dsup(f, g) := sup{|f(x) − g(x)| : x ∈ R}.
Since f, g are continuous and X is compact, dsup(f, g) < ∞. As in loc.cit., dsup is a metric and
the induced topology is called the uniform topology on C(X). And, still as in loc.cit.:

Theorem 8.1. For any compact Hausdorff space X, (C(X), dsup) is a complete metric space.

Proof. Let (fn) be a Cauchy sequence in C(X). The proof of Theorem 3.27 applies word by
word to ourX instead of the interval I, to obtain a function f : X → R such that dsup(fn, f) → 0
when n → ∞. Then similarly, the proof of Theorem 3.26 (namely that C(I,Rn) is closed in

(F(I,Rn), d̂sup)) applies word by word with I replaced by X to conclude that f ∈ C(X). �

The metric on C(X) is of a special type: it comes from a norm. Namely, defining

||f ||sup := sup{|f(x)| : x ∈ X} ∈ [0,∞)

for f ∈ C(X), we have

dsup(f, g) = ||f − g||sup.

Definition 8.2. Let V be a vector space (over our K = R or C). A norm on V is a function

|| · || : V → [0,∞), v 7→ ||v||
such that

||v|| = 0 ⇐⇒ v = 0

and is compatible with the vector space structure in the sense that:

||λv|| = |λ| · ||v|| ∀ λ ∈ K, v ∈ V,

||v + w|| ≤ ||v|| + ||w|| ∀ v,w ∈ V.

The metric associated to || · || is the metric d||·|| given by

d||·||(v,w) := ||v − w||.
A Banach space is a vector space V endowed with a norm || · || such that d||·|| is complete. When
K = R we talk about real Banach spaces, when K = C about complex ones.

With these, we can now reformulate our discussion as follows:

Corollary 8.3. For any compact Hausdorff space X, (C(X), || · ||sup) is a Banach space.
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Of course, this already makes reference to some of the algebraic structure on C(X)- that of
vector space. But, of course, there is one more natural operation on continuous functions: the
multiplication, defined pointwise:

(fg)(x) = f(x)g(x).

Definition 8.4. A K-algebra is a vector space A over K together with an operation

A×A→ A, (a, b) 7→ a · b
which is unital in the sense that there exists an element 1 ∈ A such that

1 · a = a · 1 = a ∀ a ∈ A,

and which is K-bilinear and associative, i.e., for all a, a′, b, b′, c ∈ A, λ ∈ K,

(a+ a′) · b = a · b+ a′ · b, a · (b+ b′) = a · b+ a · b′,
(λa) · b = λ(a · b) = a · (λb), ,

a · (b · c) = (a · b) · c .
We say that A is commutative if a · b = b · a for all a, b ∈ A.

Example 8.5. The space of polynomials K[X1, . . . ,Xn] in n variables (with coefficients in
K) is a commutative algebra.

Hence the algebraic structure of C(X) is that of an algebra. Of course, the algebraic and the
topological structures are compatible. Here is the precise abstract definition.

Definition 8.6. A Banach algebra (over K) is an algebra A equipped with a norm || · || which
makes (A, ||·||) into a Banach space, such that the algebra structure and the norm are compatible,
in the sense that,

||a · b|| ≤ ||a|| · ||b|| ∀ a, b ∈ A.

Hence, with all these terminology, the full structure of C(X) is summarized in the following:

Corollary 8.7. For any compact Hausdorff space, C(X) is a Banach algebra.

There is a bit more one can say in the case when K = C: there is also the operation of
conjugation, defined again pointwise:

f(x) := f(x).

As before, this comes with an abstract definition:

Definition 8.8. A *-algebra is an algebra A over C together with an operation

(−)∗ : A→ A, a 7→ a∗,

which is an involution, i.e.
(a∗)∗ = a ∀ a ∈ A,

and which satisfies the following compatibility relations with the rest of the structure:

(λa)∗ = λa∗ ∀ a ∈ A,λ ∈ C,

1∗ = 1, (a+ b)∗ = a∗ + b∗, (ab)∗ = b∗a∗ ∀ a, b ∈ A.

Finally, a C∗-algebra is a Banach algebra (A, || · ||) endowed with a *-algebra structure, s.t.

||a∗|| = ||a||, ||a∗a|| = ||a||2 ∀ a ∈ A.
Of course, C with its norm is the simplest example of C∗-algebra. To summarize our discussion

in the complex case:

Corollary 8.9. For any compact Hausdorff space, C(X,C) is a C∗-algebra.
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2. Approximations in C(X): the Stone-Weierstrass theorem

The Stone-Weierstrass theorem is concerned with density in the space C(X) (endowed with
the uniform topology); the simplest example is Weierstrass’s approximation theorem which says
that, when X is a compact interval, the set of polynomial functions is dense in the space of all
continuous functions. The general criterion makes use of the algebraic structure on C(X).

Definition 8.10. Given an algebra A (over the base field R or C), a subalgebra is any vector
subspace B ⊂ A, containing the unit 1 and such that

b · b′ ∈ B ∀ b, b′ ∈ B.

When we want to be more specific about the base field, we talk about real or complex subalgebras.

Example 8.11. When X = [0, 1], the set of polynomial functions on [0, 1] is a unital subal-
gebra of C([0, 1]). Here the base field can be either R or C.

Definition 8.12. Given a topological space X and a subset A ⊂ C(X), we say that A is
point-separating if for any x, y ∈ X, x 6= y there exists f ∈ A such that f(x) 6= f(y).

Example 8.13. When X = [0, 1], the subalgebra of polynomial functions is point-separating.

Here is the Stone-Weierstrass theorem in the real case (K = R).

Theorem 8.14. (Stone-Weierstrass) Let X be a compact Hausdorff space. Then any point-
separating real subalgebra A ⊂ C(X,R) is dense in (C(X,R), dsup).

Proof. We first show that there exists a sequence (pn)n≥1 of real polynomials which, on

the interval [0, 1], converges uniformly to the function
√
t. We construct pn inductively by

pn+1(t) = pn(t) +
1

2
(t− pn(t)2), p1 = 0.

We first claim that pn(t) ≤
√
t for all t ∈ [0, 1]. This follows by induction on n since

√
t− pn+1(t) = (

√
t− pn(t))(1 −

√
t+ pn(t)

2
).

and pn(t) ≤
√
t implies that

√
t + pn(t) ≤ 2

√
t ≤ 2 for all t ∈ [0, 1] (hence the right hand side

is positive). Next, the recurrence relation implies that pn+1(t) ≥ pn(t) for all t. Then, for each
t ∈ [0, 1], (pn(t))n≥1 is increasing and bounded above by 1, hence convergent; let p(t) be its

limit. By passing to the limit in the recurrence relation we find that p(t) =
√
t.

We still have to show that pn converges uniformly to p on [0, 1]. Let ǫ > 0 and we look for
N such that p(t) − pn(t) < ǫ for all n ≥ N (note that p − pn is positive). Let t ∈ [0, 1]. Since
pn(t) → p(t), we find N(t) such that p(t) − pn(t) < ǫ/3 for all n ≥ N(t). Since p and pN(t) are
continuous, we find an open neighborhood V (t) of t such that |p(s) − p(t)| < ǫ/3 and similarly
for pN(t), for all s ∈ V (t). Note that, for each s ∈ V (t) we have the desired inequality:

p(s) − pN(t)(s) = (p(s) − p(t)) + (p(t) − pN(t)(t)) + (pN(t)(t) − pN(t)(s)) < 3
ǫ

3
= ǫ.

Varying t, {V (t) : t ∈ [0, 1]} will be an open cover of [0, 1] hence we can extract an open sub-
cover {V (t1), . . . , V (tk)}. Then N(t) := max{N(t1), . . . ,N(tk)} does the job: for n ≥ N(t) and
t ∈ [0, 1], t belongs to some V (ti) and then

p(s) − pn(s) ≤ p(s) − pN(ti)(s) < ǫ.

We now return to the theorem and we denote by A the closure of A. We claim that:

f, g ∈ A =⇒ sup(f, g), inf(f, g) ∈ A,
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where sup(f, g) is the function x 7→ max{f(x), g(x)}, and similarly inf(f, g). Since any f ∈ A is
the limit of a sequence in A, we may assume that f, g ∈ A. Since sup(f, g) = (f + g+ |f − g|)/2,
inf(f, g) = (f + g − |f − g|)/2 and A is a vector space, it suffices to show that, for any f ∈ A,
|f | ∈ A. Since any continuous f is bounded (X is compact!), by dividing by a constant, we may
assume that f ∈ A takes values in [−1, 1]. Using the polynomials pn, since A is a subalgera,
fn := pn(f2) ∈ A, and it converges uniformly to p(f2) = |f |. Hence |f | ∈ A.

We need one more remark: for any x, y ∈ X with x 6= y and any a, b ∈ R, there exists f ∈ A
such that f(x) = a, f(y) = b. Indeed, by hypothesis, we find g ∈ A such that g(x) 6= g(y); since
A contains the unit (hence all the constants),

f := a+
b− a

g(y) − g(x)
(g − g(x))

will be in A and it clearly satisfies f(x) = a, f(y) = b.
Let now h ∈ C(X,R). Let ǫ > 0 and we look for f ∈ A such that dsup(h, f) ≤ ǫ.
We first show that, for any x ∈ X, there exists fx ∈ A such that fx(x) = h(x) and fx(y) <

h(y) + ǫ for all y ∈ X. For this, for any y ∈ X we choose a function fx,y ∈ A such that
fx,y(x) = h(x) and fx,y(y) ≤ h(y) + ǫ/2 (possible due to the previous step). Using continuity,
we find a neighborhood V (y) of y such that fx,y(y

′) < h(y′)+ ǫ for all y′ ∈ V (y). From the cover
{V (y) : y ∈ X} we extract a finite subcover {V (y1), . . . , V (yk)} and put

fx := inf{fx,y1, . . . , fx,yk
}.

From the previous steps, fx ∈ A; by construction, fx(y) < h(y) + ǫ for all y ∈ X and fx(x) =
h(x). Due to the last equality, we find an open neighborhood W (x) of x such that fx(x

′) >
h(x′)−ǫ for all x′ ∈W (x). We now let x vary and choose x1, . . . , xl such that {W (x1), . . . ,W (xl)}
cover X. Finally, we put

f := sup{fx1, . . . , fxl
}.

By the discussion above, it belongs to A while, by construction, dsup(h, f) ≤ ǫ. �

The previous theorem does not hold (word by word) over C instead of the reals. The appropri-
ate complex-version of the Stone-Weierstrass theorem requires an extra-condition which refers
precisely to the extra-structure present in the complex case: conjugation (hence the *-algebra
structure on C(X,C)).

Definition 8.15. Given a unital *-algebra A, a subalgebra B ⊂ A is called a *- subalgebra if

b∗ ∈ B ∀ b ∈ B.

With this, we have:

Corollary 8.16. Let X be a compact Hausdorff space. Then any point-separating *-subalgebra
A ⊂ C(X,C) is dense in (C(X,C), dsup).

Proof. Let AR := A∩ C(X,R). Since for any f ∈ F ,

Re(f) =
f + f

2
, Im(f) =

f − f

2i

belong to AR, it follows that AR separates points and is a unital subalgebra of C(X,R). From
the previous theorem, AR is dense in C(X,R). Hence A = AR + iAR is dense in C(X,C). �
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3. Recovering X from C(X): the Gelfand Naimark theorem

The Gelfand-Naimark theorem says that a compact Hausdorff space can be recovered from its
algebra C(X) of continuous functions (using only the algebra structure!!!) . Again, it makes no
difference whether we work over R or C; so let’s just fix K to be one of them and that we work
over K. The key ingredient in recovering X from C(X) is the notion of maximal ideal.

Definition 8.17. Let A be an algebra. A ideal of A is any vector subspace I ⊂ A satisfying

a · x, x · a ∈ I ∀ a ∈ A, x ∈ I.

The ideal I is called maximal if there is no other ideal J strictly containing I and different from
A. We denote by MA the set of all maximal ideals of A.

For instance, for A = C(X) (X a topological space), any subspace A ⊂ X defines an ideal:

IA := {f ∈ C(X) : f |A = 0}.
When A = {x} is a point, we denote this ideal simply by Ix. Note that IA ⊂ Ix for all x ∈ A.

Proposition 8.18. If X is a compact Hausdorff space, then Ix is a maximal ideal of C(X)
for all x ∈ X, and any maximal ideal is of this type. In other words, one has a bijection

φ : X
∼→MC(X), x 7→ Ix.

Proof. Fix x ∈ X and we show that Ix is maximal. Let I be another ideal strictly con-
taining Ix; we prove I = C(X). Since I 6= Ix, we find f ∈ I such that f(x) 6= 0. Since f is
continuous, we find an open U such that x ∈ U , f 6= 0 on U . Now, {x} and X − U are two
disjoint closed subsets of X hence, by Urysohn lemma, there exists η ∈ C(X) such that η(x) = 0,
η = 1 outside U . Clearly, η ∈ Ix ⊂ I. Since I is and ideal containing f and η, g := |f |2 +η2 ∈ I.
Note that g > 0: for x ∈ U , f(x) 6= 0, while for x ∈ X − U , η(x) = 1. But then any h ∈ C(X)
is in I since it can be written as g h

g with g ∈ I, h
g ∈ C(X). Hence I = C(X).

We still have to show that, if I is a maximal ideal, then I = Ix for some x. It suffices to
show that I ⊂ Ix for some x ∈ X. Assume the contrary. Then, for any x ∈ X, we find
fx ∈ I s.t. fx(x) 6= 0. Since fx is continuous, we find an open Ux s.t. x ∈ Ux, fx 6= 0 on Ux.
Now, {Ux : x ∈ X} is an open cover of X. By compactness, we can select a finite subcover
{Ux1 , . . . , Uxk

}. But then

g := |fx1|2 + . . .+ |fxk
|2 ∈ I

and g > 0 on X. By the same argument as above, we get I = C(X)- contradiction! �

The proposition shows how to recover X from C(X) as a set. To recover the topology, it is
useful to slightly change the point of view and look at characters instead of maximal ideals.

Definition 8.19. Given an algebra A, a character of A is any K-linear function χ : A → K

which is not identically zero and satisfies

χ(a · b) = χ(a)χ(b) ∀ a, b ∈ A.

The set of characters of A is denoted by XA and is called the spectrum of A. When we want to
be more precise about K, we talk about the real or the complex spectrum of A.

The previous proposition can be reformulated into:

Corollary 8.20. If X is a compact Hausdorff space then, for any x ∈ X,

χx : C(X) → K, χx(f) = f(x)

is a character of C(X), and any character is of this type. In other words, one has a bijection

φ : X
∼→ XC(X), x 7→ χx.



3. RECOVERING X FROM C(X): THE GELFAND NAIMARK THEOREM 115

Proof. The main observation is that characters correspond to maximal ideals. It should
be clear that any χx is a character. Let now χ be an arbitrary character. Let I := {f ∈ C(X) :
χ(f) = 0} (an ideal- check that!). We will make use of the remark that

(3.1) f − χ(f) · 1 ∈ I

for all f ∈ C(X) (indeed, all these elements are killed by χ). We show that I is maximal. Let
J be another ideal strictly containing I. Choosing f ∈ J not belonging to I (i.e. χ(f) 6= 0)
and using (3.1) and I ⊂ J , we find that 1 ∈ J hence, as above, J = C(X). This proves that I
is maximal. We deduce that it is of type Ix for some x ∈ X. But then, using (3.1) again we
deduce that (f − χ(f) · 1)(x) = 0 for all f , i.e. χ = χx. �

The advantage of characters is that there is a natural topology on XA for any algebra A.

Definition 8.21. Let A be an algebra A and let XA be its spectrum. For any a ∈ A, define

fa : XA → K, fa(χ) := χ(a).

We define T as the smallest topology on XA with the property that all the functions {fa : a ∈ A}
are continuous. The resulting topological space (XA,T ) is called the topological spectrum of A.

Theorem 8.22. Any compact Hausdorff space X is homeomorphic to the topological spectrum
of its algebra C(X) of continuous functions.

Proof. Let TX be the topology of X. We still have to show that the bijection ψ is a
homeomorphism. Equivalently: ψ induces a topology T ′ on X which is the smallest topology
with the property that all f ∈ C(X) are continuous as functions with respect to this new topology
T ′. We have to show that T ′ coincides with the original topology TX . From the defining property
of T ′, the inclusion T ′ ⊂ TX is tautological. For the other inclusion, we have to use the more
explicit description of T ′: it is the topology generated by the subsets of X of type f−1(V ) with
f ∈ C(X) and V ⊂ K open. We have to show that any U ∈ TX is in T ′. Fixing U , it suffices to
show that for any x ∈ U we find f and V such that

x ∈ f−1(V ) ⊂ U.

But this follows again by the Urysohn lemma: we find f : X → [0, 1] continuous such that
f(x) = 0 and f = 1 outside U . Taking V = (−1, 1), we have the desired property. �

Remark 8.23. (for the curious reader) In this remark we work over K = C. An interesting
question that we did not answer is: which algebras A are of type C(X) for some compact
Hausdorff X? What we did show is that the space must be XA. Note also that the map ψ
makes sense for any algebra A:

ψA : A→ C(XA), a 7→ (fa : XA → C given by fa(χ) = χ(a)).

Hence a possible answer is: algebras with the property that XA is compact and Hausdorff, and
ψA is an isomorphism (bijection). But this is clearly far from satisfactory.

The best answer is given by the full version of the Gelfand-Naimark theorem: it is the com-
mutative C∗-algebras! This answer may seem a bit unfair since the notion of C∗-algebras seem
to depend on data which is not algebraic (the norm!). However, a very special feature of C∗-
algebras is that their norm can be recovered from the algebraic structure by the formula:

||a||2 = sup{|λ| : λ ∈ C such that λ1 − a∗a is not invertible}.
One remark about the proof: one first shows that XA is compact and Hausdorff; then that
||ψA(a)|| = ||a|| for all a ∈ A; this implies that ψA is injective and the image is closed in C(XA);
finally, the Stone-Weierstrass implies that the image is dense in C(XA); hence ψA is bijective.
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4. General function spaces C(X,Y )

For any two topological spaces X and Y we denote by C(X,Y ) the set of continuous functions
from X to Y - a subset of the set F(X,Y ) of all functions from X to Y . In general, there are
several interesting topologies on C(X,Y ). So far, in this chapter we were concerned with the
uniform topology on C(X,Y ) when X is compact and Hausdorff and Y = R or C. In Section
9 , Chapter 3, in the case when X ⊂ R was an interval and Y = Rn, we looked at the three
topologies: of pointwise convergence, of uniform convergence, and of uniform convergence on
compacts.

In this section we look at generalizations of these topologies to the case when X and Y are
more general topological spaces. We assume throughout this entire section that

X − is a locally compact topological space, Y − is a metric space with a fixed metric d.

These assumptions are not needed everywhere (e.g. for the pointwise topology on C(X,Y ),
the topology of X is completely irrelevant, etc etc). They are made in order to simplify the
presentation.

4.1. Pointwise convergence, uniform convergence, compact convergence. Almost
the entire Section 9, Chapter 3 goes through in this generality without any trouble (“word by
word” most of the times). For instance, given a sequence {fn}n≥1 in F(X,Y ), f ∈ F(X,Y ), we
will say that:

• fn converges pointwise to f , and we write fn
pt→ f , if fn(x) → f(x) for all x ∈ X.

• fn converges uniformly to f , and we write fn ⇉ f , if for any ǫ > 0, there exists nǫ s.t.

d(fn(x), f(x)) < ǫ ∀ n ≥ nǫ, ∀ x ∈ X.

• fn converges uniformly on compacts to f , and we write fn
cp→ f if, for any K ⊂ X

compact, fn|K ⇉ f |K .

And, as in loc.cit (with exactly the same proof), these convergences correspond to convergences
with respect to the following topologies on F(X,Y ):

• the pointwise topology, denoted Tpt, is the topology generated by the family of subsets

S(x,U) := {f ∈ F(X,Y ) : f(x) ∈ U} ⊂ F(X,Y ),

with x ∈ X, U ⊂ Y open.
• the uniform topology is induced by a sup-metric. For f, g ∈ F(X,Y ), we define

dsup(f, g) = sup{d(f(x), g(x)) : x ∈ X}.
Again, to overcome the problem that this supremum may be infinite (for some f and
g) and to obtain a true metric, once considers

d̂sup(f, g) = min(dsup(f, g), 1).

The uniform topology is the topology associated to d̂sup; it is denoted by Tunif.
• the topology of compact convergence, denoted Tcp, is the topology generated by the

family of subsets

BK(f, ǫ) := {g ∈ F(X,Y ) : d(f(x), g(x)) < ǫ ∀ x ∈ K},
with K ⊂ X compact, ǫ > 0.

We will be mainly concerned with the restrictions of these topologies to the set C(X,Y ) of
continuous functions fromX to Y . So, the part of Theorem 3.27 concerning continuous functions,
with exactly the same proof, gives us the following:

Theorem 8.24. If (Y, d) is complete, then (C(X,Y ), d̂sup) is complete.
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4.2. Equicontinuity. A useful concept regarding function spaces is equicontinuity. Recall
that X is a locally compact space and (Y, d) is a metric space. Then a function f : X → Y is
continuous if it is continuous at each point, i.e. if for each x0 ∈ X and any ǫ > 0 there exists a
neighborhood V of x0 such that

(4.1) d(f(x), f(x0)) < ǫ ∀ x ∈ U.

Definition 8.25. A subset F ⊂ C(X,Y ) is called equicontinuous if for any x0 ∈ X and any
ǫ > 0 there exists a neighborhood V of x0 such that (4.1) holds for all f ∈ F .

When X is itself a metric space, then there is a “uniform” version of continuity and equicon-
tinuity.

Definition 8.26. Assume that both (X, d) and (Y, d) are metric spaces. Then

(1) A map f : X → Y is called uniformly continuous if for all ǫ > 0 there exists δ > 0 s.t.

(4.2) d(f(x), f(y)) < ǫ ∀ x, y ∈ X with d(x, y) < δ.

(2) A subset F ⊂ C(X,Y ) is called uniformly equicontinuous if for all ǫ > 0 there exists
δ > 0 s.t. (4.2) holds for all f ∈ F .

From the definitions we immediately see that, in general, the following implications hold:

F − is uniformly equicontinuous //

��

each f ∈ F is uniformly continuous

��

F − is equicontinuous // each f ∈ F is continuous

As terminology, we say that a sequence (fn)n≥1 is equicontinuous if the set {fn : n ≥ 1} is.

Proposition 8.27. A sequence {fn}n≥1 is convergent in (C(X,Y ),Tcp) if and only if it is
convergent in (C(X,Y ),Tpt) and it is equicontinuous.

Proof. For the direct implication, we still have to show that, if fn
cp→ f , then {fn} is

equicontinuous. Let x0 ∈ X. Since f is continuous, we find a neighborhood V of x0 such that
d(f(x), f(x0)) < ǫ/3 for all x ∈ V . Since X is locally compact, we may assume V to be compact.
Then fn|V ⇉ f |V hence we find nǫ such that d(fn(x), f(x)) < ǫ/3 for all n ≥ nǫ, x ∈ V . Then

d(fn(x), fn(x0)) ≤ d(fn(x), f(x)) + d(f(x), f(x0)) + d(f(x0), fn(x0)) < ǫ.

for all x ∈ V and n ≥ nǫ. By making V smaller if necessary, the previous inequality will also
hold for all n < nǫ (since there are a finite number of such n’s, and each fn is continuous).

We now prove the converse. Assume equicontinuity and assume that fn → f pointwise. Let
K ⊂ X be compact; we prove that fn|K ⇉ f |K . Let ǫ > 0. For each x ∈ K, there is an open
Vx containing x, such that

d(fn(y), fn(x)) < ǫ/3 ∀ y ∈ Vx, ∀ n.
Since {Vx} covers the compact K, we find a finite number of points xi ∈ K (with 1 ≤ i ≤ k)
such that the opens Vi = Vxi

cover K. Since fn(xi) → f(xi), we find nǫ such that

d(fn(xi), f(xi)) < ǫ/3 ∀ n ≥ nǫ ∀ i ∈ {1, . . . , k}.
Now, for all n ≥ nǫ and x ∈ K, choosing i such that x ∈ Vi, we have

d(fn(x), f(x)) ≤ d(fn(x), fn(xi)) + d(fn(xi), f(xi)) + d(f(xi), f(x)) < 3
ǫ

3
= ǫ.

(here we used that d(f(xi), f(x)) = limn d(fn(xi), fn(x)) ≤ ǫ/3). �
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4.3. Boundedness. Let’s also briefly discuss boundedness. For F ⊂ C(X,Y ) and x ∈ X
we use the notation

F(x) := {f(x) : f ∈ F}.
As we have already discussed, in a metric space, there is also the notion of “totally bounded”,
which is an improvement of the notion of “bounded”. Also, in our case we can talk about
boundedness (and totally boundedness) with respect to d̂sup, or we can have pointwise versions
(with respect to the metric d of Y ). In total, four possibilities:

Definition 8.28. We say that F ⊂ C(X,Y ) is:

• Bounded if it is bounded in (C(X,Y ), d̂sup).

• Totally bounded if it is totally bounded in (C(X,Y ), d̂sup).
• Pointwise bounded if F(x) is bounded in (Y, d) for all x ∈ X.
• Pointwise totally bounded if F(x) is totally bounded in (Y, d) for all x ∈ X.

From the definitions we immediately see that, in general, the following implications hold:

totally bounded //

��

bounded

��

pointwise totally bounded // pointwise bounded

Example 8.29. For Y = Rn with the Euclidean metric d, since totally boundedness and
boundedness in (Rn, d) are equivalent, we see that a subset F ⊂ C(X,Rn) is pointwise totally
bounded if and only if it is pointwise bounded. However, it is not true that F is totally bounded
if and only if it is bounded. In general, totally boundedness implies equicontinuity:

Proposition 8.30. If F ⊂ C(X,Y ) is totally bounded then it must be equicontinuous. More-
over, if each f ∈ F is uniformly continuous, then F is even uniformly equicontinuous.

Proof. Fix ǫ > 0 and x0 ∈ X. By assumption, we find f1, . . . , fk ∈ F such that

F ⊂ B(f1, ǫ/3) ∪ . . . ∪B(fk, ǫ/3),

where the balls are the ones corresponding to d̂sup. Since each fi is continuous, we find a
neighborhood Ui of fi such that

d(fi(x), fi(x0)) < ǫ/3, ∀ x ∈ Ui.

Then U = ∩iUi is a neighborhood of x0. For x ∈ U , f ∈ F , choosing i s.t. f ∈ B(fi, ǫ/3):

d(f(x), f(x0)) ≤ d(f(x), fi(x0)) + d(fi(x), fi(x0)) + d(fi(x0), f(x0)),

which is < ǫ (for all x ∈ U , f ∈ F). This proves equicontinuity. For the second part the
argument is completely similar (even simpler as all Ui will become X), where we use that each
fi is uniformly continuous. �

Let us also recall that the notion of totally boundedness was introduced in order to characterize
compactness. Since d̂sup is complete whenever (Y, d) is (Theorem 8.24) we deduce:

Proposition 8.31. A subset F ⊂ C(X,Y ) is totally bounded if and only if it is relatively

compact in (C(X,Y ), d̂sup).
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4.4. The case when X is a compact metric space. When X is a compact metric space
the situation simplifies quite a bit. In some sense, the pointwise conditions imply the uniform
ones (in the vertical implications from the previous two diagrams). To be more precise, let us
combine the two diagrams and Proposition 8.30 together into a diagram of implications:

totally bounded //

��

bounded and uniformly equic. //

��

uniformly equic.

��

pt. totally bounded and equic. // pt. bounded and equic. // equic.

where “pt.” stands for pointwise and “equic.” for equicontinuous. Of course, we could have
continued to the right with “each f ∈ F is (uniformly) continuous”. We are looking at the
converses of the vertical implications. The first one is of the next subsection. For the rest:

Theorem 8.32. If (X, d) is a compact metric space, f : X → Y , F ⊂ C(X,Y ), then

1. (f is continuous) ⇐⇒ (f is uniformly continuous).
2. (F is equicontinuous) ⇐⇒ (F is uniformly equicontinuous). In this case, moreover,

a. (F is pointwise bounded) ⇐⇒ (F is bounded).
b. Tunif and Tpt induce the same topology on F .

In particular, if a sequence (fn)n≥1 is equicontinuous, then it is uniformly convergent (or
bounded) iff it is pointwise convergent (or pointwise bounded, respectively).

Proof. For 1, 2 and (a) the nontrivial implications are the direct ones. For 1, assume that
f is continuous. Let ǫ > 0. For each x ∈ X choose Vx such that

d(f(y), f(x)) < ǫ/2 ∀ y ∈ Vx.

Apply now the Lebesgue lemma (Proposition 6.10) and let δ > 0 be a resulting Lebesgue number.
Then, for each y, z ∈ X with d(y, z) < δ we find x ∈ X such that y, z ∈ Vx, hence

d(f(y), f(z)) ≤ d(f(y), f(x)) + d(f(z), f(x)) < ǫ.

This proves that f is uniformly continuous. Exactly the same proof applies to 2 (just add “for
all f ∈ F” everywhere). For (a), assume that F is equicontinuous and pointwise bounded. From
the first condition we find an open cover {Vx}x∈X with x ∈ Vx and d(f(y), f(x)) < 1 for all
y ∈ Vx. Choose a finite subcover corresponding to x1, . . . , xk ∈ X. Using that F(xi) is bounded
for each i, we find M > 0 such that

d(f(xi), g(xi)) < M ∀ f, g ∈ F , ∀ 1 ≤ i ≤ k.

Then, for arbitrary x ∈ X, choosing i such that x ∈ Vxi
, we have

d(f(x), g(x)) ≤ d(f(x), f(xi)) + d(f(xi), g(xi)) + d(g(xi), g(x)) < M + 2,

for all f, g ∈ F , showing that F is bounded. For (b), the non-obvious part is to show that
Tunif|F ⊂ Tpt|F . Due to the definitions of these topologies, we start with f ∈ F and a ball

BF (f, ǫ) = {g ∈ F : dsup(g, f) < ǫ},
and we are looking for x1, . . . , xk ∈ X and ǫ1, . . . , ǫk > 0 such that

∩i{g ∈ F : d(g(xi), f(xi)) < ǫi} ⊂ BF (f, ǫ).

For that, choose as before a finite open cover {Vxi
} of X such that

d(f(x), f(xi)) < ǫ/6 ∀ f ∈ F , x ∈ Vxi

and, by the same inequalities as above, we find that the xi and ǫi = ǫ/3 have the desired
properties. �
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4.5. The Arzela-Ascoli theorem. The Arzela-Ascoli theorem has quite a few different
looking versions. They all give compactness criteria for subspaces of C(X,Y ) in terms of equicon-
tinuity; sometimes the statement is a sequential one (giving criteria for an equicontinuous se-
quence to admit a convergent subsequence). The difference between the several versions comes
either from the starting hypothesis on X and Y , or from the topologies one considers on C(X,Y ).
As in the last subsections, we restrict ourselves to the case that X and Y are metric and X is
compact; the interesting topology on the space of functions will then be the uniform one.

Theorem 8.33. (Arzela-Ascoli) Assume that (X, d) is a compact metric space, (Y, d) is com-
plete. Then, for a subset F ⊂ C(X,Y ), the following are equivalent:

(1) F is relatively compact in (C(X,Y ), dsup).
(2) F is equicontinuous and pointwise totally bounded.

(note: when Y = Rn with the Euclidean metric, “pointwise totally bounded”=“pointwise bounded”).

Corollary 8.34. Let X and Y be as above. Then any sequence (fn)n≥1 which is equicontin-
uous and pointwise totally bounded admits a subsequence which is uniformly convergent.

Proof. The direct implication is clear now: if F is compact, it must be totally bounded
(cf. Theorem 6.7); this implies that F (hence also F) is equicontinuous and pointwise bounded.
We now prove the converse. Let us assume for simplicity that F is also closed with respect to
the uniform topology (otherwise replace it by its closure and, by the same arguments as before,
show that equicontinuity and pointwise totally boundedness hold for the closure as well). We
show that F is compact. Using Theorem 6.7, it suffices to show that F is sequentially compact.
So, let (fn)n≥1 be a sequence in F and we will show that it contains a convergent subsequence.
Use Corollary 6.9 and consider

A = {a1, a2, . . .} ⊂ X

which is dense in X. Since (fn(a1))n≥1 is totally bounded, using Corollary 6.8, it follows that it
has a convergent subsequence (fn(a1))n∈I1 , where I1 ⊂ Z+. Let n1 be the smallest element of I1.
Similarly, since (fn(a2))n∈I1 is totally bounded, we find a convergent subsequence (fn(a2)n∈I2

where I2 ⊂ I1. Let n2 be the smallest element of I2. Continue inductively to construct Ij and
its smallest element nj for all j. Choosing gk = fnk

, this will be a subsequence of (fn) which has
the property that (gk(ai))k≥1 is convergent for all i. We will show that (gk) is Cauchy (hence
convergent). Let ǫ > 0. Since F is uniformly equicontinuous, we find δ such that

d(gk(x), gk(y)) < ǫ/3 ∀ k and whenever d(x, y) < δ.

Since A is dense in X, the balls B(ai, δ) cover X; since X is compact, we find some integer N
such that X is covered by B(ai, δ) with 1 ≤ i ≤ N . Since each of the sequences (gk(ai))k≥1 is
convergent for all 1 ≤ i ≤ N , we find nǫ such that

d(gj(ai), gk(ai)) < ǫ/3 ∀ j, k ≥ nǫ ∀ 1 ≤ i ≤ N.

Then, for all x ∈ X, j, k ≥ nǫ, choosing i ≤ N such that x ∈ B(ai, δ), we have

d(gj(x), gk(x)) ≤ d(gj(x), gj(ai)) + d(gj(ai), gk(ai)) + d(gk(ai), gk(x)) < ǫ.

�

Finally, let us also mention the following more general version of the Arzela-Ascoli (see
Munkres’ book).

Theorem 8.35. (Arzela-Ascoli) Assume that X is a locally compact Hausdorff space, (Y, d)
is a complete metric space, F ⊂ C(X,Y ). Then F is relatively compact in (C(X,Y ),Tcp) if and
only if F is equicontinuous and pointwise totally bounded.

In particular, any sequence (fn)n≥1 in C(X,RN ) which is equicontinuous and pointwise totally
bounded admits a subsequence which is uniformly convergent on compacts.
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5. More exercises

5.1. On Stone-Weierstrass.

Exercise 8.1. Show that C∞([0, 1]) (the space of real-valued functions on [0, 1] which are
infinitely many times differentiable) is dense in C([0, 1]).

Exercise 8.2. On the sphere S2 we consider the real-valued functions

f(x, y, z) = x+ y + z, g(x, y, z) = xy + yz + zx.

Does {f, g} separate points? What if we add the function h(x, y, z) = xyz?

Exercise 8.3. Let X be a compact topological space. Show that if a finite set of continuous
functions

A = {f1, . . . , fk} ⊂ C(X)

separates points, then X can be embedded in Rk.

Exercise 8.4. Consider the 3-dimensional sphere interpreted as:

S3 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1}.
Consider the circle S1 = {z ∈ C : |z| = 1}, viewed as a group with respect to the multiplication
of complex numbers, and we consider the action of S1 on S3 given by

z · (z1, z2) := (zz1, zz2).

Let X := S3/S1. Consider f̃ , g̃, h̃ : S3 → R given by

f̃(z1, z2) = z1z2 + z1z2, g̃(z1, z2) = i(z1z2 − z1z2), h̃(z1, z2) = |z1|2 − |z2|2.
Show that

(1) f̃ , g̃, h̃ induce functions f, g, h : X → R.
(2) {f, g, h} separates points.
(3) The image of the resulting embedding (f, g, h) : X → R3 is S2.

Exercise 8.5. If K is a compact subspace of Rn, show that the space Pol(K) of polynomial
functions on K is dense in C(K) in the uniform topology.

(recall that a function f : K → Rn is polynomial if there exists a polynomial P ∈ R[X1, . . . ,Xn]
such that f(x) = P (x) for all x ∈ K).

Exercise 8.6. Show that, if f : R → R is continuous and periodic of period 2π, then f can
be realized as the limit of a sequence of functions of type

T (x) = a0 +

N∑

k=1

(akcos(kx) + bksin(kx)).

Exercise 8.7. Show that, for any compact smooth manifold X, C∞(X) is dense in C(X).

Exercise 8.8. LetX be a locally compact Hausdorff space. We say that a function f : X → R

vanishes at ∞ if for each ǫ > 0 there exists a compact Kǫ ⊂ X such that

|f(x)| < ǫ, ∀ x ∈ X −Kǫ.

We denote by C0(X) the set of all such functions and we endow it with the usual operations of
addition and multiplication of functions, and multiplication of functions by scalars.

(i) Show that one has a well-defined norm

|| · || : C0(X) → R, f 7→ ||f || := sup{|f(x)| : x ∈ X}.
and, together with this norm, C0(X) becomes a Banach space.
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(ii) Assume that A ⊂ C0(X) has the following properties:
• A is a non-unital subalgebra of C0(X), i.e. it is a vector subspace A ⊂ C0(X)

with the property that fg ∈ A for all f, g ∈ A.
• A is strongly point-separating, i.e. it is point-separating (as a subset of C(X))

and, for all x ∈ X, there exists f ∈ A such that f(x) 6= 0.
Show that A is dense in C0(X).

5.2. On Gelfand-Naimark.

Exercise 8.9. Consider the algebra A = R[t] of polynomials in one variable t. Show that
XA is homeomorphic to R. What if you take more variables?

Exercise 8.10. Consider
A = R[X,Y ]/(X2 + Y 2 − 1)

(the quotient of the ring of polynomials in two variables, modulo the ideal generated by f =
X2 + Y 2 − 1 or, equivalently, the ring of remainders modulo f). Interpret it as an algebra over
R and show that XA is homeomorphic to S1. (Hint: Let α, β ∈ A corresponding to X and Y .
Then a character χ is determined by u = χ(α) and v = χ(β). What do they must satisfy? Also,
have a look back at Exercise 3.33).

(if you do not understand the above definition of A, take as definition A :=the algebra of poly-
nomial functions on S1 ⊂ R2 and then α and β in the hint are the first and second projection).

Exercise 8.11. Consider the algebra A = R[t]/(t3) (remainders modulo t3). Compute XA.

Exercise 8.12. Consider the algebra

A = {f ∈ C(Sn) : f(z) = f(−z) ∀ z ∈ Sn}.
Show that XA is homeomorphic to Pn.

Exercise 8.13. More generally, if a finite group Γ acts on a compact space X, consider

A = C(X)Γ := {f ∈ C(X) : f(γ · x) = f(x) ∀ x ∈ X, γ ∈ Γ}
and compute XA.

Exercise 8.14. Let A be a commutative algebra over R. Recall that, for all a ∈ A, we
consider that function

fa : XA → R, fa(χ) = χ(a)

and the topology on XA was defined as the smallest topology on XA with the property that all
the functions fa, with a ∈ A, are continuous.

Show that, for any other topological space X, a function f : X → XA is continuous if and
only if all the functions fa ◦ f : X → R, with a ∈ A, are continuous.

Exercise 8.15. Let A and B be two commutative algebras over R. A map

F : A→ B

is called an algebra homomorphism if it is R-linear and satisfies

F (a1a2) = F (a1)F (a2)

for all a1, a2 ∈ A and F (1A) = 1B , where 1A ∈ A and 1B ∈ B are the units. If X and Y are
compact Hausdorff spaces, show that for any algebra homomorphism

F : C(Y ) → C(X)

there exists a continuous function f : X → Y such that

F (φ) = φ ◦ f ∀ φ ∈ C(Y ).
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Exercise 8.16. (This is from the exam of 2011) Given a polynomial p ∈ R[X0,X1, . . . ,Xn],
we denote by Rp the set of reminders modulo p. In other words,

Rp = R[X0,X1, . . . ,Xn]/Rp,

where Rp is the equivalence relation on R[X0,X1, . . . ,Xn] given by

Rp = {(q1, q2) : ∃ q ∈ R[X0,X1, . . . ,Xn] such that q1 − q2 = pq}.
We also denote by πp : R[X0,X1, . . . ,Xn] → Rp the resulting quotient map. Show that:

(i) There is a unique algebra structure on Rp (i.e. unique operations +, · and multiplica-
tions by scalars, defined on Rp) with the property that πp is an morphism of algebras,
i.e.

πp(q1 + q2) = πp(q1) + πp(q2), πp(q1 · q2) = πp(q1) · πp(q2), λπp(q) = πp(λq)

for all q1, q2 ∈ R[X0,X1, . . . ,Xn], λ ∈ R. (0.5 p)
(ii) For p = x2

0 + . . . + x2
n, the spectrum of Rp has only one point. (1 p)

(iii) For p = x2
0 + . . . + x2

n − 1, the spectrum of Rp is homeomorphic to Sn (1 p) .
(iv) What is the spectrum for p = x0x1 . . . xn? (0.5 p)

Exercise 8.17. (This is from the exam of 2012; each of the sub-questions was worth 0.5 p)
Let A be a commutative algebra over R. Assume that it is finitely generated, i.e. there exist

a1, . . . , an ∈ A (called generators) such that any a ∈ A can be written as

a = P (a1, . . . , an),

for some polynomial P ∈ R[X1, . . . ,Xn]. Recall that XA denotes the topological spectrum of A;
consider the functions

fi : XA → R, fi(χ) = χ(ai) 1 ≤ i ≤ n,

f = (f1, . . . , fn) : XA → Rn.

Show that

(i) f is continuous.
(ii) For any character χ ∈ XA and any polynomial P ∈ R[X1, . . . ,Xn],

χ(P (a1, . . . , an)) = P (χ(a1), . . . , χ(an)).

(iii) f is injective.
(iv) the topology of XA is the smallest topology on XA with the property that all the

functions fi are continuous.
(v) f is an embedding.

Next, for a subspace K ⊂ Rn, we denote by Pol(K) the algebra of real-valued polynomial
functions on K and let a1, . . . , an ∈ Pol(K) be given by

ai : K → R, ai(x1, . . . , xn) = xi.

Show that

(vi) Pol(K) is finitely generated with generators a1, . . . , an.
(vii) Show that the image of f (from the previous part) contains K.

Finally:

(viii) For the (n − 1) sphere K = Sn−1 ⊂ Rn, deduce that f induces a homeomorphism
between the spectrum of the algebra Pol(K) and K.

(ix) For which subspaces K ⊂ Rn can one use a similar argument to deduce that the
spectrum of Pol(K) is homeomorphic to K?
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Exercise 8.18. Let X be a compact topological space, C(X) the space of real-valued con-
tinuous functions on X and let

A ⊂ C(X).

be a point-separating subalgebra. The aim of this exercise is to show that the spectrum XA is
homeomorphic to X. The homeomorphism will be provided by the map:

F : X → XA, F (x) = χx|A
(the restriction of χx : C(X) → R to A, where we recall that χx sends f to f(x)).

(i) Show that F is continuous.
(ii) Show that F is injective.

The next five steps are to prove that F is surjective. Let χ ∈ XA be a character of A.

(iii) Show that, if f, g ∈ A and f ≥ g, then χ(f) ≥ χ(g).
(Hint: recall that, in the proof of the Stone-Weierstrass theorem we showed that,

for f ∈ A with f ≥ 0, one has
√
f ∈ A).

(iv) Show that for all f ∈ A one has |χ(f)| ≤ ||f ||sup.
(v) Deduce that for any sequence (fn)n≥1 of elements in A, convergent to some f ∈ C(X),

the sequence (χ(fn))n≥1 is convergent.
(vi) Deduce that there exists an extension of χ : A → R to a continuous map

χ̃ : C(X) → R.

(vii) And then show that χ̃ is a character.

Finally:

(viii) Conclude that F is a homeomorphism.



CHAPTER 9

Embedding theorems

In this chapter we will describe a general method for attacking embedding problems. We will
establish several results but, as the main final result, we state here the following:

Theorem 9.1. Any compact n-dimensional topological manifold can be embedded in R2n+1.

(1) Using function spaces

(2) Using covers and partitions of unity

(3) Dimension and open covers

(4) More exercises

125
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1. Using function spaces

Throughout this section (X, d) is a metric space which is assumed to be compact and Hausdorff,
and (Y, d) is a complete metric space (which, for the purpose of the chapter, youy may assume to
be Rn with the Euclidean metric). The associated embedding problem is: can X be embedded in
(Y,Td). Since X is compact, this is equivalent to the existence of a continuous injective function
f : X → Y .

Definition 9.2. Given f ∈ C(X,Y ), the injectivity defect of f is defined as

δ(f) := sup {d(x, x′) : x, x′ ∈ X such that f(x) = f(x′)}.
For each ǫ > 0, we defined the space of ǫ-approximately embeddings of X in Y as:

Embǫ(X,Y ) := {f ∈ C(X,Y ) : δ(f) < ǫ}
endowed with the topology of uniform convergence.

Proposition 9.3. If Embǫ(X,Y ) is dense in C(X,Y ) with respect to the uniform topology,
for all ǫ > 0, then there exists an embedding of X in Y .

Proof. The space Emb(X,Y ) of all embeddings of X in Y can be written as

Emb(X,Y ) = ∩nEmb1/n(X,Y )

where the intersection is over all positive integers. Since (Y, d) is complete, Theorem 8.24 implies
that (C(X,Y ), dsup) is complete. By Proposition 6.3, it will have the Baire property. Hence, it
suffices to show that the spaces Embǫ(X,Y ) are open in C(X,Y ) (and then it follows not only
that Emb(X,Y ) is non-empty, but actually dense in C(X,Y )).

So, let ǫ > 0 and we show that Embǫ(X,Y ) is open. Let f ∈ Embǫ(X,Y ) arbitrary; we are
looking for δ such that

Bdsup(f, δ) = {g ∈ C(X,Y ) : dsup(g, f) < δ}
is inside Embǫ(X,Y ). We first claim that there exists δ such that

(1.1) d(f(x), f(y)) < 2δ =⇒ d(x, y) < ǫ.

If no such δ exists, we would find sequences (xn) and (yn) in X with

d(f(xn), f(yn)) → 0, d(xn, yn) ≥ ǫ.

Hence (as we have already done several times by now), after eventually passing to convergent
subsequences, we may assume that (xn) and (yn) are convergent, with limits denoted x and y.
It follows that

d(f(x), f(y)) = 0, d(x, y) ≥ ǫ,

which is in contradiction with f ∈ Embǫ(X,Y ). Hence we do find δ satisfying (1.1). We claim
that δ has the desired property; hence let g ∈ Bdsup(f, δ) and we prove that g ∈ Embǫ(X,Y ).
Note that

δ(g) = sup {d(x, x′) : x, x′ ∈ K(g)}
where K(f) ⊂ X ×X consists of pairs (x, x′) with g(x) = g(x′). Since g is continuous, K(f) is
closed in X×X; since X is compact, it follows that K(f) is compact; hence the above supremum
will be attained at some x, x′ ∈ K(g). But for such x and x′:

d(f(x), f(x′)) ≤ d(f(x), g(x)) + d(g(x′), f(x‘)) + d(g(x), g(x′)) < 2δ

hence, by (1.1), d(x, x′) < ǫ; hence δ(g) < ǫ. �
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2. Using covers and partitions of unity

In this section we assume that (X, d) is a compact metric space and Y = RN is endowed with
the Euclidean metric (where N ≥ 1 is some integer). For the resulting embedding problem, we
use the result of the previous section. We fix

f ∈ C(X,RN ), ǫ, δ > 0

and we search for g ∈ C(X,Y ) with δ(g) < ǫ, dsup(f, g) < δ. The idea is to look for g of type

(2.1) g(x) =

p
∑

i=1

ηi(x)zi,

where {ηi} is a continuous partition of unity and zi ∈ RN some points. To control δ(g), the
points zi have to be chosen in “the most general” position.

Definition 9.4. We say that a set {z1, . . . , zp} of points in RN is in the general position if,
for any λ1, . . . , λp ∈ R from which at most N + 1 are non-zero, one has:

p
∑

i=1

λizi = 0,

p
∑

i=1

λi = 0 =⇒ λi = 0 ∀ i ∈ {1, . . . , p}.

We now return to our problem. Recall that, for a subset A of a metric space (X, d), diam(A)
is sup{d(a, b) : a, b ∈ A}. For a family A = {Ai : i ∈ I}, denote by diam(A) the the supremum
of {diam(Ai) with i ∈ I}. In the following, we control δ(g).

Lemma 9.5. Let U = {Ui} be an open cover of X, {ηi} a partition of unity subordinated to U
and {zi} a set of points in RN in general position, all indexed by i ∈ {1, . . . , p}. Assume that,
for some integer m, each point in X lies in at most m+ 1 members of U . If N ≥ 2m+ 1 then
the resulting function g given by (2.1) satisfies δ(g) ≤ diam(U).

Proof. Assume that g(x) = g(y), i.e.
∑p

i=1(ηi(x) − ηi(y))zi = 0. Now, x lies in at most
m+1 members of U , so at most m+1 numbers from {ηi(x) : 1 ≤ i ≤ p} are non-zero. Similarly
for y. Hence at most 2(m+ 1) coefficients ηi(x)− ηi(y) are non-zero. Note also that the sum of
these coefficients is zero. Hence, since {z1, . . . , zp} is in general position and 2(m+ 1) ≤ N + 1,
it follows that ηi(x) = ηi(y) for all i. Choosing i such that ηi(x) > 0, it follows that x, y ∈ Ui,
hence d(x, y) ≤ diam(Ui). �

Next, we control dsup(f, g). We use the notation f(U) = {f(U) : U ∈ U}.
Lemma 9.6. Let U = {Ui} be an open cover of X, {ηi} a partition of unity subordinated to U

and {zi} a set of points in RN , all indexed by i ∈ {1, . . . , p}. Assume that, for some r > 0,

diam(f(U)) < r, d(zi, f(Ui)) < r ∀ i ∈ {1, . . . , p}.
Then the resulting function g given by (2.1) satisfies dsup(f, g) < 2r.

Proof. Since d(zi, f(Ui)) < r we find xi ∈ Ui with ||zi − f(xi)|| < r. Writing

g(x) − f(x) =
∑

i

ηi(x)(zi − f(xi)) +
∑

i

ηi(x)(f(xi) − f(x)),

||g(x) − f(x)|| ≤
∑

i

ηi(x)||zi − f(xi)|| +
∑

i

ηi(x)||f(xi) − f(x)||.

Here each ||zi − f(xi)|| < r by hypothesis, hence the first sum is < r. For the second sum note
that, whenever ηi(x) 6= 0, we must have x ∈ Ui hence, ||f(xi) − f(x)|| < r. Hence also the
second sum is < r, proving that ||g(x)− f(x)|| < 2r for all x ∈ X. Since X is compact, we have
dsup(f, g) < 2r. �
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Next, we show the existence of “small enough” covers of X and points in RN in general
position.

Proposition 9.7. For ǫ, δ > 0 there exists an open cover U = {Ui : 1 ≤ i ≤ p} of X with

diam(U) < ǫ, diam(f(U)) < δ/2.

Moreover, for any such cover, there exist points {z1, . . . , zp} in RN in general position such that

d(zi, f(Ui)) < δ/2 ∀ i ∈ {1, . . . , p}.
In particular, g given by (2.1) satisfies δ(g) < ǫ and dsup(f, g) < δ, provided U has the property
that each point in X lies in at most m+ 1 members of U , where m satisfies N ≥ 2m+ 1.

Proof. For the first part we use that f is uniformly continuous and choose r < ǫ such that

d(x, y) < r =⇒ d(f(x), f(y)) <
δ

2
.

Consider then the open cover of X by balls of radius r (or any other arbitrarily smaller radius)
and choose a finite subcover. For the second part, we choose xi ∈ Ui arbitrary and set yi =
f(xi) ∈ RN . We prove that, in general, for any finite set {y1, . . . , yp} of points in RN and any
r > 0, there exists a set {z1, . . . , zp} of points in general position such that d(zi, yi) < r for all i.
We proceed by induction on p. Assume the statement holds up to p and we prove it for p + 1.
So, let {y1, . . . , yp+1} be points in RN . From the induction hypothesis, we may assume that
{y1, . . . , yp} is already in general position. For each I ⊂ {1, . . . , p} of cardinality at most N we
consider the “hyperplane”

HI := {
∑

i∈I

λiyi : λi ∈ R,
∑

i∈I

λi = 1}.

Since |I| ≤ N , each such hyperplane has empty interior (why?), hence so does their union ∪IHI

taken over all Is as above. Hence B(yp+1, r) will contain an element zp+1 which is not in this
intersection. It is not difficult to check now that {y1, . . . , yp, zp+1} is in general position. �
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3. Dimension and open covers

As in the previous section, we fix a compact metric space (X, d) and Y = RN with the
Euclidean metric. We assume that N = 2m + 1 for some integer m. Proposition 9.7 almost
completes the proof of the existence of an embedding of X in R2m+1; what is missing is to make
sure that the covers U from the proposition can be chosen so that each point in X lies in at
most m+ 1 members of U . Note however that this is an important demand. After all, all that
we have discussed applies to any compact metric space X (e.g. S5) and any RN (e.g R!); this
extra-demand is the only one placing a condition on N in terms of the topology of X. Actually,
this is about “the dimension” of X.

Definition 9.8. Let X be a topological space, m ∈ Z+. We say that X has dimension less
or equal to m, and we write dim(X) ≤ m, if any open cover U admits an open refinement V
of multiplicity mult(V) ≤ m + 1, i.e. with the property that each x ∈ X lies in at most m + 1
members of V.

The dimension of X is the smallest m with this property.

With this, Proposition 9.7 and Proposition 9.3 give us immediately:

Corollary 9.9. Any compact metric space X with dim(X) ≤ m can be embedded in R2m+1.

Of course, this nice looking corollary is rather cheap at this point: it looks like we just defined
the dimension of a space, so that the corollary holds. However, the definition of dimension given
above is not at all accidental. By the way, did you ever think how to define the (intuitively
clear) notion of dimension by making use only of the topological information? What are the
properties of the opens that make R one-dimensional and R2 two-dimensional? You may then
discover yourself the previous definition. Of course, one should immediately prove that dim(RN )
is indeed N or, more generally, that any m-dimensional topological manifoldX has dim(X) = m.
These are all true, but they are not easy to prove right away. What we will show here is that:

Theorem 9.10. Any compact m-dimensional manifold X satisfies dim(X) ≤ m.

This will be enough to apply the previous corollary and deduce Theorem 9.1 from the beginning
of this chapter. The rest of this section is devoted to the proof of this theorem. First, we have
the following metric characterization of dimension:

Lemma 9.11. Let (X, d) be a compact metric space and m an integer. Then dim(X) ≤ m if
and only if, for each δ > 0, there exists an open cover V with diam(V) < δ and mult(V) ≤ m+1.

Proof. For the direct implication, start with the cover by balls of radius δ/2 and choose
any refinement V as in Definition 9.8. For the converse, let U be an arbitrary open cover. It
then suffices to consider an open cover as in the statement, with δ a Lebesgue number for the
cover U (see Proposition 6.10). �

Lemma 9.12. Any compact subspace K ⊂ RN has dim(K) ≤ N .

Proof. For simplicity in notations, we assume that N = 2. We will use the previous lemma.
First, we consider the following families of opens in the plane:

• U0 consisting of the open unit squares with vertices in the integral points (m,n) (m,n ∈
Z).

• U1 consisting of the open balls of radius 1
2 with centers in the integral points.

• U2 consisting of the open balls of radius 1
4 with centers in the middles of the edges of

the integral lattice.



130 9. EMBEDDING THEOREMS

Make a picture!Note that the members of each of the families Ui are disjoint. Hence

U := U0 ∪ U1 ∪ U2

is an open cover of R2 of multiplicity 3 with diam(U) =
√

2. To obtain similar covers of smaller
diameter, we rescale. For each λ > 0, φλ : R2 → R2, v 7→ λ 7→ λv is a homeomorphism. The
rescaling of U is

Uλ = {φλ(U) : U ∈ U},
it has multiplicity 3 and diameter λ

√
2. Now, for K ⊂ R2 compact, we use the covers Uλ (and

the compactness o K) to apply the previous lemma. �

Lemma 9.13. If X is a topological space and X = ∪p
i=1Xi where each Xi is closed in X with

dim(Xi) ≤ m, then dim(X) ≤ m.

Proof. Proceeding inductively, we may assume m = 2, i.e. X = Y ∪Z with Y , Z-closed in
X of dimension ≤ m. Let U be an arbitrary open cover of X; we prove that it has a refinement
of multiplicity ≤ m+ 1. First we claim that U has a refinement V such that each y ∈ Y lies in
at most m + 1 members of V. To see this, note that {U ∩ Y : U ∈ U} is an open cover of Y ,
hence it has a refinement (covering Y ) {Ya : a ∈ A} (for some indexing set A). For each a ∈ A,
write Ya = Y ∩ Va with Va ⊂ X open, and choose Ua ∈ U such that Ya ⊂ Ua. Then

V := {Va ∩ Ua : a ∈ A} ∪ {U − Y : U ∈ U}
is the desired refinement. Re-index it as V = {Vi : i ∈ I} (we assume that there are no
repetitions, i.e. Vi 6= Vi′ whenever i 6= i′). Similarly, let W = {Wj : j ∈ J} be a refinement of V
with the property that each z ∈ Z belongs to at most m + 1 members of W. For each j ∈ J ,
choose α(j) ∈ I such that Wj ⊂ Vα(j). For each i ∈ I, define

Di = ∪j∈α−1(i)Wj.

Consider D = {Di : i ∈ I}. Since for each j ∈ J , i ∈ I

Wj ⊂ Dα(j), Di ⊂ Vi,

D is an open cover of X, which refines V (hence also U). It suffices to show that mult(D) ≤ m+1.
Assume that there exist k distinct indices i1, . . . , ik with

x ∈ Di1 , . . . ,Dik .

We have to show that k ≤ m + 1. If x ∈ Y , since Di ⊂ Vi for all i, the defining property of
V implies that k ≤ m + 1. On the other hand, for each a ∈ {1, . . . , k}, since x ∈ Dia , we find
ja ∈ α−1(ia) such that x ∈ Wja ; hence, if x ∈ Z, then the defining property of W implies that
k ≤ m+ 1. �

Proof. (end of the proof of Theorem 9.10) Since X is a manifold, around each x ∈ X we
find a homeomorphism φx : Ux → Rn defined on an open neighborhood Ux of x. Let Vx ⊂ Ux

corresponding (by φx) to the open ball of radius 1. From the open cover {Vx : x ∈ X}, extract
an open subcover, corresponding to x1, . . . , xk ∈ X. Then X = ∪iXi, and each Xi is a closed
subset of X homeomorphic to a closed ball of radius 1, hence has dim(Xi) ≤ m. �



CHAPTER 10

Previous exams

1. Exam A, April 17, 2013

Exercise 10.1. (1 pt) Let X and Y be two topological spaces. For A ⊂ X, B ⊂ Y , we
consider A×B as a subset of X × Y . Show that:

Int(A×B) = Int(A) × Int(B)

(the interior of A×B inside X × Y (with respect to the product topology)= the product of the
interior of A in X with the interior of B in Y ).

Exercise 10.2. (1 pt) Give an example of a connected, bounded, open subset of R2 which
cannot be written as a finite union of balls (here we use the Euclidean metric and topology on
R2).

Exercise 10.3. Let X = (−1,∞).

(i) (1 pt) Find all the numbers a, b ∈ R with the property that

n · t = φn(t) = 2nt+ an + b

defines an action of the group (Z,+) on X.
(ii) (1 pt) For the a and b that you found, show that the resulting quotient space X/Z is

homeomorphic to S1.

Exercise 10.4. On X = Z we consider the family B of subsets of X consisting of the empty
set and the subsets of type

Na,b := a+ bZ = {a+ bn : n ∈ Z} ⊂ Z,

with a, b ∈ Z, b > 0.

(i) (0.25 pts) Show that, for a, a′, b, b1, b2 ∈ Z with b, b1, b2 > 0:

Na,1 = Na,−1 = Z,

Na,b1b2 ⊂ Na,b1 ∩Na,b2

and one has the following equivalences:

a′ ∈ Na,b ⇐⇒ a ∈ Na′,b ⇐⇒ Na,b = Na′,b.

(ii) (0.5 pts) Show that B is not a topology on X.
(iii) (0.5 pts) Show that B is a topology basis on X. Let T be the induced topology.
(v) (1 pt) Compute the interior and the closure of A := {−1, 1} in (X,T ).
(iv) (0.5 pts) Show that (X,T ) is Hausdorff.
(vi) (0.25 pts) Show that, for any b ∈ Z, b > 0, Z can be written as a union of b nonempty

subsets that belong to B, each two of them being disjoint.
(vii) (0.5 pts) Show that any subset of type Na,b is both open and closed in (X,T ).

131
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(viii) (1 pt) Show that

Z \ {−1, 1} =
⋃

p−prime number

N0,p

and then, using (vii) and (v), deduce that the set of prime numbers is infinite.

Exercise 10.5. Consider the 3-sphere S3 viewed as a subspace of C2:

S3 = {(u, v) : u, v ∈ C, |u|2 + |v|2 = 1}.
Inside the sphere we consider

A := {(u, v) ∈ S3 : |v| =

√
2

2
}.

(i) (1 pt) Show that S3 \ A has two connected components.
(ii) (0.5 pts) Show that the two connected components, denoted X1 and X2, satisfy:

X1 ∩X2 = ∂(X1) = ∂(X2) = A.

(where the closures and boundaries are inside the space S3).
(iii) (1 pt) Consider the unit circle and the closed unit disk

S1 = {(α, β) ∈ R2 : α2 + β2 = 1}, D2 = {(x, y) ∈ R2 : x2 + y2 ≤ 1}.
By a solid torus we mean any space homeomorphic to S1 ×D2. Show that

f : S1 ×D2 → R3, f((α, β), (x, y)) = ((2 − x)α, (2 − x)β, y)

is an embedding and indicate on a picture what the image of f is (... motivating the
name ”solid torus”).

(iv) (1 pt) Show that X i is a solid torus for i ∈ {1, 2}.
(v) (1 pt) Deduce that the 3-sphere can be obtained from two disjoint copies of S1 × D2

(i.e. two solid tori) by gluing any point (z1, z2) ∈ S1 × S1 in the boundary of the first
copy with the point (z2, z1) in the boundary of the second.

Note 1: The mark for this exam is the minimum between 10 and the number of points that
you score (in total, there are 13 points in the game!).

Note 2: please MOTIVATE ALL YOUR ANSWERS (e.g., in Exercise 2, do not just give the
example, but also explain/prove why it has the required properties).



2. EXAM B, JUNE 26, 2013 133

2. Exam B, June 26, 2013

Exercise 10.6. Prove that there is no continuous injective map f : S2 → S1. (1p)
(warning: there are injective maps from S2 to S1!).

Exercise 10.7. Let X = (0,∞) and consider the open cover of X

U = {U1, U2, U3, . . .} with Un = (0, n).

(i) Show that U does not admit a subcover which is locally finite. (0.5p)
(ii) Describe a locally finite refinement of U . (0.5p)

Exercise 10.8. Consider

X = {(u, v,w) ∈ R3 : u2 + v2 + w2 = 1} \ {(0, 0, 1), (0, 0,−1)},

Y = {(x, y, z ∈ R3 : x2 + y2 + z2 = 2
√

x2 + y2} \ {(0, 0, 0)}.
π : X → R3, π(u, v,w) = (2u

√

u2 + v2, 2v
√

u2 + v2, 2w
√

u2 + v2).

(i) Compute the closure Y of Y in R3 and prove that it is compact. (1p)
(ii) Prove that the one-point compactification of X is homeomorphic to Y . (1p)
(iii) Draw a picture of Y and explain the map π on the picture. (1p)

Exercise 10.9. Let X be a Hausdorff, locally compact, 2nd countable topological space and
assume that U is an open in X × R containing X × {0}:

X × {0} ⊂ U ⊂ X × R.

The aim of this exercise is to prove that there exists a continuous function f : X → (0,∞) such
that U contains

Uf := {(x, t) ∈ X × R : |t| < f(x)}.
Consider

r : X → R, r(x) = sup{r ∈ (0, 1] : {x} × (−r, r) ⊂ U}.
(i) Show that one can find an open cover {Vi : i ∈ I} of X and a family {ri : i ∈ I} of

strictly positive real numbers (for some indexing set I) such that

r(y) > ri ∀ y ∈ Vi, ∀ i ∈ I. (0.5p)

(note: depending on the argument that you find, I that you construct may be countable,
but it may also be “very large”- e.g. “as large as X”).

(ii) For {Vi : i ∈ I}, {ri : i ∈ I} as above, use a partition of unity argument to build a
continuous function f : X → (0,∞) such that Uf ⊂ U . (1.5p)

(iii) Deduce that if X is actually compact, then f may be choosen to be constant. (0.5p)

Exercise 10.10. In this exercise we work over R. Let X be a compact, Hausdorff topological
space, C(X) the space of real-valued continuous functions on X and let

A ⊂ C(X).
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be a point-separating subalgebra. The aim of this exercise is to show that the spectrum XA is
homeomorphic to X. The homeomorphism will be provided by the map:

F : X → XA, F (x) = χx|A
(the restriction of χx : C(X) → R to A, where we recall that χx sends f to f(x)).

(i) Show that F is continuous. (0.5p)
(ii) Show that F is injective. (0.5p)

The next five steps are to prove that F is surjective. Let χ ∈ XA be a character of A.

(iii) Show that, if f, g ∈ A and f ≥ g, then χ(f) ≥ χ(g). (0.5p)
(Hint: recall that, in the proof of the Stone-Weierstrass theorem we showed that,

for f ∈ A with f ≥ 0, one has
√
f ∈ A).

(iv) Show that for all f ∈ A one has |χ(f)| ≤ ||f ||sup. (0.5p)
(v) Deduce that for any sequence (fn)n≥1 of elements in A, convergent to some f ∈ C(X),

the sequence (χ(fn))n≥1 is convergent. (0.5p)
(vi) Deduce that there exists an extension of χ : A → R to a continuous map

χ̃ : C(X) → R. (0 .5p)

(vii) And then show that χ̃ is a character. (0.5p)

Finally:

(viii) Conclude that F is a homeomorphism. (0.5p)

Notes:

• English or Dutch (or both)- doesn’t matter, but please write clearly (thanks!).
• Please motivate your answers. For instance, in exercise 4, part (ii), do not forget, after

you write the function f , to check that f is well defined, continuous and that it has the
desired property.

• In this exam, the sub-points of any exercise do not fully depend on each other. For
instance, in the last exercise, you may do (v) without doing (iv) (... but using it).
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3. Herkansing, August, 2013

Exercise 10.11. On X = [0,∞) we consider the family B of subsets consisting of the empty
set and all intervals of type [r,∞) with r ∈ R+ and we denote by T the smallest topology on X
containing B.

(i) Show that B is not a topology, but it is a topology basis. (0.5p)
(ii) Is (X,T ) Hausdorff? Is it compact? Is it connected? (0.75p)
(iii) Is the sequence (xn)n≥1 given by

xn = 1 +
(−1)n

n

convergent in (X,T )? To what? (0.5p)
(iv) Compute the interior and the closure of [1, 2)×(1, 2] in X×X endowed with the product

topology. (0.5p).

Exercise 10.12. Decide (and explain) which of the following statements hold true:

(i) S1 × R can be embedded in R2. (0.5p)
(ii) S1 × S1 × S1 can be embedded in R4. (0.5p)
(iii) S2 can be embedded in S1. (0.5p)
(iv) the Moebius band can be embedded into the projective space P 2. (0.5p)
(v) the projective space P 3 can be embedded in R6. (0.5p)

Exercise 10.13. By a solid torus we mean any space homeomorphic to S1 ×D2.

(i) Show that

f : S1 ×D2 → R3, f((α, β), (x, y)) = ((2 − x)α, (2 − x)β, y)

is an embedding and indicate on a picture what the image of f is (... motivating the
name solid torus). (1p)

Next, consider the 3-sphere S3 viewed as a subspace C2:

S3 = {(u, v) : u, v ∈ C, |u|2 + |v|2 = 1}.
Inside the sphere we consider

A := {(u, v) ∈ S3 : |v| =

√
2

2
}.

(ii) Show that S3 \ A has two connected components; denote them by X1 and X2. (0.5p)
(iii) Show that Xi is a solid torus for i ∈ {1, 2}. (0.5p)
(iv) Show that the 3-sphere S3 can be obtained from two disjoint copies of S1 × D2 (i.e.

two solid tori) by gluing any point (z1, z2) ∈ S1 × S1 in the boundary of the first copy
with the point (z2, z1) in the boundary of the second.(1p)

Exercise 10.14. Give an example of two connected, Hausdorff, locally compact spaces X and
Y which are not homeomorphic but have the property that their one-point compactifications
are homeomorphic. (1p)
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Exercise 10.15. If A and B are two commutative algebras over R, a map

F : A→ B

is called an algebra homomorphism if it is R-linear and satisfies

F (a1a2) = F (a1)F (a2)

for all a1, a2 ∈ A, and F (1A) = 1B , where 1A ∈ A and 1B ∈ B are the units. It is called an
isomorphism of algebras if it is also bijective.

(1) Show that for any algebra homomorphism F : A → B, one has an induced continuous
map

F ∗ : XB → XA, F
∗(χ) = χ ◦ F.

Moreover, if F is an isomorphism, show that F ∗ is a homeomorphism. (0.5p)
(2) IfX and Y are two compact Hausdorff spaces, show that for any algebra homomorphism

F : C(Y ) → C(X)

one finds a continuous function f : X → Y such that

F (φ) = φ ◦ f ∀ φ ∈ C(Y ). (1p)

(3) Compute the spectrum of

A := {f : R2 → R continuous : f(x+ 1, y) = f(x, y + 1) = f(x, y), ∀ x, y ∈ R}. (0 .5p)

Note: As usual, please motivate/explain/prove all your statements!!!
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4. Exam A, April 18, 2012

Exercise 10.16. Let B be the familly of subsets of R consisting of R and the subsets

[n, a) := {r ∈ R : n ≤ r < a} with n ∈ Z, a ∈ R.

(1) Show that B is not a topology on R, but it is a topology basis. Denote by T the
associated topology. (1p)

(2) Is (R,T ) second countable? But Hausdorff? But metrizable? Can it be embedded in
R2012 (with the Euclidean topology)? (1p)

(3) compute the closure, the interior and the boundary of A = [−1
2 ,

1
2 ] in (R,T ). (1.5p)

Exercise 10.17. Prove directly that the abstract torus Tabs is homeomorphic to S1 × S1.
More precisely, define an explicit map

f̃ : [0, 1] × [0, 1] → R4

whose image is
S1 × S1 = {(x, y, z, t) ∈ R4 : x2 + y2 = z2 + t2 = 1}

and which induces a homeomorphism f : Tabs → S1 × S1. Provide all the arguments. (1.5p).

Exercise 10.18. Let X be the space obtained from the sphere S2 by gluing the north and the
south pole (with the quotient topology). Show that X can be obtained from a square [0, 1]×[0, 1]
by glueing some of the points on the boundary (note: you are not allowed to glue a point in the
interior of the square to any other point). More precisely:

(1) Describe the equivalence relation R0 on S2 encoding the glueing that defines X. (0.25p)
(2) Make a picture of X in R3. (0.25p)
(3) Describe an equivalence relation R on [0, 1]× [0, 1] encoding a glueing with the required

properties. (1p)
(4) Show that, indeed, X is homeomorphic to [0, 1]× [0, 1]/R (provide as many arguments

as you can, but do not write down explicit maps- instead, indicate them on the picture).
(0.5p)

Exercise 10.19. Show that:

(1) There exist continuous surjective maps f : S1 → S1 which are not injective. (0.5p)
(2) Any continuous injective map f : S1 → S1 is surjective. (1p)

Exercise 10.20. Show that any continuous map

f : (R,TEucl) → (R,Tl)

must be constant (recall that Tl is the lower limit topology- i.e. the one generated by intervals
of type [a, b)). (1.5p)

Note 1: Motivate all your answers. Whenever you use a Theorem or Proposition, please make
that clear (e.g. by stating it). Please write clearly (English or Dutch).

Note 2: The final mark is
min{10, 1 + p},

where p is the number of points you collect from the exercises.
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5. Exam B, June 27, 2012

Exercise 10.21. (1p) Show that

K := {(x, y) ∈ R2 : x2012 + y2012 ≤ 10sin(ex + ey + 1000) + ecos(x2+y2)}.
is compact.

Exercise 10.22. (1.5p) Let X be a bouquet of two circles:

X = {(x, y) ∈ R2 : ((x− 1)2 + yr − 1)((x+ 1)2 + y2 − 1) = 0}.
We say that a space T is an exam space if there exist three distinct point p, q, r ∈ X such that
Y is homeomorphis to the one one point compactification of X − {p, q, r}.

Find the largets number l with the property that there exist exam-aces Y1, . . . , Yl with the
property that any two of them are not homeomorphic (prove all the statements that you make!).

Exercise 10.23. (1p) Let X be a topological space and let γ : [0, 1] → X be a continu-
ous function. Assume that γ is locally injective, i.e. that, for any t ∈ [0, 1], there exists a
neighborhodd V of t in [0, 1] such that

γ|V : V → X

is injective. Show that, for any x ∈ X, the set

γ−1(x) := {t ∈ [0, 1] : γ(t) = x}
is finite.

Exercise 10.24. (1p) Let X be a normal space and let A ⊂ X be a subspace with the
property that any two continuous functions f, g : X → R which coincide on A must coincide
everywhere on X. Show that A is dense in X (i.e. the closure of A in X coincides with X).

Exercise 10.25. (1p) Consider the following open cover of R:

U := {(r, s) : r, s ∈ R, |r − s| < 1

3
}.

Describe a locally finite subcover of U .

Exercise 10.26. (each of the sub-questions is worth 0.5 p) Let A be a commutative algebra
over R. Assume that it is finitely generated, i.e. there exist a1, . . . , an ∈ A (called generators)
such that any a ∈ A can be written as

a = P (a1, . . . , an),

for some polynomial P ∈ R[X1, . . . ,Xn]. Recall that XA denotes the topological spectrum of A;
consider the functions

fi : XA → R, fi(χ) = χ(ai) 1 ≤ i ≤ n,

f = (f1, . . . , fn) : XA → Rn.

Show that

(i) f is continuous.
(ii) For any character χ ∈ XA and any polynomial P ∈ R[X1, . . . ,Xn],

χ(P (a1, . . . , an)) = P (χ(a1), . . . , χ(an)).
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(iii) f is injective.
(iv) the topology of XA is the smallest topology on XA with the property that all the

functions fi are continuous.
(v) f is an embedding.

Next, for a subspace K ⊂ Rn, we denote by Pol(K) the algebra of real-valued polynomial
functions on K and let a1, . . . , an ∈ Pol(K) be given by

ai : K → R, ai(x1, . . . , xn) = xi.

Show that

(vi) Pol(K) is finitely generated with generators a1, . . . , an.
(vii) Show that the image of f (from the previous part) contains K.

Finally:

(viii) For the (n − 1) sphere K = Sn−1 ⊂ Rn, deduce that f induces a homeomorphism
between the spectrum of the algebra Pol(K) and K.

(ix) For which subspaces K ⊂ Rn can one use a similar argument to deduce that the
spectrum of Pol(K) is homeomorphic to K?

Note: Motivate all your answers; give all details; please write clearly (English or Dutch). The
mark is given by the formula:

min{10, 1 + p},
where p is the number of points you collect from the exercises.
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Exercise 10.27. On X = R consider the topology:

T = {(−a, a) : 0 ≤ a ≤ ∞}.
(i) Is (X,T ) metrizable? (0.5 p)
(ii) Is (X,T ) 1st countable? (0.5 p)
(iii) Is (X,T ) connected? (0.5 p)
(iv) Is the sequence xn = (−1)n + 1

n convergent in (X,T )? To what? (0.5 p)
(v) Find the interior and the closure of A = (−1, 2) in (X,T ). (0.5 p)
(vi) Show that any continuous function f : X → R is constant. (0.5 p)

Exercise 10.28. Let M be the Moebius band. For a continuous map f : S1 →M we denote

Xf := M − f(S1).

(i) Show that, for any f , Xf is locally compact but not compact. (0.5 p)

(ii) Is there a function f such that X+
f is homeomorphic to the projective space P2? (0.5

p)

Exercise 10.29.

(i) Let A be a commutative algebra over R and assume that a0, a1, . . . , an ∈ A generate
A, i.e. that any a ∈ A can be written as

a = P (a0, . . . , an),

for some P ∈ R[X0, . . . ,Xn]. Let XA be the topological spectrum of A. Show that

f : XA → Rn+1, f(χ) = (χ(a0), . . . , χ(an))

is an embedding. (1.5 p)
(ii) If A = Pol(K) is the algebra of real-valued polynomial functions on a subset K ⊂ Rn+1

and ai are the polynomial functions

ai : K → R, ai(x1, . . . , xn) = xi, (0 ≤ i ≤ n),

show that the image of the resulting f contains K. (0.5 p)
(iii) For the sphere Sn ⊂ Rn+1, deduce that the spectrum of the algebra Pol(Sn) is homeo-

morphic to Sn. (1 p)

Exercise 10.30. (1 p) Prove that there is no continuous map g : C → C with the property
that g(z)2 = z for all z ∈ C.

Exercise 10.31. (1 p) On (0,∞) we define the action of the group (Z,+) by:

Z × (0,∞) → (0,∞), (n, r) 7→ 2nr.

Show that the quotient (0,∞)/Z is homeomorphic to S1.

Exercise 10.32. (1 p) Let X be a normal space. Show that, for A,B ⊂ X, A and B have the
same closure in X if and only if, for any continuous function f : X → R, one has the equivalence

f |A = 0 ⇐⇒ f |B = 0.

Note: Please motivate all your answers.
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7. Exam A, April 20, 2011

Notes:

• justify all your answers!!!
• the marking starts from 1 point. By solving the exercises, you can earn 9.5 more points.

Your mark for this exam will be the minimum between your total number of points
and 10.

Exercise 10.33. On X = R consider the family of subsets:

B := {(−p, p) : p ∈ Q, p > 0}, T = {(−a, a) : 0 ≤ a ≤ ∞}.
• Show that B is a topology basis (0.5 pt).
• Show that T is the topology associated to B. (0.5 pt).
• Is the sequence xn = (−1)n + 1

n convergent in (X,T )? To what? (0.5 pt).
• Find the interior and the closure of A = (−1, 2) in (X,T ) (0.5 pt).
• Show that any continuous function f : X → R is constant (0.5 pt).
• For the topological space (X,T ), decide whether it is:

1. Hausdorff (0.5 pt).
2. 1st countable (0.5 pt).
3. Metrizable (0.5 pt).
4. Connected (0.5 pt).

Exercise 10.34. Which of the following spaces are homeomorphic and which are not:

• (1,∞) and (0,∞) (0.5 pt).
• R2 −D2 and R2 − {0} (0.5 pt).
• (0, 1) and [0, 1) (0.5 pt).
• S1 × (R2 − {0}) and T 2 × R∗ (0.5 pt).
• S1 × (R2 − {0}) and T 2 × R∗

+ (0.5 pt).

(here D2 denotes the closed unit disk, T 2 denoted the torus. R∗ = R − {0}, R∗
+ = (0,∞)).

Exercise 10.35. Consider the map

π : R2 → S1 × R, (x, y) 7→
((

cos(x+ y), sin(x+ y)
)
, x− y

)

∈ S1 × R.

• Describe an equivalence relation R on R2 such that (S1 × R, π) is a quotient of R2

modulo R (0.5 pt).
• Find a group Γ and an action of Γ on R2 such that R is the equivalence relation induced

by this action (0.5 pt).
• Show that, indeed, R2/Γ is homeomorphic to S1 × R (0.5 pt).

Exercise 10.36. Show that, if a topological space X is Hausdorff, then the cone Cone(X)
of X is Hausdorff (0.5 pt).

Exercise 10.37. Show that any continuous function f : [0, 1] → [0, 1] admits a fixed-point,
i.e. there exists t0 ∈ [0, 1] such that f(t0) = t0. (0.5 pt).
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Exercise 10.38. Consider

X1 = {(x, y, z) ∈ R3 : (z = 0) or (x = y = 0, z ≥ 0)},
X2 = {(x, y, z) ∈ R3 : (z = 0) or (x = 0, y2 + z2 = 1, z ≥ 0)}.

X3 = {(x, y, z) ∈ R3 : (x2 + y2 + z2 = 1) or (y = 0, z = 0,
1

2
< |x| < 1)},

(i) Show thatX1,X2, X3 are locally compact (hint: try to use the basic properties of locally
compact spaces; alternatively, you can try to find direct arguments on the pictures).
(0.5 p)

(ii) Show that the one-point compactifications of X1, X2 and X3 are homeomorphic to each
other. (1 p)

Exercise 10.39. Given a polynomial p ∈ R[X0,X1, . . . ,Xn], we denote by Rp the set of
reminders modulo p. In other words,

Rp = R[X0,X1, . . . ,Xn]/Rp,

where Rp is the equivalence relation on R[X0,X1, . . . ,Xn] given by

Rp = {(q1, q2) : ∃ q ∈ R[X0,X1, . . . ,Xn] such that q1 − q2 = pq}.
We also denote by πp : R[X0,X1, . . . ,Xn] → Rp the resulting quotient map. Show that:

(i) There is a unique algebra structure on Rp (i.e. unique operations +, · and multiplica-
tions by scalars, defined on Rp) with the property that πp is an morphism of algebras,
i.e.

πp(q1 + q2) = πp(q1) + πp(q2), πp(q1 · q2) = πp(q1) · πp(q2), λπp(q) = πp(λq)

for all q1, q2 ∈ R[X0,X1, . . . ,Xn], λ ∈ R. (0.5 p)
(ii) For p = x2

0 + . . . + x2
n, the spectrum of Rp has only one point. (1 p)

(iii) For p = x2
0 + . . . + x2

n − 1, the spectrum of Rp is homeomorphic to Sn (1 p) .
(iv) What is the spectrum for p = x0x1 . . . xn? (0.5 p)

Exercise 10.40. Let X be the space of continuous maps f : [0, 1] → [0, 1] with the property
that f(0) = f(1). We endow it with the sup-metric dsup and the induced topology (recall that
dsup(f, g) = sup{|f(t) − g(t)| : t ∈ [0, 1]}). Prove that:

(i) X is bounded and complete. (1 p)
(ii) X is not compact. (0.5 p)

Exercise 10.41. Show that:

(i) The product of two sequentially compact spaces is sequentially compact. (1 p)
(ii) Deduce that the product of two compact metric space is a compact space. (1 p)

Exercise 10.42. Show that the family of open intervals

U := {(q, q + 1) : q ∈ R}
forms an open cover of R which admits no finite sub-cover, but which admits a locally finite
sub-cover. (1.5 p)



8. EXAM B, JUNE 29, 2011 143

Exercise 10.43. Prove that there is no continuous injective map f : S1 ∨ S1 → S1, where
S1 ∨ S1 is a bouquet of two circles (two copies of S1, tangent to each other). (1.5 p)

Note: The mark for this exam is the minimum between 10 and the number of points that you
score (in total, there are 11 points in the game!).



144 10. PREVIOUS EXAMS
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Exercise 10.44. Show that the equation

x5 + 7x2 − 30x+ 1 = 0

has at least two solutions x0, x1 ∈ (0, 2). (1 p)

Exercise 10.45. Consider the space C([0, 1]) of all continuous maps f : [0, 1] → R, endowed
with the sup-metric. Show that

A := {f ∈ C([0, 1]) : x2 ≤ ef(x) + sin(f(x)) ≤ x ∀ x ∈ [0, 1]}
is a closed and bounded subset of C([0, 1]). (1 p)

Exercise 10.46. Describe a subspace X ⊂ R2 which is connected, whose closure (in R2) is
compact, but with the property that X is not locally compact. (1 p)

Exercise 10.47. Let G = (0,∞) be the group of strictly positive reals, endowed with the
usual product. Find an action of G on R4 with the property that R4/G is homeomorphic to S3.
(1 p)

Exercise 10.48. Let X = R2 endowed with the product topology Tl × Tl, where Tl is the
lower limit topology on R.

a. Describe a countable topology basis for the topological space X. (0.5 p)
b. Find a sequence (xn)n≥1 of points in R2 which converges to (0, 0) with respect to the

Euclidean topology, but which has no convergent subsequence in the topological space
X. (0.5 p)

c. Compute the interior, the closure and the boundary (in X) of

A = [0, 1) × (0, 1]. (1p)

(please use pictures!).

Exercise 10.49. Decide (and explain) which of the following statements hold true:

a. S1 × S1 × S1 can be embedded in R4. (0.5 p)
b. S1 can be embedded in (0,∞). (0.5 p)
c. the cylinder S1 × [0, 1] can be embedded in the Klein bottle. (0.5 p)
d. The Moebius band can be embedded into the projective space P2. (0.5 p)
e. the projective space P3 can be embedded in R6. (0.5 p)

Exercise 10.50. Given a polynomial p ∈ R[X0,X1, . . . ,Xn], we denote by Rp the set of
reminders modulo p. In other words,

Rp = R[X0,X1, . . . ,Xn]/Rp,

where Rp is the equivalence relation on R[X0,X1, . . . ,Xn] given by

Rp = {(q1, q2) : ∃ q ∈ R[X0,X1, . . . ,Xn] such that q1 − q2 = pq}.
For q ∈ R[X0,X1, . . . ,Xn], we denoted by [q] ∈ Rp the induced equivalence class. Show that:
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a. The operations (on Rp) +, · and multiplications by scalars given by

[q1] + [q2] := [q1 + q2], [q1] · [q2] := [q1 · q2], λ[q] := [λq]

are well-defined and make Rp into an algebra. (0.5 p)
b. For p = x2

0 + . . . + x2
n, the spectrum of Rp has only one point. (0.5 p)

c. For p = x2
0 + . . . + x2

n − 1, the spectrum of Rp is homeomorphic to Sn (1 p) .

Note: please motivate all your answers (e.g., in Exercise 10.49, explain/prove in each case
your answer. Or, in Exercise 10.47 prove that R4/G is homeomorphic to S3).
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10. Exam A , April 21, 2010

Important: motivate/prove your answers to the questions from the exercises. When making
pictures, try to make them as clear as possible. When using a result from the lecture notes,
please give a clear reference.

Exercise 10.51. Let X be the (interior of an) open triangle, as drawn in the picture (the
edges are not part of X!), viewed as a topological space with the topology induced from R2.
Let A ⊂ X be the open disk drawn in the picture (tangent to the edges of the closed triangle).
Compute the closure and the boundary of A in X. (1p)

A= an open disk inside X  X= an open triangle

Figure 1.

Exercise 10.52. Let X be obtained by taking two disjoint copies of the interval [0, 2] (with
the Euclidean topology) and gluing each t in the first copy with the corresponding t in the
second copy, for all t ∈ [0, 2] different from the midle point. Explicitely, one may take the space

Y = [0, 2] × {0} ∪ [0, 2] × {1} ⊂ R2

with the topology induced from the Euclidean topology, and X is the space obtained from Y by
gluing (t, 0) to (t, 1) for all t ∈ [0, 2], t 6= 1. We endow X with the quotient topology.

(i) Is X Hausdorff? But connected? But compact? (1.5p)
(ii) Can you find A,B ⊂ X which, with the topology induced from X, are compact, but

such that A ∩B is not compact? (1p)
(iii) Show that X can also be obtained as a quotient of the circle S1. (0.5p)

Exercise 10.53. Let X, Y and Z be the spaces drawn in Figure 2.

(i) Show that any two of them are not homeomorphic. (1.5p)
(ii) Compute their one-point compactifications X+, Y + and Z+. (1p)
(iii) Which two of the spaces X+, Y + and Z+ are homeomorphic and which are not? (1p)
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X Y Z

Figure 2.

Exercise 10.54. Let M be the Moebius band. For any continuous function f : S1 →M we
denote by Mf the complement of its image:

Mf := M − f(S1)

and we denote by M+
f the one-point compactification of Mf .

(i) Show that for any f , Mf is open in M , it is locally compact but not compact. (1p)

(ii) Find an example of f such that M+
f is homeomorphic to D2. Then one for which it is

homeomorphic to S2. And then one for P2. (1.5p)

Exercise 10.55. Let T be the family consisting of all open intervals (a, b) ⊂ R with a, b ∈
R ∪ {∞,−∞}.

(i) Show that T is a topology on R. (0.5p)
(ii) Is the identity Id : (R,TEucl) → (R,T ) continuous? But Id : (R,T ) → (R,TEucl)? (1p)
(iii) Is (R,T ) Hausdorff? But compact? But connected? (1.5p)
(iv) Show that [0, 1], with the topology induced from T , is compact. Does it follow from

one of the properties of compact spaces (which one?) that [0, 1] is closed in (R,T )?
Explain. (1p)
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Exercise 10.56. Let N = {0, 1, 2, . . .} be the set of non-negative integers. We consider the
following two collections of subsets of N:

• T1 consisting of ∅, N and all the sets of the form {0, 1, . . . , n} with n ∈ N.
• T2 consisting of ∅ and all the sets of the form {n.n+ 1, . . .} with n ∈ N.

Questions:

(1) Show that T1 and T2 are two topologies on N. (1p)
(2) Show that the spaces (N,T1) and (N,T2) are not homeomorphic. (0.5p)
(3) for each of the spaces (N,T1) and (N,T2) decide whether the space is Hausdorff, con-

nected or compact. (1.5p)

Exercise 10.57. Let Tu be the topology on R induced by the topology basis

Bu := {(a, b] : a, b ∈ R, a < b}.
Compute the interior, the closure and the boundary of

A := ((0,
1

3
) ∪ [

1

2
, 1]) × [0, 1)

inside the topological space X = R × R endowed with the product topology Tu × Tu. (2p).

Exercise 10.58. Let X be the connected sum of a Moebius band and a torus. Show how one
can obtain X from a disk by gluing some of the points on the boundary of the disk (2p). Then
describe on the picture a continuous map f : S1 → X such that the one-point compactification
of X is homeomorphic to a sphere. (0.5p)

Exercise 10.59. Let X be the one-point compactification of the space obtained by removing
two points from the torus. Show that:

(1) X can be embedded in R3.(1p)
(2) X is not homeomorphic to S2. (1p)
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12. Exam A, April, 2009

Exercise 10.60. (3.25p) Let Tl be the topology on R induced by the topology basis

Bl := {[a, b) : a, b ∈ R, a < b}.
(i) With the topology induced from (R,Tl), is [0, 1) connected? But compact? (1p)
(ii) The same questions for (0, 1]. (1p)
(iii) Are [0, 1) and (0, 1] (with the induced topologies) homeomorphic? (0.25p)
(iv) Compute the interior, the closure and the boundary of

A = (0, 1] × [0, 1)

in the topological space X = R × R endowed with the product topology Tl × Tl. (1p)

Exercise 10.61. (2.5p) Describe an embedding of the cylinder S1 × [0, 1] into the space X,
show that its complement is locally compact, and find the one-point compactification of the
complement, in each of the cases:

(i) X is a torus. (1.5p)
(ii) X is the plane R2. (1p)

Exercise 10.62. (2.5p)

(i) Write the Moebius band as a union of two subspaces M and C where M is itself a
Moebius band, C is a cylinder (i.e. homeomorphic to S1 × [0, 1]) and M ∩C is a circle.
(1p)

(ii) Similarly, decompose P2 as the union of a Moebius band M and another subspace Q,
such that Q is a quotient of the cylinder and M ∩Q is a circle. (1p)

(iii) Deduce that P2 can be obtained from a Moebius band and a disk D2 by gluing them
along their boundary circles. (0.5p)

Exercise 10.63. (1.75p) Let X be a topological space and let Cone(X) be its cone. Show
that:

(i) If X is compact then so is Cone(X). (1p)
(ii) If X is path connected then so is Cone(X). (0.5p)
(iii) If X is connected then so is Cone(X). (0.25p)

Overall hint: At the end of each question, you can see its “point value” (10 points in total).
The more difficult questions of each exercise are the ones for which you get less points! So, try
not to spend too much time with the more difficult questions before you answered the others.
Finally: use pictures!
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13. Herkansing for Exam A, 2009

Exercise 10.64. (2.5p) Let X be the (interior of an) open triangle, as drawn in the picture
(the edges are not part of X!), viewed as a topological space with the topology induced from R2.
Let A ⊂ X be the open disk drawn in the picture (tangent to the edges of the closed triangle).

A= an open disk inside X  X= an open triangle

Figure 3.

(i) Compute the closure and the boundary of A in X. (1p)
(ii) Show that both of them are locally compact but not compact. (0.5p)
(iii) For each one of them, compute their one-point compactification. (1p)

Exercise 10.65. (3.5p) In each of the following examples, decide (and prove) whether X can
be embedded in Y :

(i) X = [0, 1], Y = [0, 1). (0.5p)
(ii) X = R, Y = S1. (0.5p)
(iii) X = S1 × R, Y = R2. (0.5p)
(iv) X = S1 × S1, Y = R3. (0.5p)
(v) X = Moebius band, Y = Klein bottle. (0.5p)
(vi) X = a bouquet of two circles, Y = S1. (1p)

Exercise 10.66. (4p) Given two topologies T1 and T2 on a set X, show that:

(i) T1 ∩ T2 := {U ⊂ X : U ∈ T1, U ∈ T2} is a topology on X. (0.5p)
(ii) If (X,T1) or (X,T2) is connected, then so is (X,T1 ∩ T2). (0.5p)
(iii) If (X,T1) or (X,T2) is compact, then so is (X,T1 ∩ T2). (0.5p)

Next, let X = R, let Tl be the topology on R induced by the topology basis

Bl := {[a, b) : a, b ∈ R, a < b}
and let Tu be defined similarly, using intervals of type (a, b].

(iv) What is Tl ∩ Tu? (1p)
(v) Show that the discrete topology is the only topology on R containing T1 ∪ T2. (0.5p)
(vi) Finally, show that the converses of (ii) and (iii) above do not hold in general. (1p)
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14. Exam A, April 15, 2008

Exercise 10.67. We consider the collection of subsets of R:

B := {[a, b) : a, b ∈ R, a ≤ b} ∪ {R}.

Exercise 10.68.

(i) Show that B is not a topology on R, but it is a topology basis. (0.5p)
(ii) Let T be the smallest topology on R containinig B. Show that T is larger than the

Euclidean topology Teucl. (1p)
(iii) In the topological space (R,T ), find the closure, the interior and the boundary of

A = (0, 1) ∪ [2, 3]. (1.5p)

(iv) Show that (R,T ) and (R,Teucl) are not homeomorphic.(0.5p)

Exercise 10.69. (1.5p) Show that the torus T contains a subspace C homeomorphic to a
bouquet of two circles such that T − C is homeomorphic to the open 2-disk. Similarly for the
double torus and a bouquet of four circles.

Exercise 10.70. (1.5p) Consider the group Zn = {0, 1, . . . , n − 1} of reminders modulo n
(with the adition modulo n), and the action of Zn on the circle S1 given by

k • (cos(t), sin(t)) = (cos(t+
2kπ

n
), sin(t+

2kπ

n
))

(for k ∈ Zn, (cos(t), sin(t)) ∈ S1). Show that the resulting quotient S1/Zn is homeomorphic to
S1. What can you say when n = 2?

. . .

 . . .

. . .

(0, 1)

(0,0) (1/8,0) (1/4,0) (1/2,0) (1,0)

(1/8,1) (1/4,1) (1/2,1) (1,1)
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Exercise 10.71. Consider the following subset of R2:

X =
⋃

n≥1 integer

{ 1

2n
} × [0, 1] ∪ [0, 1] × {0} ∪ {(0, 1)}

(see the picture), with the induced topology. Explain which of the following properties are true
for X.

(i) it is Hausdorff. (0.5p)
(ii) it is compact. (1p)
(iii) it is locally compact. (0.5p)
(iv) it is connected. (0.5p)
(v) it is path connected. (0.5p)

Moreover, show that X − {(0, 1)} is locally compact and realize its one-point compactification
as a subspace of R2. (0.5p)
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15. Exam A, April 16, 2007

Exercise 10.72. Show that, in any topological space X, for any subspace A ⊂ X, one has

∂(A) = ∂(X −A).

(1.5p)

Exercise 10.73.

(i) Is it true that any continuous surjective map f : S1 → S1 is a homeomorphism? (0.75p)
(ii) Show that S1 cannot be embedded in R. (1p)
(iii) Show that any continuous injective map f : S1 → S1 is a homeomorphism. (0.75p)

Exercise 10.74. Let (X, d) be a metric space and A,B closed subsets of X such that

d(A,B) = 0.

(Recall that d(A,B) =: inf{d(a, b) : a ∈ A, b ∈ B}).
(i) Is it true that A and B must have a common point (i.e. A ∩B 6= ∅)? (1p)
(ii) What if we assume that both A and B are compact? (0.75p)
(iii) What if we assume that either A or B is compact? (0.75p)

Exercise 10.75. For any continuous map f : S1 → T 2 we define

Xf := T 2 − f(S1).

(i) Is it true that, for any continuous function f , Xf compact? But locally compact? But
metrizable? But normal? But connected? (0.5p)

(ii) Describe two embeddings f1, f2 : S1 → T 2 such that Xf1 and Xf2 are not homeomor-
phic. (.75p)

(iii) Describe the one-point compactifications X+
f1

and X+
f2

. (0.75p)

(iv) Describe f : S1 → T 2continuous such that X+
f is homeomorphic to S2. (0.5p)

Note: The marking starts from 1p and the maximum is 10p:

1 + (1.5) + (0.75 + 1 + 0.75) + (1 + 0.75 + 0.75) + (0.5 + 0.75 + 0.75 + 0.5) = 10.

The ”point exercises” (handed in during the semester) will be taken into account with their
weight (however, the maximum remains 10p).
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16. Exam A, April 16, 2006

Exercise 10.76. Let (X,T ) be a topological space and assume that A,B ⊂ X are compact
subsets. Prove that A∪B are compact. Prove that the same holds for A∩B if X is Hausdorff.

Exercise 10.77. Let N = {0, 1, 2, . . .} be the set of non-negative integers. We consider the
following two collections of subsets of N:

• T1 consisting of ∅, N and all the sets of the form {0, 1, . . . , n} with n ∈ N.
• T2 consisting of ∅ and all the sets of the form {n.n+ 1, . . .} with n ∈ N.

Questions:

(1) Show that T1 and T2 are two topologies on N.
(2) Show that the spaces (N,T1) and (N,T2) are not homeomorphic.
(3) for each of the spaces (N,T1) and (N,T2) decide whether the space is Hausdorff, con-

nected or compact.

Exercise 10.78. Questions:

(1) Is [0, 1] homeomorphic to [0, 1)?
(2) Does there exist a continuous surjective map f : [0, 1] → [0, 1)? But a continuous

injective one?
(3) Does there exist a continuous surjective map f : S1 → [0, 1)? But an injective one?

Exercise 10.79. Consider
X = [0, 1] × [0, 1)

with the topology induced from R2. Prove that X is a locally compact Hausdorff space and
describe the one-point compactification (use a picture). What happens if we replace X by
Y = X ∪ {(1, 1)}?


