HOMEWORK 4, GIVEN ON DECEMBER 7, 2023

Recall that in the lectures, the projective space (defined as the collection of all lines through the origin) was interpreted as

$$
\mathbb{P}^{n}=X / R
$$

the quotient of $X:=\mathbb{R}^{n+1} \backslash\{0\}$ (endowed with the Euclidean topology) modulo the relation R defined by:

$$
x \sim_{R} x^{\prime} \Longleftrightarrow x^{\prime}=\lambda x \quad \text { for some } \lambda \in \mathbb{R}^{*} .
$$

Our first goal is to show that \mathbb{P}^{n} can also be interpreted as "the space obtained from the n-sphere

$$
S^{n}=\left\{x \in \mathbb{R}^{n+1}:\|x\|=1\right\} \quad\left(\|x\|=\sqrt{\left(x_{0}\right)^{2}+\left(x_{1}\right)^{2}+\ldots+\left(x_{n}\right)^{2}}\right)
$$

after a certain gluing. To that end define the following relation on S^{n} :

$$
S:=\left\{(x, y) \in S^{n} \times S^{n}: y=x \text { or } y=-x\right\} .
$$

1). Describe the gluing that corresponds to S.
2). Show that the inclusion $i: S^{n} \rightarrow X$ induces an map $j: S^{n} / S \rightarrow X / R$

Furthermore, show that the map j is continuous (hopefully making use of the commutative diagram above).
3). Show that j is a bijection, describe its inverse j^{-1} explicitly, fit j^{-1} in a commutative diagram similar to the one above, then prove that also j^{-1} is continuous.
So far we have shown that \mathbb{P}^{n} is homeomorphic to S^{n} / S. Next, we want to prove that the projective space could also be obtained from the n-ball

$$
D^{n}=\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\}
$$

by gluing any two antipodal points that are on the boundary $S^{n-1} \subset D^{n}$ (we leave anything in the interior of the ball unchanged!).
4). Define the equivalence relation R^{\prime} on D^{n} that encodes the gluing that we have just described.
5). Define a bijection $f: S^{n} / S \rightarrow D^{n} / R^{\prime}$ (don't forget to check it is well defined) and prove that it is continuous.
6). Describe the inverse of f and prove that it continuous as well.

Hand-in instructions: Hand in your solution via Blackboard. If you scan your solutions, combine your scans into a single file and make sure everything is readable. The deadline is December 14, at 15:15.

