Homework 5 Inleiding Topologie*

Let $f: X \to Y$ be a continuous map between topological spaces.

- We say f is open if for every open subset $U \subseteq X$, the subset $f(U) \subseteq Y$ is open.
- We say f is closed if for every closed subset $A \subseteq X$, the subset $f(A) \subseteq Y$ is closed.
- We say that it is a *local homeomorphism* if for each $x \in X$ there exists an open neighborhood U of x in X, and V of $\pi(x)$ in Y such that the restriction of π to U becomes a homeomorphism $\pi|_U : U \to V$.
- Given a subset A ⊂ X, the inclusion of A into X is the map ι : A → X given by ι(a) = a for a ∈ A (remember that a function is not just a formula, it consists of three pieces: a domain (which is a set), a codomain (also a set) and a rule (usually a formula) that associates to an element in the domain an element in the codomain). If X is a space then, by default, we endow A with the topology induced from X (opens in A being those of type A ∩ U with U open in X).

Exercise:

- (a) For which intervals $I \subset \mathbb{R}$ is the inclusion $\iota : I \to \mathbb{R}$ an open map? And for which ones is it a closed map?
- (b) Show that if $I \subset \mathbb{R}$ is neither empty nor the entire \mathbb{R} , then the inclusion $\iota : I \to \mathbb{R}$ cannot be both an open map, as well as a closed map, at the same time.
- (c) Show that if $f: X \to Y$ is a continuous bijective map then

f is a homeomorphism $\iff f$ is an open map $\iff f$ is a closed map.

- (d) Remembering our discussion that S^1 can be obtained as a quotient of [0, 1] obtained by gluing the end points, provide an explicit example of a topological quotient map that is not open.
- (e) On the other hand, for quotient maps $\pi : X \to X/\Gamma$ corresponding to actions of groups Γ on a space X, prove that π is automatically open.
- (f) For which spaces X one can still make a statement as in (b), about all inclusions $\iota: A \to X$ of subsets A of X that are neither empty nor X itself?
- (g) Show that, if X is a compact space and Y is a Hausdorff space, then any continuous map $f: X \to Y$ is automatically a closed map. What do you obtain if you combine this with item (c)?
- (h) Bonus question: in item (e), if Γ is assumed to be finite, show that the quotient map $\pi: X \to X/\Gamma$ is a local homeomorphism.

^{*}Deadline January 9th, 9AM, via blackboard.