
The Next Release Problem Revisited:
A New Avenue for Goal Models

Fatma Başak Aydemir, Fabiano Dalpiaz,
Sjaak Brinkkemper
Utrecht University

Utrecht, The Netherlands

Paolo Giorgini
University of Trento

Trento, Italy

John Mylopoulos
University of Ottawa

Ottawa, Canada

Abstract—Context. Goal models have long been critiqued for
the time it takes to construct them as well as for their limited
cognitive and visual scalability. Is such criticism general or does
it depend on the supported task? Objectives. We advocate for
the latter and the aim of this paper is to demonstrate that
the next release problem is a suitable application domain for
goal models. This hypothesis stems from the fact that product
release management is a long-term investment, and that software
products are commonly managed in “themes”, smaller focus
areas of the product. Methods. We employ a version of goal
models that is tailored for the next release problem by capturing
requirements, synergies among them, constraints, and release
objectives. Such goal model allows discovering optimal solutions
considering multiple criteria for the next release. Results. A
retrospective case study confirms that goal models are easier
to read and comprehend when organized in themes, and that
the reasoning results help product managers decide for the next
release. Our scalability experiments show that, through reasoning
based on optimization modulo theories, the discovery of the
optimal solution is fast and scales sufficiently well with respect
to model size, connectivity, and number of alternative solutions.

Index Terms—next release problem, release planning, goal–
oriented requirements engineering, constrained goal models,
multi–objective optimization, optimization modulo theories

I. INTRODUCTION

Goal–oriented requirements engineering (GORE) has been
extensively studied by the research community since the intro-
duction of early goal–oriented frameworks [1]. Goal models
have been used in early requirements engineering [2], agent–
oriented software engineering [3], and to analyze software
qualities like security [4], privacy [5], risk [6], and trust [7].

GORE has also been criticized due to various reasons. In
a recent study, Mavin et al. [8] show evidence that GORE
approaches have been applied to too few real-life case studies
and the industry has been reluctant to adopt GORE. Goal
models are perceived as unscalable both in terms of i. the
effort required to build them and ii. visually. To overcome the
latter obstacle, Moody et al. [9] emphasize modularity as a
way to improve visual notations for GORE frameworks.

We identify software release planning as a domain where
modularity is well practiced. The evolution of software products
is managed through stepwise releases so the development efforts
are compartmentalized by time. Agile development approaches
are modular too, thanks to the adoption of sprints. Furthermore,

many companies use themes to categorize the focus areas of a
(large) software product [10].

The next release for a product is determined by gathering
candidate new requirements over a time period and then
selecting which of these are going to be implemented, taking
into account logical constraints (such as mutual exclusion
and precedence), as well as business considerations such
as minimize costs, maximize customer value, and the likes.
Following the literature [11], we refer to this as the Next
Release Problem (NRP) for a software product.

The NRP has received considerable attention so far. It
has been formalized as a single-objective [11] or a multi-
objective optimization problem [12], and genetic algorithms
have been applied to solve the problem [13]. These works
treat NRP as a purely numerical problem. However, many of
the business and software qualities for NRP have a qualitative
nature and are hard to quantify. Software cost, for example,
is notoriously hard to estimate and even approximate [14].
Customer satisfaction, as a competing quality, is even harder to
boil down to numerical scores. This calls for approaches that
support both numerical/quantitative and qualitative reasoning.

Moreover, existing approaches to NRP represent require-
ments as flat collections of functions that do not take into
account the hierarchical nature of requirements. Thus, they lose
valuable information about the requirements inter-relationships
such as synergies and conflicts, alternatives, and their rationale
too: why is a requirement important in the product company’s
strategy and in the long-term product release plan?

Based on these observations, we hypothesize that the NRP
may be a suitable domain for the goal–oriented approaches be-
cause i. goal models can provide the missing expressiveness to
the release model and help release managers better understand
the synergies among the requirements and ii. in this context,
goal models will experience less scalability problems thanks
to the inherent modular nature of release planning.

In this paper, we frame the NRP in terms of constrained goal
models [15] where requirements are hierarchically structured
and inter-dependent (conflicting/synergistic). The space of al-
ternatives is then explored to discover Pareto-optimal solutions
by using combined qualitative and quantitative reasoning tech-
niques founded on automated reasoning technologies, notably
Satisfiability and Optimization Modulo Theories (SMT/OMT).

The main contributions of this paper are as follows:
• An expressive goal–oriented language for representing the

NRP that supports complex relationships between require-
ments such as hierarchy, synergy, conflicts (Section III);

• A collection of optimization schemes for expressing
objective functions from the literature and from prac-
tice that combine qualitative reasoning with quantitative
optimization (Section IV);

• The Next Release Tool prototype that supports graphical
modeling and—through an encoding of our framework
(Section III-D)—reasoning with NRPs by employing a
state-of-the-art automated OMT reasoner (Section V-B);

• Experimental results that show the applicability of our
approach on a retrospective case study (Section V-A),
and the scalability of our reasoning techniques up to and
beyond the size of real-world problems (Section V-C).

After introducing our research baseline in Section II, we
describe our contributions in Sections III–V, discuss related
work in Section VI, and present conclusions and future
directions in Section VII.

II. RESEARCH BASELINE

A. Constrained Goal Models

Constrained goal models (CGMs) extend the notion of
goal models by i. assigning rewards or penalties to goals
and their refinements, ii. defining constraints, and iii. setting
optimization objectives for possible solutions [15]. The models
are formalized into optimization modulo theories clauses, then
an external solver (OptiMathSAT [16]) is used to efficiently
search the search space of alternative solutions and discover
the optimal ones. Possible applications include assigning costs
to tasks, which are the leaf elements, rewards to top goals
and set constraints for the budget and aim at discovering the
solution that maximizes the reward while minimizing the cost.
Aydemir et al. [17] employ CGMs to capture and analyse
risk in early requirements engineering while Angelopoulos et
al. [18] utilize them to find the optimal next adaptation for a
system. CGMs are also used to facilitate decision making for
security engineering [19].

In this paper, we extend CGMs to capture and solve the
next release problem.

B. Requirements for Capturing the Next Release Problem

Bagnall et al. [11] model requirements for the next release
problem as acyclic graphs where nodes represent requirements
and edges denote that the source requirement is a prerequisite of
the target one. Toward a more structured approach to modeling
requirements for the next release problem, based on a survey
with industrial practitioners, Carlshamre et al. [20] identify
six inter-dependency types for requirements considered for the
next releases of a software product (see Table I) and represent
these as a matrix using spreadsheets as well as a graph where
the nodes represent requirements and labeled edges represent
inter-dependencies. We take capturing the inter-dependencies
presented in Table I as a requirement for any notation that aims

to represent the next release problem. As presented in Sec. III,
our proposal accommodates all six of these interdependencies.

Table I: Inter-dependency types between requirements for the
next release identified by Carlshamre et al. [20]

Inter-dependency Meaning

REQUIRES R1 requires R2 to function
AND R1 requires R2 and vice versa
TEMPORAL R1 needs to be implemented before R2

CVALUE R1 positively or negatively contributes to the
customer value of R2

ICOST R1 positively or negatively contributes to the
cost of R2

OR Only one of {R1, R2} has to be implemented

III. GOAL–ORIENTED FORMULATION OF THE NRP

We describe our goal–oriented approach for the NRP. Its
key feature is that our goal models capture the rationale behind
the requirements for the next release and allow representing
complex interdependencies between the requirements.

First, we describe the overall process in Section III-A;
second, we detail our proposed goal–oriented requirements
modeling language in Section III-B; finally, we define the
goal–oriented version of the NRP in Section III-C.

A. Process Overview

Understanding, capturing, and communicating requirements
well has a great impact on the success of software development
processes [21]. The same applies to the development of the
future releases of a software product. Nevertheless, (goal–
oriented) systematic requirements engineering methods in
practice are hampered by the high effort that is required, or
by the lack of scalability [8].

Our proposed goal–oriented approach to the NRP, which is
summarized in Figure 1, overcomes the existing limitations
by applying goal orientation to a task having a lengthy time
frame; the initial investment is amortized by the fact that a
product life time spans over multiple years.

Next release planningInitial set up

Step 1:
Create the
initial goal

model

Step 2: Adjust
constraints and

optimization
scheme

Step 3:
Formalize

the problem

Step 4:
Run

automated
solver

Reject solution/No solution

Analysis
results

Step 5:
Release
product

Accept Solution

Step 6: Update
the goal model

Figure 1: Our goal–oriented approach for handling NRP

1) Create the initial goal model: Release management is an
iterative process which starts with the initial requirements. This
is the step that requires the up-front effort to build the goal
model. From this point on, the effort required to update and
maintain the model is more limited. Furthermore, our extended
notion of CGM overcomes the lack of expressiveness of the flat

list representation of requirements, such as spreadsheets. In goal
models, high-level, strategic goals are refined into lower-level
ones to represent how they can be achieved. The refinement
structure in goal models also explains the raison d’être of some
requirements. Different from the refinement structure, inter-
dependencies between goals represent the synergistic relations,
capturing how having certain goals together affects positively or
negatively certain properties, such as the implementation effort.
The inter-dependencies among requirements of Table I are
captured by our approach through cost and customer value inter-
dependencies among goals such that having goal G1 increases
(or decreases) the cost (or the customer value) of goal G2.

2) Adjust constraints and optimization scheme: It is im-
portant to express constraints for identifying possible and
optimal solutions. Hard constraints may be set such as ‘the
overall cost of the solution should not exceed 500 developer-
hours’. Moreover, an optimization scheme for the problem
should be defined by using the properties such as minimizing
the overall cost, maximizing the overall customer value, or
more elaborate combinations of several objectives. We encode
common optimization schemes from the literature in Section IV.

3) Formalize the problem: To benefit from SMT/OMT
reasoning and identify optimal solutions, the goal model and the
optimization schemes must be formalized. The formalization–
whose basics are explained in Section III-D—is derived
automatically from the specifications of the analyst: the goal
model, the constraints, and the optimization scheme.

4) Run automated solver and analyze results: The formal-
ized problem description is fed into an external SMT/OMT
solver. The solver returns the optimal solutions (if any) that
respect the constraints and optimize the optimization scheme.
There may be multiple optimal solutions, i.e., Pareto-optimal
solutions for a given problem description. In other cases, the
constraints may be too restrictive and lead to no solution at
all. In such cases the release engineer should relax some of
the constraints and re-run the solver.

5) Release product and update the goal model: After the
release of the product (this well-known process falls outside
the scope of this paper), the release engineer updates the goal
model by adding new requirements and their interdependencies,
marking the already implemented requirements, adjusting the
properties of goals such as cost and customer value. After
the update, the process continues as before from Step 2, by
adjusting the constraints and the objectives for the next release.

B. A Goal–Oriented Language for the Next Release Problem

We introduce our goal–oriented modeling language to capture
the requirements and inter-dependencies for the NRP. The meta-
model of the language is presented in Figure 2.

We deliberately keep the modeling language simple to
focus our attention to the selection of requirements, which
are represented as goals. As a result, some prominent concepts
that are captured in other goal–oriented requirements modeling
languages like iStar 2.0 [22] are not included in our meta-
model. For simplicity, we exclude tasks; as the top-level goals
are refined, their semantics become more concrete and leaf

Goal

isMandatory
isImplemeted
theme
cost
customerValue

Cost
Contribution

strength

0..* 1..*

aggregates

0..*
1refines

Goal Model
Element

Goal Model
consistsOf 0..*

Refinement

Inter-
dependency

Directed
Inter-dependency

Undirected
Inter-dependency

Customer Value
Contribution

strength

Precedence

Exclusion

Constraints
Objective
Scheme

Objective
Function

definedVia 1..*

Solution
0..*

1

optimizes
0..*

0..*

respects

0..*

1

hasSource

0..*

1

hasTarget

0..*2..* relates

Goal Layer

Objective Layer

Solution Layer

Figure 2: Meta-model for the goal–oriented NRP language

nodes represent immediately actionable items. Since the next
release models focus on the product requirements, we also do
not capture actors and their interactions (social dependencies).
Resources, on the other hand, can be captured as constraints
such as the budget for the release but they are not first-class
citizens in the models. Below we provide explanations for the
elements of the meta-model presented in Figure 2.

A goal model consists of goal model elements, which are
goals, refinements, and inter-dependencies.
Goal: Requirements are represented as goals to be achieved.
Goals have attributes. A mandatory goal must be satisfied in
the solution set of a goal model. Goals that have already been
implemented in previous releases are marked as isImplemented.
The theme of a goal is a category to which it belongs1. Goals
can have associated costs which can be stated in terms of
developer effort–hours or money. Finally, the appreciation of
customers are captured as the customerValue of a goal.

Assigning values to goal attributes is optional yet useful
for determining the optimal solutions. While solutions that do
not include all mandatory goals are not valid, isImplemented
enables the release engineer to keep track of the implemented
goals. If the release engineer determines that all previous im-
plementation efforts should be preserved, she could mark them
all as mandatory, else she can mark only some implemented
goals. Cost and customer value assignments are also used to
set constraints (e.g., overall customer value of a valid solution
must be higher than x) on the solution as well as defining the
optimization scheme (e.g., minimize the overall cost). Assigned
values can be absolute or relative estimations, as long as the
units are used consistently in the entire goal model.

1Themes are used to organize the requirements for a large system into
smaller, more manageable categories.

Freight
Management

improved

Data exchange with
freight requester

established

Enterprise
modeling mngt
relationships

visualized

Freight order
history
logged

Load
Planning

conducted

Route plan for
single shipment

created

Purchase and
sales

Contracts &
schedules

aligned

Cumulatives
(CUMs)

calculated

Production
synchronous

schedules created

Purchase
schedule

enhancements
provided

Sales schedule
enhancements

provided

Views on
schedules

created

Finance

Business unit
accounting

implemented

Cost controlling
enhancements

listed

Credit card
processing

finalized
German
topics list
created

 Market
value report
generated

Fixed asset
enhancements

provided

FM
Planned

A

Se&Ma Depot
Repair

Item concepts
serialized

Financial
blocking
improved

Batch
repair

Call
management

integration

Contract
management

integration

Material
authorization

returned

 Execution and
financial handling

decoupled
Se&Ma Depot

Repair and Sales
Invoicing
integrated

Service and
Maintenance

Transaction
logs kept

 Business partner
calls transferred

Call
Management

Purchase/Sales
Enhancements

C-

V+

C+

Precedes

V+

C-

PrecedesPrecedence

Goal

Refinement

Exclusion

C-
Negative/Positive

Cost
Contribution

V+
Negative/Positive
Customer value

Contribution

Precedes

C+

V+

Legend

Freight Management Purchase & Sales

Finance
Service and
Maintenance

Figure 3: A partial goal–oriented NRP model from our retrospective case study

Refinement: A refinement relates a set of child goals to a
parent goal, indicating that all the child goals are necessary to
fulfill the parent. A parent goal may have multiple refinements,
each of which offers an alternative way of achieving that goal.
Using refinements, we can capture both REQUIRES, AND,
and OR inter-dependencies from Table I. R1 REQUIRES R2 is
captured when R1 is refined into R2. R1 AND R2 is captured
when both of them are connected to a single refinement node
of a parent node. R1 OR R2 is presented when both of them
are connected to seperate refinement nodes of the same parent.
Figure 4 summarizes these three cases.

R1

R2 R1 R2

Parent

R1 R2

Parent

REQUIRES AND OR

Figure 4: Capturing interdependencies with refinement nodes

Figure 3 shows a fragment of a goal model that is built
by the authors from the release data of a software product
for managing the rental and service of heavy machinery. The
goal model is validated by the product management expert
of the software product. Since the company organized the
requirements in themes, we reflected that choice in the layout
of the model and separated the themes by gray lines. Goal

nodes are represented as stadium-shaped nodes. Refinement
nodes that link multiple child goals to a parent goal are shown
as black-filled circles. Refinement nodes that link only one
child node to a parent goal are omitted for visual simplicity. An
example of alternative ways of achieving a parent goal concerns
the goal ‘FM Planned’, which is refined into ‘Load planning
conducted’ and ‘Route plan for single shipment created’.
Inter-dependency: An inter-dependency indicates a synergistic
relation among two or more goals. An inter-dependency is either
a directed inter-dependency or an undirected-interdependency.
Undirected Inter-dependency: An undirected inter-
dependency relates two or more goals. Exclusion is an
undirected inter-dependency which relates goals that should
not be included in the same release. In Figure 3, ‘Sales schedule
enhancements provided’ and ‘Fixed asset enhancements
provided’ are related via the exclusion interdependency, which
is represented by a white exclamation mark in a triangle that
is surrounded by a red-filled circle.
Directed Inter-dependency: A directed inter-dependency re-
lates two goals where one goal is the source and the other is
the target of the interdependency. There are three types of such
links: (i) cost contribution, (ii) customer value contribution, and
(iii) precedence. These three inter-dependencies correspond to
the ICOST, CVALUE, and TEMPORAL inter-dependencies
in Table I. Cost and customer value contribution between
goals state that the source goal increases or decreases the
cost or the customer value of the target goal. If known, the
strength attribute can be assigned to represent the strength of

the interdependency in a relative scale or as the absolute value.
The precedence inter-dependency indicates a temporal order of
implementation between the source and the target goals, where
the source goal should be implemented before the target (in
the same or a previous release).

In our graphical modeling language, we simply use edges
between the source and the target goals instead of having a
directed inter-dependency node and connect it with the source
and the target goals to prevent visual clutter. Cost contribution
inter-dependencies use a C label and the plus or minus sign
signifies the positive or the negative impact.

The source and the target goals are linked via a dashed line,
and there is an incoming empty triangle arrowhead to the target
goal. In Figure 3, ‘Financial blocking improved’ decreases the
cost of ‘Credit card processing finalized’. Similarly, a dotted
line, which is labeled as V together with a plus or minus sign,
denotes a customer value inter-dependency.

To further differentiate the two different types of inter-
dependencies we use angle arrowhead for the customer value.
An example of customer value interdependency from Figure 3
is in between ‘Se&Ma Depot Repair and Sales invoicing
integrated’ and ‘Views on schedules created’ where the
former increases the customer value of the latter. Finally, the
precedence inter-dependency is shown as a solid line with
a simple arrowhead and labeled as precedes. In the model
presented in Figure 3, ‘Financial blocking improved’ must
precede ‘Execution and financial handling decoupled’.

C. Goal–Oriented Definition of the NRP

The meta-model in Figure 2 illustrates the components of
the goal–oriented definition of the NRP. In particular, the figure
includes three layers of concepts separated by a dashed line.

The upper layer concerns the problem space of the next
release problem, that is, the goal model that captures the
requirements as goals, and the synergistic relations between
them as inter-dependencies. This layer was explained in
Section III-B.

The intermediate layer details the other components of the
problem statement: the constraints and the optimization scheme.
We provide some examples here, while we discuss how to define
typical constraints and optimization schemes in Section IV.

Constraints indicate the limitations set by the release engineer
on the valid solutions. Some examples: ‘The overall customer
value of the solution should be at least x’, ‘The number of
positive cost contributions in the solution should be at most
y’, ‘All goals of theme z must be included in the release’.

An optimization scheme consists of one or more objective
functions. Minimizing the cost is a single objective, where
the cost of the solution is the sum of costs of the goals
that are included in the solution [11]. Other single objectives
could be maximizing the total customer value [23], maximizing
the positive customer value inter-dependencies, maximizing
the negative cost inter-dependencies, and so on. SMT/OMT
reasoning allow us to combine multiple objectives in linear
objective functions. Multiple objective functions then can be
ordered and lexicographic optimization can be performed.

The goal–oriented next release problem. Given a goal model,
the goal–oriented NRP concerns finding a sub-model by
assigning truth values to leaf goals and propagating the truth
assignment to upper level goals (a solution, see the bottom
layer of Figure 2) that respects the constraints and optimizes
the objective scheme for the model.

D. Encoding to SMT

The encoding that we need consists of obtaining an
SMT(LRA) formula ΨM of a goal–oriented NRP model M
that can be analyzed to derive (optimal) solutions. Formally,
we have that ΨM = Ψ ∧ΨR ∧ΨI ∧ΨW , i.e., the encoding
is a conjunction of the constraints in M , of the refinements,
of the interdependencies, and of the value functions.

Constraints. The encoding Ψ includes constraints over
elements in B and W . When a mandatory goal Gi is set to be
satisfied by the release engineer, it is encoded as (Gi := >)
and AND-ed to Ψ. Elaborate LRA constraints can be put on
solutions such as total cost ≤ x, where calculation of the total
cost of a release candidate is provided in Section IV-A.

Refinements. The encoding ΨR conveys the fact that every
refinement defines a set of sub-goals that together fulfill a
parent goal, and that multiple refinements of a same goal
introduce alternative ways of satisfying the goal.

Each refinement R ∈ R where {G1, . . . , Gn}
R→ Gp adds

the proposition (
∧n

i=1Gi ↔ R)∧ (R→ Gp) as a conjunction
to the encoding ΨR.

For all refinements {R1, . . . , Rn} of a goal Gp ∈ G, Gp →∨n
i=1Ri is AND-ed to ΨR.
Inter-dependencies. The encoding ΨI consists of co-

existence constraints among the goals in a solution.
Exclusion inter-dependency states that related goals

G1, . . . , Gn cannot be satisfied all together, and it is encoded
as ¬(

∧n
i=1Gi) that is AND-ed to ΨI .

Precedence inter-dependency denotes that the implementa-
tion of the source precedes the implementation of the target
node. The valid cases are that (a) both are included in the
solution, (b) both are excluded from the solution, and (c) the
source is included but the target is excluded. Given G1 precedes
G2, the encoding (G2 → G1) is added to ΨI .

Example. Figure 5a presents a simple model containing a
precedence inter-dependency between G5 and G4, thus non-
valid solutions are those that include G4 but not G5. In Fig 5a,
assuming that G1 and G2 are mandatory, two solutions are
{G3, G4, G1, G5, G2}, {G3, G4, G1, G5, G6, G2}. Assuming
the objective is to minimize cost and each leaf goal has equal
costs, the first solution is returned by the solver. On the other
hand, the only solution in Figure 5b is {G3, G4, G1, G5, G2}
for G6 cannot be in the same solution as G4, and G4 is required
to satisfy G1, which is mandatory.

Cost and customer value contribution. These inter-
dependencies are also atomic propositions and are encoded as
ΨW . Given that G1 increases the customer value of G2,

1) atomic proposition I1 captures the customer value inter-
dependency between G1 and G2. The truth value of I1 is
encoded as (I1 ↔ (G1 ∧G2)),

G1

G3 G4

G2

G5

G6

precedes

(a)

G1

G3 G4

G2

G5

G6

precedes

(b)

Figure 5: Sample models demonstrating precedence relationship

2) the strength of the inter-dependency, WIS(I1) = Q where
Q ∈ Q. If the release engineer does not specify the
strength of the inter-dependency, we assign the strength to
zero by default. For the cases in which the release engineer
opts for qualitative reasoning by not assigning strength
values to cost and customer value inter-dependencies, we
keep track of the number of inter-dependencies that are
included in the solution (assigned > by the solver), and
use these numbers for optimization.

E. (Optimal) Release Candidate

Based on the definitions and encoding explained above, we
can now define a release candidate and an optimal release
candidate for a given NR model M .

Definition 1 (Release candidate): Let M
def
=

〈B,N , D,Ψ,W〉 be a next release model, ΨM its SMT(LRA)
encoding and µ a LRA-interpretation over B ∪N (i.e., a truth
assignment over the variables). µ is a release candidate of M
if and only if µ � ΨM .

Definition 2 (Optimal release candidate): Let M
def
=

〈B,N , D,Ψ,W〉 be a next release model, ν be a release
candidate of M , and O an objective schema consisted of
LRA–terms occurring in ΨM . ν is said to be an optimal
release candidate of M iff ν minimizes [resp. maximizes]
O, i.e., iff ν is a solution of the OMT(LRA) minimization
[resp. maximization] problem 〈ΨM , 〈O〉〉.

In this paper, we will use the term solution to indicate an
optimal release candidate, for such term better emphasizes the
identification of an answer to the NRP.

IV. SETTING CONSTRAINTS AND OPTIMIZATION
OBJECTIVES

We show how our framework can be flexibly used to define
realistic optimization schemes for the identification of optimal
solutions. Our presented schemes are assembled from the
literature (Section IV-A to Section IV-C), and also include
a customization mechanism to define specific schemes that fit
the needs of a company (Section IV-D). Finally, we provide
the steps to plan multiple releases in Section IV-E

A. Multi-objective quantitative optimization

This scheme combines multiple objectives, each calculated
using attributes of the goals (such as cost and customer value),
without considering the inter-dependencies. This corresponds
to the multi-objective next release problem formulation [12].

In our goal–oriented formulation, the total cost (or customer
value) of a solution is the sum of costs (or customer values) of
goals that are included in the solution. Equation 1 returns the
total cost (TC) of a release candidate µ of a next release model
M , where ite is an if–then–else function that returns the cost
of a goal Gi of M , if Gi is included in µ, 0 otherwise2.

TC(µ) =
∑
Gi∈G

ite(Gi in µ,WGC(Gi), 0) (1)

One optimization scheme that considers both cost and customer
value as objectives is the lexicographic optimization, where
the objectives are strictly ordered, and the solution is first
optimized for the first objective and then for the second one,
and so on. In this case, the first objective has strictly a higher
priority for optimization than the second one.

Another way of combining multiple objectives is to create
an objective function that includes all objectives such as

α× TV(µ)− β × TC(µ) where α+ β = 1 (2)
TV: total customer value
TC: total cost

To get an accurate result for Equation 2, total cost and customer
value should be on the same scale. Our framework allows
release engineers to assign absolute or relative values (such as
story points) to these attributes when building the goal model,
so for combining multiple objectives, release engineers must
normalize these values.

We only discuss linear normalization due to limited space.
Algorithm 1 takes a next release model M , a set of objectives
{obji, objj , . . . , objk} that are derived from attributes of goals
to linearly combine in a normalized objective function, and
corresponding co-efficients α, β, . . . for each objective as input.
The OMT reasoner is called to calculate the maximal and the
minimal objective values for the optimal releases where a
single objective is set for the model M (Lines 2-9). TO is
the generic representation of calculating a total value of an
objective, as in total cost presented in Equation 2. Once these
values are returned by the reasoner, the normalized objective
function is created using the co-efficients and these values.
Overall the reasoner should be called (2 × k) + 1 where k
is the number of objectives to be combined. OptiMathSAT
provides a boxed optimization option that returns the maximal
and minimal values of the same objective in a single call; this
enables reducing the total number of reasoner calls to (k + 1).

B. Qualitative reasoning with inter-dependencies

Inter-dependencies provide useful information about the
synergistic relations among goals. According to the encoding
in Section III-D, a cost or customer value inter-dependency is
included in a solution if and only if both source and target
goals are included. The number of inter-dependencies (NI) in
a release candidate µ is calculated as

NI(µ) =
∑
Ii∈I

ite(Ii in µ, 1, 0) (3)

2If the attribute values are not specified, the default value is returned.

Data: Next Release Model M;
{obji, obj;, . . . , objl};
Co-efficients α, β, . . . ;

1 foreach objective oi do
2 νimax = call-omt-solver(〈ΨM , maximize oi〉);
3 maxoi = TO(νimax);
4 νimin

= call-omt-solver(〈ΨM , minimize oi〉);
5 minoi = TO(νimin

);
6 end
7 return α× oi−minoi

maxoi
−minoi

± β × o−minoj

maxoj
−minoj

± . . . ;

Algorithm 1: Creating a normalized objective function

Equation 3 can be modified to calculate different types of inter-
dependencies such as positive cost contribution, negative cost
contribution, etc. Then, NI(µ) is treated as any other objective
in Algorithm 1 and can be used to create a more expressive
objective function, blending quantitative and qualitative rea-
soning. If the strength attributes of a type of inter-dependency
are known, 1 is replaced by the corresponding strength value.

C. Reasoning about specific themes

Themes can group requirements for the NRP into more
manageable categories [24]. This categorization can be used to
focus or limit efforts spent on a theme. One case is to include
every goal of a theme in the next release, by setting all leaf
goals of a theme as >. Conversely, to exclude all goals of a
theme in the next release, all leaf goals of that theme are set
as ⊥. Further, to limit cost of a theme, a release engineer can
define a new function as theme cost (THC):

THC(µ, x) =
∑
Gi∈G

ite(Gi in µ ∧Gi.theme = x,WGC(Gi), 0)

and add a constraint such that THC(µ, x) ≤ y. The same
method can be used to set min-max intervals for customer
value for a given theme: for example, ‘the customer value for
theme T1 should be between 10 and 20’.

D. Beyond the basics: Allocating team effort for specific themes

We show how to extend the framework to suit specific needs
of a company. We take the optimization scheme for our case
study (its goal model is in Figure 3): given a set of development
teams that are experts in one or more themes and have limited
availability, allocate team effort in a way that maximizes the
utilization of teams in their expertise as well as overall team
utilization. Figure 6 captures the extension to the meta-model.
Algorithm 2 presents how to keep track efforts of n teams in
terms of implementation of leaf goals. First we introduce a
new set of atomic proposition (P) in B for each team–(leaf)
goal couple (Line 4). Line 5 states that a goal is selected to be
implemented (i.e., included in the solution) iff it is assigned
to be implemented by exactly one team3.

3We provide the naïve encoding of 1 from N due to limited space, Klieber
et al. [25] provide more efficient encodings.

Team

availability
1..*

1
belongsTo

1..* 1..*expertIn
Theme

Goal
1 1..*implements

Figure 6: Extension of NRP meta-model with Team and Theme

Data: Next Release Model M;
1 foreach Leaf goal Gi do
2 foreach Team Tj do
3 Create new atomic proposition PTjGi

;
4 end
5 (Gi ↔ ((

∨n
k=1 PTkGi) ∧

(
∧n−1

l=1

∧n
m=l+1(¬PTlGi ∨ PTmGi)));

6 end
Algorithm 2: Keeping track of team efforts on goals

We define expert–effort (EE) of a team T for a release
candidate as the sum of implementation costs of goals that are
included, implemented by team T , and belong to a theme in
which T is an expert. Equation 4 formulates the expert effort
of a team Tx in a release candidate µ; for simplicity we use
the same index value in a team–goal couple Pi, and the team
Ti and goal Gi in that couple. Pi is set to > if and only if Ti
implements Gi in release candidate µ.

EE(µ, Tx) =
∑
Pi∈P

ite(Pi in µ ∧ Ti = Tx∧

Tx.expertIn == Gi.belongsTo,WGC(Gi), 0) (4)

Similarly novice–effort (NE) of a team T for a release candidate
as the sum of implementation costs of goals that are included
in the release candidate, implemented by team T , and belongs
to a theme in which T is not an expert.

The objective is to minimize novel–effort while fully
utilizing the teams (maximizing the total effort where the
team availability is the upper bound).

E. Release planning

The framework can be used for release planning, which is a
generalization of the NRP [26]. Once a goal model is built for
multiple releases and the reasoner is run for the next release,
the model can be re-used to reason on the future releases after
following the steps described below.

1) Mark all goals in the solution as isImplemented and as
isMandatory (unless re-implementation is considered).

2) Assign customer value and cost of the goals in the current
solution to zero for their implementation cost (customer
value) has been spent (used) in the previous release.

3) Assign constraints for the next release such as new
maximal cost and mandatory goals.

4) Define the optimization scheme.
5) Re-run the reasoner.

V. EVALUATION AND TOOL SUPPORT

We present the lessons learned from our retrospective case
study in Section V-A. Then, we describe the prototype that
supports our approach in Section V-B. Finally, we report on
scalability experiments that show the ability to efficiently reason
on large models in Section V-C.

A. Lessons learned from an expert evaluation

We conducted an evaluation with an experienced software
product manager (over 20 years of experience with large-scale
software products) to test the following hypotheses:
H0. Executing the process described in Figure 1 is feasible
H1. Our goal–oriented approach helps the release manager

make decisions for the next release
The domain expert provided us with a real data set of an
enterprise application developed for managing heavy machinery.
The data set included an Excel file including a flat list of
100 requirements in consideration for the release 5.2, and
corresponding themes, effort, and revenue estimations.

One author built separate goal models for each of the six
themes; subsets of four of these models are presented in
Figure 3. Then, the same author merged these small models
into a bigger model while keeping the theme-based layout, and
identified trivial interdependencies between the requirements
that required no domain knowledge (e.g., ‘Call management’
precedes ‘Call management integration’).

Based on this initial goal model, the same author had a two-
hour face-to-face, hands-on meeting with the domain expert.
After a short explanation of the notation, the domain expert was
able to identify additional inter-dependencies. Then, we ran
our automated analysis multiple times with different objective
schemes, and showed the results to the expert. We posed
triggering questions to the expert in order to identify pros and
cons, and to obtain answers for H0 and H1.

One perceived benefit of building the goal model over a
flat spreadsheet is the ability to visualize the requirements in
a structured fashion. The visualization helped have a better
understanding of the requirements and their inter-dependencies,
identify decision points (i.e., alternatives), pinpoint require-
ments that are highly connected to the others via multiple
positive customer value and negative cost inter-dependencies
(i.e., requirements are desired to be in the solution), and
organize the requirements around themes. The expert also used
the vertical positioning of goals to represent relative importance.
He mentioned that the model fostered deep thinking and helped
discover information that is not explicit in the spreadsheet.

The expert found the visual notation easy to understand,
and observed that positive customer value inter-dependencies
typically occur more frequently than negative ones. When
inquired about visual scalability, the expert commented that
a unified extra-large view of all requirements is typically not
needed for each product manager focuses on a specific subset
of the model. He stated that the approach is feasible (H0),
but it is necessary to put sufficient effort in updating the goal
model throughout the product releases. The extra effort pays

off if appropriate tooling allows reviewing model snap-shots of
past releases so that the decision rationale can be tracked. The
model can bring structure to the discussion between product
managers about the next release, and the tool can answer
what-if analysis questions such as ‘what if we set this goal as
mandatory?’, or ‘what if we adopt another objective scheme?’
and assist their decision making process (H1).

The expert suggested adding multiple abstraction capabilities
to the prototype to show/hide cross-functionalities, or selected
inter-dependencies. Also, integration with existing development
tools is crucial, e.g., with the issue tracker JIRA and with
the architectural models. In his experience, release planning
is typically coupled with the (re-)definition of the product
architecture. To improve visualization, he suggested goal node
sizing based on goal cost to provide a visual cue. The expert is
confident that his comments are generic for software companies
that are organized per Conway’s Law [27].

B. Prototype: the Next Release Tool

Our prototype is a standalone application for Windows, Mac
OS and Linux that supports modeling and reasoning.

The graphical editor of the prototype is based on the Eclipse
Graphical Modeling Project (GMP)4. Well-formedness rules are
continuously checked to prevent user mistakes when modeling,
e.g., a goal cannot be refined into itself so it is not possible
to create both incoming and outgoing edges from a goal to a
refinement node.

Next release model elements and the optimization scheme
stated by the analyst are automatically encoded as SMT/OMT
formulas and fed into OptiMathSAT along with the proper
commands for the solver to solve the optimization problem.

The retrieved results are presented in a written report, and
the solution is highlighted in the graphical model if found.
We are still working at the graphical visualization of multiple
solutions, which are currently only listed in the report.

C. Scalability tests

We conducted three experiments to study the scalability of
the prototype, and therefore of the encoding of Section III-D.
All experiments are run on a Windows 64 bit machine with
Intel(R) Core(TM) i7-3770 CPU 3.40Ghz and 8GB of RAM,
and collected the reasoning time reported by OptiMathSAT
version 3.5 to find the solution.
Scalability with respect to problem size. We define the size
of the problem as the number of model elements: number
of goals, refinements, and inter-dependencies. To evaluate
this dimension of scalability, we have created an input model
which includes 13 goal nodes, 9 refinements, and four 4 inter-
dependencies. Lexicographic optimization scheme is selected
for the optimization. We have generated 75 cases by replicating
the input model 10 to 750 times and connecting the replicas to
a root goal via the same refinement element. As a result, we
have generated test models of size from 255 to 17,275 model
elements. We have run the experiment five times.

4http://www.eclipse.org/modeling/gmp/

0

50

100

150

200

250

300

350

400

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Ti
m

e
(m

s)

Number of Model Elements

First Run

×
××
×
×
××××××

×××
××
××
×
×××××
×××
×
××
××
××××
×
××
×××
×
××××
××××
××
×××××××

×××
×
×
×
××××
×××××

×
Second Run

���
�
�
����

�
�������

�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
��

��
�
�
�
�
�
�
����

���
�����

��
��
��
���

��
��
�
�
���

Third Run

◦◦◦
◦◦◦◦◦◦◦◦

◦◦◦◦◦
◦
◦
◦
◦
◦◦◦◦◦
◦
◦◦◦
◦
◦
◦◦
◦◦
◦◦
◦
◦
◦◦◦◦
◦◦◦◦◦◦◦

◦
◦
◦
◦
◦◦◦◦
◦◦◦◦◦
◦◦
◦◦
◦
◦
◦◦◦
◦◦◦◦

Fourth Run

4
44
4
4
4
4
44444
44
4
444
4
44444
4
44
4444
44
44
44
4
4
4
444
4444444

4
4
4
44444
44444
44
4
4
4444
4
4
44

4
Fifth Run

♦
♦
♦

♦
♦
♦♦♦♦

♦
♦
♦♦♦

♦♦
♦
♦♦
♦♦♦♦

♦♦
♦♦♦♦♦

♦♦♦

♦
♦♦
♦♦
♦
♦
♦♦♦

♦♦♦
♦
♦
♦♦
♦
♦
♦
♦♦
♦
♦
♦
♦
♦♦
♦♦
♦
♦
♦
♦
♦
♦
♦

♦
♦

♦
♦♦

♦

Figure 7: Scalability wrt problem size

To put our experiment in context, one of largest i* models re-
ported in the literature includes 525 links and 350 elements [7].
Thus, our artificially generated experiment cases are large
enough to match industrial case studies. Obviously, creating
big models requires time and human effort (see Section V-A).

The results are very positive: the required time to generate the
solution grows linearly with the model size, and performance
is excellent (0.4 seconds for models with 17,275 elements).
Scalability with respect to problem complexity. We de-
fine problem complexity in terms of the number of inter-
dependencies between the model elements. To test this di-
mension, we generated 400 variants of a fixed-size model (250
goals, 118 refinements, 16 precedence links and 16 exclusion
links) with an increasing number of random directed inter-
dependencies between goals. Figure 8 presents the results of

0

1

2

3

4

5

0 50 100 150 200 250 300 350 400 450

Ti
m

e
(s

)

Number of Added Inter-dependencies

++
++++++++++++++++++

+++++
++++
++++

+

++++++
+++++

+

+
+
+
+
+
+
++
+++
+++
++++
+
+++
+
++
++
+

++
+
+
+++
+
++
+

+
+
+
+
+

+

+

++

+
+

+

+

++
+

+

+

+

+++

+
+

++

+++
+

+
++
+

++

+

+

+

+

+

+

++
+

+

+

+

+

+

+

+

+

+

+

+

+

++
++

+

+

+

+

++

+

+

+

+

+

+

+

+

+
+

+

+

+

++

+

+

++

+
+

+++

+

+
+

+

+

+

+

+

+

+

+
+

++

+

+

+

+

+

+

+
+

+

+

+

+
+

++

+
+

+

+

+

++
++ +

Figure 8: Scalability wrt problem complexity

this experiment. The number of added inter-dependencies are
shown on the x-axis whereas the y-axis reports the reasoning
time in seconds. There is a smooth increase in reasoning
time until approximately 150 added inter-dependencies, the
reasoning time increases rapidly after this threshold. Despite
the growth, the processing time is still negligible (under 5
seconds) and adequate for a release engineer who is studying
the long-term evolution of a software product.
Scalability with respect to alternatives. Multiple refinements

of a goal introduce alternative solutions for satisfying that
goal. Increasing the number of refinements may lead to
an exponential increase in the number of solutions, thereby
impacting the reasoning time [28]. We created five model
variations with fixed number of goals and inter-dependencies,
11,918 and 1,402, respectively. In the first model, all 5,609
refinement elements had two incoming edges, and a parent goal
had only one incoming refinement edge. The second model
is a variation of the first one, but for the 25% refinement
elements, we have created another refinement element pointing
to the same parent goal, and directed one of the two incoming
edges of the original refinement element to the newly created
one, in other words, we have converted 25% of the AND
decompositions to OR decompositions. For the rest of the
variations, we have increased the conversion rate to 50%, 75%,
and finally 100% and run the reasoner for each model.

Table II: Average and standard deviation of reasoning times
for the scalability wrt alternatives

0% 25% 50% 75% 100%

AVG (s) 0.2514 0.304 3.0171 3.0532 4.8391
STDEV (s) 0.0045 0.008 0.0235 0.0073 0.0169

The results are summarized in Table II. The first row reports
the average seconds needed to find a solution for 10 runs, and
the second row reports the standard deviation. The reasoner
finds a solution for the first two models (0%-OR and 25%-OR)
in less than one second, for the second two models in around
three seconds and for the fifth model in around five seconds.
These results reveal that the approach works well even when
the number of alternatives increases.

Discussion. The overall results confirm the scalability of
our tool in all three cases even for models that are way larger
than those that can be used in real life. The bigger obstacle to
scalability is model connectivity, which is affected by increasing
the number of directed inter-dependencies. Even in this case,
however, the tool returns the optimal solution for a model of
250 goals and 200 inter-dependencies. The inter-dependency
to goal ratio is much higher than the real-life cases reported
by Carlshamre et al. [20], which is around 20%.

VI. RELATED WORK

A. Search–based approaches to NRP

The Next Release Problem is formalized by Bagnall et
al. [11] as a constrained optimization problem. Following
research has adopted quantitative search-based techniques.
Jiang et al. [29] apply ant-colony optimization whereas Jifeng
et al. [30] use backbone-based multilevel search. Feather and
Menzies [31] propose an iterative approach that takes human-
expert decision into consideration. The NRP was formulated as
a multi-objective optimization and solved by [12]. Our approach
differs in two ways: (i) our goal–oriented representation
of the problem shows explicitly the hierarchy of and inter-
dependencies among goals; (ii) we apply OMT reasoning to
NRP that is proven to be scalable and guarantees an optimal

solution. Recently, Pitangueria et al. [32] apply SMT reasoning
to solve the NRP for a flat list of requirements with excellent
scalability results, although their work lacks the benefits of
using goal models to structure and interrelate requirements.

The release planning problem generalizes NRP; the goal
is to select features for a series of product releases. Du and
Ruhe [26] propose machine learning solutions, providing the
rationale behind solutions provided by ReleasePlanner R©, a
commercial tool for release planning. Ngo-The and Ruhe [33]
iteratively solve the problem considering also human input,
ranking candidate solutions with respect to soft constraints
and objectives. Search–based software engineering methods
were proposed as well [34]. We focus mostly on the next
release problem but we have shown an optimization scheme in
Section IV that support release planning. Ameller et al. [35]
provides a survey on release planning models.

Toward a more structured search space for the NRP, Carl-
shamre et al. [20] identify requirements inter-dependencies and
Zhang et al. [36] apply multi-objective search based techniques
while handling these inter-dependencies. Regnell [37] validates
a proposed meta-model through industrial surveys. Those
models have AND/OR dependencies among requirements that,
however, are less expressive than our hierarchical goal models.

B. Goal–Oriented Requirements Engineering

Goal–oriented requirements engineering has received much
attention since the introduction of early goal–oriented frame-
works [1]. KAOS [4], NFR[38], and i*[39] are general-purpose
frameworks that have been extended numerous times to handle
the overall software development process [3], security [40],
[41], [42], [43], privacy [5] and other concerns [44].

Sebastiani et al. [45] discover minimum–cost solution in
a goal model; similar techniques were later applied to find
optimal solutions in goal-risk models [6]. Unfortunately, these
approaches can optimize only for a single objective (cost).
Multiple reasoning techniques on goal models focus only on
finding a solution that satisfies top goals [46], but do not
optimize.

CGM-based approaches enable multi-objective optimization
in goal models [17], [18], [15]. Nguyen et al. [15] proposes a
goal-modelling technique intended for greenfield design. Our
proposal is different in that it focuses on next release design
and uses an enhanced modelling language that includes an
extended set of dependencies over traditional goal models.

Jureta et al. support preferences over alternatives and optional
goals in the Techne modeling language [47]. SAT/SMT/OMT
reasoning techniques over Techne models have not been yet
exploited. Liaskos et al. [48] support preferences and utility in
goal models and provide a planning based solution. However,
AI planning [49] does not scale as well as SMT techniques.

Eliciting and assigning goal cost, customer value, and other
numerical values is out of the scope of this paper. However, the
literature offers plenty of approaches. The Analytic Hierarchy
Process [50] can be used to determine quantitative contribution
measures, and it was applied to goal models [51] and to
requirements in general [52]. Wiegers [53] details a method

for relatively assigning cost, (customer) value, and risk, while
Villarroel et al. [54] use crowd sourcing to prioritize require-
ments for release planning. Recently Choetkiertikul et al. [55]
employed deep learning techniques for effort estimation.

VII. DISCUSSION AND CONCLUSION

We proposed a new application of GORE to the next release
problem. After an initial time investment for building a goal
model, such up-front cost can be amortized over time thanks
to the re-use of the goal model. The release planning process
is carried out with the assistance of efficient automated solvers
that automatically identify optimal solutions. Over time, the
analyst has to update the model to account for implemented
features and additional candidate requirements.

Our models are encoded into SMT/OMT formulas that enable
efficient problem resolution via the OptiMathSAT solver. Our
optimization schemes show the flexibility of the framework
in expressing different objective functions from the literature.
The prototype supports the entire process from modeling to
automated reasoning and results visualization.

The results obtained from our preliminary evaluation show
that there may be new life for goal models: (1) despite its
simplicity compared to complex framework such as i* [56], [22]
or KAOS [57], the language can supports the different types of
inter-dependencies between next-release planning requirements
identified by Carlshamre et al. [20]; (2) a retrospective case
study has evidenced the strengths of our models over flat
requirements lists; and (3) the scalability experiments confirmed
the applicability of our reasoning to large models.

Threats to Validity. Conclusion validity is threatened by the
use of a single case and the evaluation with a single product
manager. Despite the expert’s high experience in the software
industry, the findings are not conclusive yet. This is why we
only claim that there may be new life for goal models. The
use of a single case does not threaten the conclusions on the
scalability of our reasoning, which derive from the scalability
results of the employed automated solver. Internal validity is
threatened by the selection of our case; while representative
for the Northern European software industry, the requirements
for release planning elsewhere may be less structured in other
geographic areas (e.g., our models benefit from the grouping
of requirements into themes). Construct validity is affected by
the choice of a single method to represent the requirements.
The expert provided an opinion on how the models compare to
a flat representation, but we have not tested other techniques.
External validity: we conducted a retrospective case, thus, the
approach was not tested for a to-be release planning.

Future work. We are currently setting up empirical evalu-
ations of the framework within product companies from our
network for solving the NRP for future releases. Furthermore,
we need to create a simple-to-use language for expressing
objective functions and to extend our set of optimization
schemes. We also plan to conduct experiments that compare
the outcomes of analysts using our framework with the outputs
of other approaches from the literature.

REFERENCES

[1] J. Horkoff, F. B. Aydemir, E. Cardoso, T. Li, A. Maté, E. Paja, M. Salnitri,
L. Piras, J. Mylopoulos, and P. Giorgini, “Goal-oriented requirements
engineering: an extended systematic mapping study,” Requirements
Engineering, pp. 1–28, 2017.

[2] A. Fuxman, L. Liu, J. Mylopoulos, M. Roveri, and P. Traverso,
“Specifying and analyzing early requirements in tropos,” Requirements
Engineering, vol. 9, no. 2, pp. 132–150, 2004.

[3] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopou-
los, “Tropos: An agent-oriented software development methodology,”
Autonomous Agents and Multi-Agent Systems, vol. 8, no. 3, pp. 203–236,
2004.

[4] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-directed
requirements acquisition,” Science of Computer Programming, vol. 20,
no. 1-2, pp. 3–50, 1993.

[5] L. Liu, E. Yu, and J. Mylopoulos, “Security and privacy requirements
analysis within a social setting,” in Proceedings of the 11th IEEE
International Requirements Engineering Conference. IEEE, 2003, pp.
151–161.

[6] Y. Asnar, P. Giorgini, and J. Mylopoulos, “Goal-driven risk assessment
in requirements engineering,” Requirements Engineering, vol. 16, no. 2,
pp. 101–116, 2010.

[7] J. Horkoff, E. Yu, and L. Liu, “Analyzing trust in technology strategies,”
in International Conference on Privacy, Security and Trust, 2006.

[8] A. Mavin, P. Wilkinson, S. Teufl, H. Femmer, J. Eckhardt, and J. Mund,
“Does goal-oriented requirements engineering achieve its goal?” in
Proceedings of the 25th IEEE International Requirements Engineering
Conference. IEEE, 2017, pp. 174–183.

[9] D. L. Moody, P. Heymans, and R. Matulevicius, “Improving the
effectiveness of visual representations in requirements engineering:
An evaluation of i* visual syntax,” in Proceedings of the 17th IEEE
International Requirements Engineering Conference, 8 2009, pp. 171–
180.

[10] I. van de Weerd, S. Brinkkemper, R. Nieuwenhuis, J. Versendaal, and
L. Bijlsma, “Towards a reference framework for software product man-
agement,” in Proceedings of the 14th IEEE International Requirements
Engineering Conference. IEEE, 2006, pp. 319–322.

[11] A. Bagnall, V. Rayward-Smith, and I. Whittley, “The next release
problem,” Information and Software Technology, vol. 43, no. 14, pp.
883–890, 2001.

[12] Y. Zhang, M. Harman, and S. A. Mansouri, “The multi-objective next
release problem,” in Proceedings of the Genetic and Evolutionary
Computation Conference, 2007, pp. 1129–1137.

[13] M. Harman and B. F. Jones, “Search-based software engineering,”
Information and Software Technology, vol. 43, no. 14, pp. 833–839,
2001.

[14] M. Jorgensen and M. Shepperd, “A systematic review of software
development cost estimation studies,” IEEE Transactions on Software
Engineering, vol. 33, no. 1, pp. 33–53, 2007.

[15] C. M. Nguyen, R. Sebastiani, P. Giorgini, and J. Mylopoulos, “Multi-
objective reasoning with constrained goal models,” Requirements Engi-
neering, 2016.

[16] R. Sebastiani and P. Trentin, “Optimathsat: A tool for optimization
modulo theories,” in Computer Aided Verification. Springer Science +
Business Media, 2015, pp. 447–454.

[17] F. B. Aydemir, P. Giorgini, and J. Mylopoulos, “Multi-objective risk
analysis with goal models,” in Proceedings of the 10th IEEE International
Conference on Research Challenges in Information Science, 2016.

[18] K. Angelopoulos, F. B. Aydemir, P. Giorgini, and J. Mylopoulos, “Solving
the next adaptation problem with prometheus,” in Proceedings of the 10th
IEEE International Conference on Research Challenges in Information
Science. IEEE, 2016, pp. 1–10.

[19] N. Argyropoulos, K. Angelopoulos, H. Mouratidis, and A. Fish,
“Decision-making in security requirements engineering with constrained
goal models,” in Computer Security. Springer, 2017, pp. 262–280.

[20] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and J. N. och Dag,
“An industrial survey of requirements interdependencies in software prod-
uct release planning,” in IEEE International Symposium on Requirements
Engineering, 2001, pp. 84–91.

[21] A. van Lamsweerde, “Requirements engineering in the year 00,” in Pro-
ceedings of the 22nd International Conference on Software Engineering,
2000, pp. 5–19.

[22] F. Dalpiaz, X. Franch, and J. Horkoff, “iStar 2.0 language guide,”
arXiv:1605.07767 [cs.SE], 2016.

[23] A. Aurum and C. Wohlin, “A value-based approach in requirements
engineering: Explaining some of the fundamental concepts,” in Require-
ments Engineering: Foundation for Software Quality. Springer Science
+ Business Media, 2007, pp. 109–115.

[24] M. R. Karim and G. Ruhe, “Bi-objective genetic search for release
planning in support of themes,” in Proceedings of the 6th International
Symposium on Search-Based Software Engineering. Springer Interna-
tional Publishing, 2014, pp. 123–137.

[25] W. Klieber and G. Kwon, “Efficient cnf encoding for selecting 1 from n
objects,” in Procedings of the International Workshop on Constraints in
Formal Verification, 2007.

[26] G. Du and G. Ruhe, “Two machine-learning techniques for mining
solutions of the releaseplannerTM decision support system,” Information
Sciences, vol. 259, pp. 474–489, 2014.

[27] I. Kwan, M. Cataldo, and D. Damian, “Conway’s law revisited: The
evidence for a task-based perspective,” IEEE Software, vol. 29, no. 1,
pp. 90–93, 2012.

[28] F. Dalpiaz, P. Giorgini, and J. Mylopoulos, “Adaptive socio-technical
systems: A requirements-based approach,” Requirements Engineering,
vol. 18, no. 1, pp. 1–24, 2013.

[29] H. Jiang, J. Zhang, J. Xuan, Z. Ren, and Y. Hu, “A hybrid aco algorithm
for the next release problem,” in Software Engineering and Data Mining,
June 2010, pp. 166–171.

[30] J. Xuan, H. Jiang, Z. Ren, and Z. Luo, “Solving the large scale next
release problem with a backbone-based multilevel algorithm,” IEEE
Transactions on Software Engineering, vol. 38, no. 5, pp. 1195–1212,
2012.

[31] M. S. Feather and T. Menzies, “Converging on the optimal attainment of
requirements,” in IEEE Joint International Conference on Requirements
Engineering, 2002, pp. 263–272.

[32] A. Pitangueira, P. Tonella, A. Susi, R. Maciel, and M. Barros, “Risk-
aware multi-stakeholder next release planning using multi-objective
optimization,” in Requirements Engineering: Foundation for Software
Quality, 2016.

[33] A. Ngo-The and G. Ruhe, “A systematic approach for solving the wicked
problem of software release planning,” Soft Computing, vol. 12, no. 1,
pp. 95–108, 2007.

[34] G. Ruhe, Product Release Planning - Methods, Tools and Applications.
CRC Press, 2010.

[35] D. Ameller, C. Farré, X. Franch, and G. Rufian, “A survey on
software release planning models,” in Product-Focused Software Process
Improvement. Springer International Publishing, 2016, pp. 48–65.

[36] Y. Zhang, M. Harman, and S. L. Lim, “Empirical evaluation of search
based requirements interaction management,” Information & Software
Technology, vol. 55, no. 1, pp. 126–152, 2013.

[37] B. Regnell, “What is essential? - a pilot survey on views about the
requirements metamodel of reqt.org,” in Requirements Engineering:
Foundation for Software Quality, 2016.

[38] J. Mylopoulos, L. Chung, and B. Nixon, “Representing and using non-
functional requirements: a process-oriented approach,” IEEE Transactions
on Software Engineering, vol. 18, no. 6, pp. 483–497, 1992.

[39] E. Yu, “Towards modelling and reasoning support for early-phase
requirements engineering,” in Proceedings of the 3rd IEEE International
Symposium on Requirements Engineering, January 1997, pp. 236–235.

[40] D. Alrajeh, J. Kramer, A. van Lamsweerde, A. Russo, and S. Uchitel,
“Generating obstacle conditions for requirements completeness,” in Pro-
ceedings of the 34th International Conference on Software Engineering,
6 2012.

[41] A. van Lamsweerde and E. Letier, “Handling obstacles in goal-oriented
requirements engineering,” IEEE Transactions on Software Engineering,
vol. 26, no. 10, pp. 978–1005, 2000.

[42] H. Mouratidis and P. Giorgini, “Secure tropos: A security-oriented
extension of the tropos methodology,” International Journal of Software
Engineering and Knowledge Engineering, vol. 17, no. 02, pp. 285–309,
2007.

[43] F. Massacci, J. Mylopoulos, and N. Zannone, “Security requirements
engineering: the si* modeling language and the secure tropos methodol-
ogy,” in Advances in Intelligent Information Systems. Springer Science
+ Business Media, 2010, pp. 147–174.

[44] A. van Lamsweerde, “Goal-oriented requirements engineering: a guided
tour,” in Proceedings of the 5th IEEE International Symposium on
Requirements Engineering, 2001, pp. 249–262.

[45] R. Sebastiani, P. Giorgini, and J. Mylopoulos, “Simple and minimum-
cost satisfiability for goal models,” in Advanced Information Systems
Engineering. Springer Science + Business Media, 2004, pp. 20–35.

[46] J. Horkoff and E. Yu, “Analyzing goal models: different approaches
and how to choose among them,” in Proceedings of the 2011 ACM
Symposium on Applied Computing. ACM, 2011, pp. 675–682.

[47] I. Jureta, A. Borgida, N. A. Ernst, and J. Mylopoulos, “Techne: Towards
a new generation of requirements modeling languages with goals,
preferences, and inconsistency handling,” in Proceedings of the 18th
IEEE International Requirements Engineering Conference, 2010, pp.
115–124.

[48] S. Liaskos, S. A. McIlraith, S. Sohrabi, and J. Mylopoulos, “Repre-
senting and reasoning about preferences in requirements engineering,”
Requirements Engineering, vol. 16, no. 3, pp. 227–249, 2011.

[49] F. B. Aydemir, P. Giorgini, J. Mylopoulos, and F. Dalpiaz, “Exploring
alternative designs for sociotechnical systems,” in Proceedings of the 8th
IEEE International Conference on Research Challenges in Information
Science, 2014, pp. 1–12.

[50] T. L. Saaty, “How to make a decision: the analytic hierarchy process,”
European Journal of Operational Research, vol. 48, no. 1, pp. 9–26,
1990.

[51] S. Liaskos, R. Jalman, and J. Aranda, “On eliciting contribution
measures in goal models,” in Proceedings of the 20th IEEE International
Requirements Engineering Conference, 2012, pp. 221–230.

[52] E. Letier and A. van Lamsweerde, “Reasoning about partial goal
satisfaction for requirements and design engineering,” ACM SIGSOFT
Software Engineering Notes, vol. 29, no. 6, p. 53, 2004.

[53] K. E. Wiegers, Software Requirements, 2nd ed. Microsoft Press, 2003.
[54] L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. D. Penta, “Release

planning of mobile apps based on user reviews,” in Proceedings of the
38th International Conference on Software Engineering, 2016, pp. 14–24.

[55] M. Choetkiertikul, H. K. Dam, T. Tran, T. T. M. Pham, A. Ghose, and
T. Menzies, “A deep learning model for estimating story points,” IEEE
Transactions on Software Engineering, 2018.

[56] E. S.-K. Yu, “Modelling strategic relationships for process reengineering,”
Ph.D. dissertation, University of Toronto, 1995.

[57] A. van Lamsweerde, “Goal-oriented requirements engineering: from sys-
tem objectives to uml models to precise software specifications,” in 25th
International Conference on Software Engineering, 2003. Proceedings.,
2003, pp. 744–745.

	Introduction
	Research Baseline
	Constrained Goal Models
	Requirements for Capturing the Next Release Problem

	Goal–Oriented Formulation of the NRP
	Process Overview
	Create the initial goal model
	Adjust constraints and optimization scheme
	Formalize the problem
	Run automated solver and analyze results
	Release product and update the goal model

	A Goal–Oriented Language for the Next Release Problem
	Goal–Oriented Definition of the NRP
	Encoding to SMT
	(Optimal) Release Candidate

	Setting constraints and optimization objectives
	Multi-objective quantitative optimization
	Qualitative reasoning with inter-dependencies
	Reasoning about specific themes
	Beyond the basics: Allocating team effort for specific themes
	Release planning

	Evaluation and Tool Support
	Lessons learned from an expert evaluation
	Prototype: the Next Release Tool
	Scalability tests

	Related Work
	Search–based approaches to NRP
	Goal–Oriented Requirements Engineering

	Discussion and Conclusion
	References

