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Abstract. [Context & Motivation] App store reviews are a rich
source for analysts to elicit requirements from user feedback, for they
describe bugs to be fixed, requested features, and possible improvements.
Product development teams need new techniques that help them make
real-time decisions based on user feedback. [Question/Problem] Re-
searchers have proposed natural language processing (NLP) techniques
for extracting and organizing requirements-relevant knowledge from the
reviews for one specific app. However, no attention has been paid to
studying whether and how requirements can be identified from com-
peting products. [Principal ideas/results] We propose RE-SWOT, a
tool-supported method for eliciting requirements from app store reviews
through competitor analysis. RE-SWOT combines NLP algorithms with
information visualization techniques. We evaluate the usefulness of RE-
SWOT with expert product managers from three mobile app companies.
[Contribution] Our preliminary results show that competitor analysis
is a promising path for research that has direct impact on the require-
ments engineering practice in modern app development companies.

Keywords: Requirements Engineering · SWOT Analysis · Natural Lan-
guage Processing · Requirements Analytics · CrowdRE.

1 Introduction

User feedback is a precious resource for requirements elicitation [1, 12, 18]. When
effectively managed, user involvement may be beneficial for project success [1].
On the contrary, ill-managed user involvement may be harmful, e.g, if excessive
effort is required for processing the collected feedback.

Crowd-based Requirements Engineering (CrowdRE) is a recent trend in Re-
quirements Engineering (RE) that studies semi-automated methods to gather
and analyze information from a large number of users, ultimately resulting in
validated user requirements [11]. Automation, which is a distinguishing feature
of CrowdRE, reduces the effort required to cope with high volumes of feedback.

Natural Language Processing (NLP) techniques have been employed in Crow-
dRE for summarizing and classifying user input into structured knowledge. Many
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of the existing approaches process user-generated reviews posted on app stores:
Guzman and Maalej [12] automatically extract app features and the associated
sentiment, Di Sorbo et al. [7] organize reviews according to their intention, and
the AR-Miner tool [4] identifies and summarizes the most informative reviews.

Current CrowdRE approaches that analyze app store reviews focus on a single
app. A gap exists in the use of competitor analysis to uncover requirements based
on an explicit comparison of one app’s reviews with those of competing apps.
The only work we could identify that considers competitors (see Sec. 2) extracts
and compares pairs of sentences for the same feature from multiple reviews [16].

In this paper, we propose RE-SWOT: a tool-supported method for eliciting
requirements from user reviews through competitor analysis. The tool combines
NLP automation with information visualization techniques, and belongs to the
domain of requirements analytics [5]. Our approach is inspired by classic liter-
ature in management, as it adapts the Strength-Weakness-Opportunity-Threat
(SWOT) analysis framework [14] to the field of RE. By presenting RE-SWOT,
we make three contributions to the literature:

– An algorithm that extracts features from the reviews of a set of competing
apps, and then generates a SWOT matrix on the basis of the sentiment that
the users have expressed toward the identified features;

– An information visualization technique that plots the results of the algorithm
in a chart, and helps analysts visually explore the competing apps with the
aim of eliciting new requirements;

– A qualitative evaluation of the practical applicability of our approach. After
demonstrating our implemented tool to three product managers of different
apps, we collect their opinion through follow-up interviews.

Organization. Sec. 2 discusses background and related literature. Sec. 3 details
the algorithm for extracting features and classifying them through the SWOT
framework. Sec. 4 illustrates our information visualization tool. Sec. 5 reports
on the evaluation, while Sec. 6 discusses our findings and presents future work.

2 Related Work

We present the necessary background for this paper in Sec. 2.1, and discuss
related approaches in Sec. 2.2.

2.1 Background

Crowd-based Requirements Engineering. The rise of social media platforms has
significantly increased the volume of feedback from software users. As a response,
the RE community has initiated a shift toward data-driven and user-centered
prioritization, planning, and management of requirements [21].

One of the emerging initiatives is Crowd-based Requirements Engineering
(CrowdRE), which is defined [11] as “an umbrella term for automated or semi-
automated approaches to gather and analyze information from a crowd to derive
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validated user requirements”. In CrowdRE, the considered feedback comes from
users who are not bond with the software company.

App store reviews in requirements elicitation. The reviews that are posted in
app stores contain diverse types of feedback. Besides functional issues (e.g., “I
used to love it, but I can’t watch videos anymore!”) and non-functional concerns
(e.g., usability or performance), the users also comment on not-yet-implemented
aspects by requesting improvements or new features [20].

Analyzing app store reviews can lead to a better understanding of how apps
are actually used, fast detection of newly introduced bugs [22], and insights from
a more diverse range of users [15]. Unfortunately, several challenges exist:

– Volume: to cope with the large quantity of reviews, CrowdRE proposes to
use NLP tools [11]. However, requirements elicitation is a “fundamentally
human activity” [3] and new tools are called upon to “bringing the human
into the loop and promoting thinking about the results” [2].

– Noise: Chen et al. [4] found that only 35.1% of app reviews contain informa-
tion that can directly help developers improve their apps. Thus, CrowdRE
approaches need to use filtering and aggregation of content [22, 4, 23].

– One-way communication: app store reviews lack meta-data about users and
app usage; moreover, the user-developer communication is unidirectional.
As such, the development team cannot reach back the users and ask for
clarifications and context information.

– Conflicting opinions: reviews often contain conflicting opinions [11, 28, 15,
21]. Classic negotiations mechanisms are inhibited by the unidirectional com-
munication; as a result, prioritization approaches are necessary to weight
issues and wishes according to their prevalence and impact [19].

In practice, app development companies depend on community managers [19]
for reading and replying to user reviews, often facilitated by tools that provide
average ratings, distribution of stars over time, automatic labeling of reviews, etc.
However, such tools do not explicitly support the elicitation of new requirements.

Visual Requirements Analytics. Reddivari et al. [26] proposed a framework that
characterizes the visual requirements analytics process. They argue that, when
proposing a requirements visualization, one has to explicitly define many aspects:
the user, the goal, the questions to be answered, how to preprocess data, and the
visualization type. Furthermore, they explain how requirements analytics tools
need to go beyond the mere visualization and rather focus on the interaction
between analyst and visualization.

2.2 Related literature: mining requirements from app store reviews

Opinion mining approaches are applicable to app store reviews, but extra chal-
lenges exist [10] due to (i) the fine-grained reviews that include comments not
only on product features, but also specific parts of the user interface, or par-
ticular user-app interactions; and (ii) the short length of app store reviews (71
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characters on average [10]). While most papers are still exploratory, some key
steps of mining requirements from app store reviews are discussed in the follow-
ing.

Preprocessing reviews. This activity is necessary to reduce noise in the reviews.
Typical techniques include stop word removal, stemming, and lemmatization.
Unfortunately, none of them delivers perfect accuracy; for example, while re-
moving common English words tends to improve classification accuracy [20], it
can hide user intentions (e.g., “should” for a feature request, “but” for a bug).
Similarly, lemmatization and stemming are alternative ways for standardizing
words with similar meaning, but no clear winner exists [9, 20]. Other prepro-
cessing techniques include removing short reviews [7], matching synonyms, and
filtering words having specific POS tags like nouns, adjectives, and verbs [20].

Classifying review content. The goal is to classify reviews according to a given
taxonomy. Yang and Liang [31] distinguish between functional and non-functional
requirements by searching for keywords that are typically associated with either
category. Most techniques in the literature [7] focus on two aspects: (i) user
intention: the user’s goals when writing the review (e.g., reporting a bug vs. re-
questing a feature); and (ii) review topic: the entire app, its interface, or a specific
feature. Maalej and Nabil [20] compare various algorithms for classifying review
intention as “Bug report”, “Feature request”, “Rating”, or “User experience”.
Panichella et al. [23] employ a different taxonomy: “Feature request”, “Problem
discovery”, “Information seeking” or “Information giving”, which is then used
by the SURF tool [7] to classify reviews according to both intention and topics:
app, GUI, pricing, security, etc.

Extracting features. NLP techniques can automatically extract the features
that a review refers to. Harman et al. [13] extract features from publicly available
app descriptions from an app store. They rely on the informal patterns that
developers use to illustrate the main features of an app, like bullet lists. Based on
these patterns, groups of commonly occurring co-located words are employed to
represent the feature. Guzman and Maalej [12] use word collocations appearing
in at least 3 reviews in their fine-grained analysis. Gao et al. [9] identify “phrases”
derived from bi-grams to prioritize issues for developers.

The SAFE framework [17] improves over previous methods, and it exhibits
a precision of 70%, recall of 56% and F1-score of 62%. They do so by defining a
list of POS patterns and sentence patterns that are frequently used to describe
features, and then applying cosine similarity algorithms.

Summarizing reviews. Algorithms in this category reduce the feedback vol-
ume. AR-Miner [4] summarizes reviews by displaying the ten most important
topics (groups of features) found, ranked by an importance score called Group-
Score. Guzman et al. [12] use a two-level summary that shows the frequency and
sentiment per topic (groups of features) or per feature.
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Competitor analysis. Jin et al. [16] identify comparable sentences in differ-
ent reviews. Through feature extraction, sentiment analysis, similarity functions
and clustering, they compare the opinions on a topic by analyzing pairs of ex-
tracted sentences. The WisCom system [8] enables summarization at the review,
app, and market level. These precursory approaches, however, do not provide a
systematic method for eliciting requirements through competitor analysis.

3 The RE-SWOT Method

Our method for eliciting requirements from app store reviews is inspired by
SWOT analysis, a prominent framework for strategic planning in organizations
that gives an overview of how a product or business is positioned, vis à vis its
external environment [14]. SWOT analysis identifies four types of factors:

– Strengths: internal factors that enhance performance. For example, the high
loyalty of an organization’s employees.

– Weaknesses: internal factors that diminish performance. For instance, re-
liance on too rigid business processes.

– Opportunities: external (i.e., outside the organization’s reach) enhancers to
performance that could be exploited. For example, economic growth.

– Threats: external factors that inhibit performance. For example, a large for-
eign firm joining the domestic market, which increases competition.

The crux of SWOT analysis is that, in order for an organization to improve its
competitiveness, it has not only to maximize the internal strengths and minimize
its own weaknesses, but also has to be aware and to react quickly and effectively
to the changing context by exploiting opportunities and mitigating threats.

We draw a parallel between SWOT analysis and RE for a software product.
Consider an app that is distributed through one or more app stores; the require-
ments for the next releases are expected to leverage its strengths, mitigate the
app’s weaknesses, exploit market gaps, and imitate the successful features of the
competitors. Table 1 shows the RE-SWOT matrix that classifies a feature into
one SWOT category by comparing a reference app with a competing app. The
reference app belongs to the company that executes the RE-SWOT analysis.

Table 1. The RE-SWOT matrix: SWOT analysis adapted to CrowdRE.

aaaaaaaaaaa

Feature
performance

App with the
feature Reference app Competitor app

Positive and above
market average

Strength: keep and/or ex-
tend the feature

Threat: imitate the competi-
tor’s feature to survive

Negative and below
market average

Weakness: fix bugs or im-
prove on a feature’s issues

Opportunity: launch new fea-
ture to exploit an existing gap
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The matrix builds on the notion of feature performance, a real number in the
[−1,+1] range that represents whether the feature implemented in a given app
has a prevalently positive (> 0) or negative (< 0) appreciation in the reviews.
The same feature may exhibit different performance when implemented in mul-
tiple apps. In RE-SWOT, feature performance is calculated automatically from
user reviews, as described in Sec. 3.1.

We illustrate the RE-SWOT matrix with some examples. Consider a feature
f1, which is included in a reference app ar; if the feature performance of f1 as
implemented in ar is positive and also above the market average for that feature,
then f1 is a strength for app ar. Consider f2 instead, which is possessed by a
competitor app ac; if the feature performance of f2 as implemented by ac is
negative and below market average, then f2 represents an opportunity for ar.

3.1 Step-by-step method description

We detail the steps of our method (overview in Fig. 1), thus clarifying how the
performance of a feature is calculated and how the RE-SWOT matrix is built.

App 1 Review 1
App 1 Review 2
App 2 Review 3
App 3 Review 4

User reviews 

Review 1 Feature A
Review 2 Feature A
Review 3 Feature B
Review 4 Feature C

1. Identify features 
and transform ratings

2. Calculate FPS

Feature App1 App2 App3

Feature A 0.2 0.5 0.3

Feature B - 1 -

Feature C -0.5 -0.5 -

Avg

0.3

1

-0.5

3. Generate 
RE-SWOT matrix

App 2

Reference app

Req 1
Req 2
Req 3
Req 4

4. Generate 
requirements

Fig. 1. The RE-SWOT method: an overview.

Step 1: Identify features and transform ratings. App features are iden-
tified from the user reviews. To do so, we employ NLP techniques for feature
identification, see Sec. 4.1 for the deatils. Furthermore, the original user ratings
(a natural number between 1 and 5) are mapped to the [−2,+2] integer scale in
which three stars becomes the neutral score (0).

Step 2: Calculate FPS per feature. Given a set of apps A = {a1, a2, . . . , am}
and a set of features F = {f1, f2, . . . , fn}, we define the feature performance score
(FPS) of app ai in relation to feature fj as per Equation 1:
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FPSi,j =
Si,j · Vi,j∑m

i=1 |Si,j · Vi,j |
(1)

– Si,j represents the user sentiment for feature fj from app ai: the sum of the
transformed user ratings given to the reviews mentioning the feature, divided
by the maximum possible sum. For instance, if a feature is mentioned in two
5-star reviews and one 2-star review, the feature sentiment score for that
feature corresponds to (2 + 2− 1)/(2 + 2 + 2) = +0.5.

– Vi,j is the feature volume for feature fj from app ai: the number of user
reviews from app ai that mention feature fj . Take an app with 2 reviews
“App crashes when uploading photos; whenever I try to upload my photos,
an error occurs” and “App is crashing a lot recently”. The feature volume
for upload photos is 1, for only the first review mentions that feature.

Step 3: Generate RE-SWOT matrix. The FPS scores from Step 2 are
used to generate the RE-SWOT matrix (illustrated earlier in Table 1). For each
feature, the scores for each app are evaluated according to two criteria:

– Positive/negative/neutral FPS. A FPS is positive if Equation 2 holds true,
negative if Equation 3 is true, and neutral when the FPS is within the range
(−σ,+σ). Based on the results of an exploratory study in which we applied
our formulas to a few apps and their reviews, we pragmatically set σ to 0.1;
in future work, more rigorous experimentation and tuning are necessary.

FPS i,j ≥ σ (2)

FPS i,j ≤ −σ (3)

– Feature performance in the market. We determine if a feature fj is unique,
above or below market average (FPS j). A FPS is above average if Equation
4 holds true, below average if Equation 5 applies. Moreover, a feature fj is
unique when only app ai has reviews concerning fj .

FPS i,j − FPS j ≥ σ (4)

FPS i,j − FPS j ≤ −σ (5)

Features from the competition with a positive FPS that is above the market
averages are classified as threats. On the other hand, features with a negative
FPS and below the market average represent opportunities. If the FPS refers to
a feature of the reference app, it can be a strength (FPS is positive and above the
market average) or a weakness (FPS is negative and below the market average).
Feature that do not fit the aforementioned scenarios are not classified.
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Table 2. The RE-SWOT matrix applied to photo editing apps.

aaaaaaaaaaa

Feature
performance

App with the
feature Photo1 Photo2 or Photo3

Positive and above
market average

Strengths:
filters

Threats:
edit photos, syncing (Photo2)

save photos (Photo3)

Negative and below
market average

Weaknesses:
save photos

Opportunities:
filters, save photos (Photo2)

exporting (Photo3)

Step 4: Generate requirements. In SWOT analysis, the TOWS framework
[29] is used to identify strategies that can improve a company’s competitiveness.
In RE-SWOT, we adapt TOWS to identify the most suitable requirements for
the app to excel in the market. With examples from the RE-SWOT matrix of
Table 2, we illustrate the four types of requirements originating from TOWS:

– SO requirements aim at pursuing opportunities that fit well with the
strengths. For example, feature filters should be boosted to exploit the op-
portunity that stems from the negative appreciation of filters in Photo2.

– WO requirements aim at overcoming weaknesses to pursue opportunities.
For instance, the save photos weakness could be overcome by leveraging the
opportunity given by the negative appreciation of that feature in Photo2.

– ST requirements aim at using strengths to reduce vulnerability to threats.
No examples of this category exist in Table 2.

– WT requirements aim at minimizing weaknesses to make them less sus-
ceptible to threats. For example, Photo1 could imitate the implementation
of the feature save photos in Photo3, which is currently a threat.

4 Prototype Tool

We implemented a tool that automatically creates an RE-SWOT matrix starting
from a set of user reviews for the reference app and its competitors. The tool is
built in R and Tableau Software and is available as an open source project3.

The tool consists of two modules: (i) an NLP module implemented in R that
creates the RE-SWOT matrix; and (ii) a visualization module for the analyst to
interact with an RE-SWOT matrix, which is built using Tableau software. Both
modules can be deployed through a Shiny web application.

4.1 NLP module

First, the module pre-processes the user reviews through the following steps:

3 https://github.com/RELabUU/RE-SWOT
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1. Tokenization: the reviews are split into sentences and words via Udpipe.
2. To lowercase: all tokens are converted to lowercase to make them uniform.
3. Stopword removal: common English words are removed using the stop-

word list of the tm package; moreover, additional words that are commonly
found in reviews (e.g., the app name, “feature”, “app”) are filtered out.

4. Noun, verb, and adjective extraction: features are more likely to be
described through nouns, verbs, and adjectives [12]. Thus, we used Udpipe’s
POS tagging to select the tokens that meet those POS tags.

5. Lemmatization: we apply Udpipe’s lemmatizer to the tokens so that words
such as “photos” and “photo” are reduced to the common term “photo”.

In line with previous studies [12], we identify features through a collocation
finding algorithm that identifies pairs of words (nouns, adjectives, verbs) that co-
occur often in the reviews of each app. We exclude pairs that co-occur up to three
times, and collocations that follow the patterns (adj, adj), (verb, adj), and (verb,
verb), for our manual inspection revealed that they did not extract meaningful
features. Hence, the considered collocation patterns are (noun, noun), (noun,
adj), (noun, verb), (adj, noun), (adj, verb), and (verb, noun).

To further cope with the heterogeneous wording that users employ to refer
to a same feature, we merge similar features (e.g., “photo edition” and “edit
picture”) by invoking the Cortical.IO service4 to compute the cosine semantic
similarity between all combinations of features. We merge feature labels with
similarity score ≥ 0.60, and assign as label that having the highest frequency.

4.2 Visualization module

This module is an Information Visualization approach for analysts to interact
with the RE-SWOT matrix. We describe it via Pfitzner’s framework et al. [25].

Data factor. Three data objects are used: reviews, extracted features, and
apps. Reviews have a date, a title, and a rating. A feature has a name, the
related app, the FPS score, and the feature volume. An app can be classified
as reference or competitor. Two relationship link the objects: (i) mention(f, r)
denotes that feature f is mentioned in review r, and (ii) SWOT (f, a, c) denotes
the class c (strength, weakness, opportunity, or threat) of feature f for app a.

Task factor. This focuses on what actions the user can perform on the data
and is described according to Shneiderman mantra’s dimensions overview, zoom,
filter, and detail-on-demand [27]. An overview of the tool is shown in Fig. 2.

Overview. The user can see a set of circles, each representing a feature. A fea-
ture’s x-axis position represents the app where the feature was identified, and
the y-axis position represents the feature’s uniqueness. The size of the circle
corresponds to the feature frequency in the reviews, and its color illustrates its
SWOT classification from the perspective of the reference app.

4 http://www.cortical.io/compare-text.html
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lightroom snapseed vsco

Features in
common

Features
unique to
competition

Features
unique to
lightroom

white

upload video

new

light room

free filter

video editing

mobile

import photo

desktop

social media

raw photo

new ui

user friendly

raw file

raw file

favorite

edit picture

editing tool

editing tool

edit photo

edit photo
photo editingiphonex

interface

version

TO START
Type your app name:
lightroom

Filter by SWOT
Multiple values

Filter by feature volume
Multiple values

Filter by quarter
2017 Q4

Legend - SWOT
Opportun..
Strength
Threat

Weakness

version

editing

background

Fig. 2. The visualization of features in the RE-SWOT tool.

Zoom. The tool allows to zoom into a feature via a click, showing only the
selected feature across all the apps with reviews mentioning that feature.

Filter. The tool allows to filter the visualized information in different ways:

1. By quarter. In Fig. 2, 2017 Q4 is shown;

2. By feature volume: low when the review volume is lower or equal to 1/6 of
the range, medium if between 1/6 and 2/6 of the range, and high otherwise.
In Fig. 2, only features with medium and high volume are shown;

3. By SWOT classification. In Fig. 2, features that are not assigned any of the
four SWOT classes are omitted.

Details-on-demand. If necessary, the analyst can request details about (i) a
feature, through a tooltip that shown the distribution of user ratings and other
information concerning the feature (Fig. 3); and (ii) a review, showing the entire
sentence in which a feature is mentioned.

5 Evaluation

We performed a preliminary evaluation aimed to determine how practitioners
find RE-SWOT supportive to requirements elicitation through competitor anal-
ysis. In particular, we conducted three semi-structured interviews with three
product management members from different app developers.
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Fig. 3. Inspecting the details of a feature.

Interview protocol. Due to logistic constraints, the interviews were conducted
remotely via online meetings that allowed for screen sharing and recording. The
interview protocol, fully described in the appendix of [24], included five parts:

1. Introduction (5 min): an explanation of the research and the interview goals.
2. Contextual questions (10 min) were made concerning the company, the inter-

viewee’s role, the product, and their current app review analysis practices.
3. Demo (10 min): the tool was showcased on a set of photo editing apps.
4. Tool use (20 min): the participant could interact freely with the tool prepared

with reviews concerning the interviewee company’s app and its competitors.
In this phase, the researcher minimized interference, while think aloud was
encouraged, and the participant was allowed to stop before the time expired.

5. Follow-up questions (15 min) on the participant’s experience with the tool,
pros and cons, missing features, and a comparison with the current practice.

Two participants were recruited through a post in the online community
MindTheProduct, an international community for product management. One
participant was recruited via convenience sampling. All participants represented
companies with a mobile app on Google Play or iOS App Store, and could
identify 2+ competing app. Both the reference app and the competitors needed
to have 200+ reviews in English over the same period and distribution platform.

Case descriptions. For confidentiality restrictions, we cannot disclose the iden-
tity of the companies. Pseudonymized data, including the periods from which
we mined the reviews, is summarized in Table 3 and described below:

– Case 1: dating apps. We interviewed a senior business analyst, working for
2 years at a Canadian company whose service (dat-ref ) has 150 million reg-
istered users; besides mobile apps for iOS, Android, and Windows Phone,
dat-ref users can also use a website. As competitors, the interviewee sug-
gested the market leader (dat-c1 ) and a fast-growing company (dat-c2 ).

– Case 2: travel apps for tourists. The reference app (trv-ref ) supports the
booking of activities and tickets, and is produced by a company with 400
employees distributed over three continents. We interviewed a senior product
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manager with 6+ years of expertise in the field, who is responsible for the
development roadmap. The competitors are an app for the Asian market
(trv-c1 ) and the market leader (trv-c2 ).

– Case 3: puzzle games. The reference app (pzl-ref ) has 135 puzzle types and
is created by a small European company (6 employees). We interviewed the
CEO of the company, who is a software engineer and has 9 years of experience
in app development. The competitors pzl-c1 and pzl-c2 are similar apps
suggested by the interviewee.

Table 3. Overview of the data collected for the three cases. The number of features
refers to those that were mined by our tool.

Case 1: Dating apps Case 2: Travel apps Case 3: Puzzle games
May 2018 Dec 2016 – May 2018 Jan 2017 – Jun 2018

ID Reviews Features ID Reviews Features ID Reviews Features

dat-ref 3,220 280 trv-ref 253 9 pzl-ref 743 11

dat-c1 992 46 trv-c1 506 30 pzl-c1 2,105 72

dat-c2 802 66 trv-c2 375 14 pzl-c2 3,321 176

Results: current practice. All interviewees reported that they read the re-
views for their app to some extent. The dat-ref interviewee reads all reviews
approximately once per month to understand user perception and to identify
areas for improvement. The reviews of trv-ref are automatically re-posted to the
development team communication channel, giving everyone the opportunity to
read them on a continuous basis. The CEO of pzl-ref reads the reviews occasion-
ally through the Google Play Developers console, but found them only mildly
useful for guiding product development. None of the interviewees has the habit
of reading their competitors reviews, either due to time constraints (dat-ref ) or
because the option has never been considered (trv-ref and pzl-ref ).

Positive aspects and insights. All participants referred to the visual and in-
teractive aspect of RE-SWOT as the main positive feature of the tool. According
to the dat-ref interviewee, “The tool is easy to learn and navigate”, while the
trv-ref interviewee described the experience as a “deep-dive analysis”.

The dat-ref product manager highlighted other positive aspects: the possi-
bility to zoom and see details can impact positively the communication between
stakeholders, and the automated detection of phrases from the reviews is useful
to work with a large volume of reviews. The same interviewee was surprised to
discover that one of the competitors received fewer reviews than dat-ref.

The trv-ref interviewee stated to have become aware of a feature from the
competitors that was previously unknown, and this—if time allows—may influ-
ence product development. It was also possible to see that one competitor was
conducting a promotion because people are commenting on promo codes.
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The CEO of pzl-ref said that the tool confirms that competitor apps adopt a
similar business model, but found the insight generation limited, mostly due to
the nature of reviews received by games, which are generic and not informative.

Improvements and missing features. Both the dat-ref and the trv-ref in-
terviewees indicated the possibility to see trends over time as the most valuable
improvement. While the dat-ref product manager found that the feature could
make the tool directly usable in practice, the trv-ref interviewee would have liked
to see the reviews for a custom period of time, instead of selecting one quarter.

The trv-ref participant observed some weaknesses in the feature extraction
algorithm; despite our attempt to merge some features via lemmatization, there
are still cases in which two word collocations are not merged automatically.

Concerning the SWOT classification, both the trv-ref and the pzl-ref partic-
ipants found some opportunities to be inaccurate, for bugs in other apps do not
necessarily represent an opportunity (trv-ref ), and because some opportunities
referred to features that are already implemented in the reference app (pzl-ref ).

Finally, the pzl-ref interviewee suggested some usability improvements, in-
cluding (i) a filter for the analyst to remove uninformative (e.g., short) reviews;
and (ii) an automatically generated preview of the reviews mentioning a given
feature, a sort of summarization.

Comparison to current practice. None of the participants currently read
their competitors reviews; thus, the interviewees answered based on the way
they read their own app’s reviews. The dat-ref interviewee found the feature
generation algorithm to be an improvement over their current practice. The
trv-ref product manager thought that the visualization tool has the potential to
deliver knowledge about the competitors. Finally, the pzl-ref interviewee referred
us to the Google Play Console, which provides review highlights using similar
techniques to RE-SWOT for feature extraction. However, according to the par-
ticipant, analyzing reviews through RE-SWOT is more visual and interactive.

Factors influencing adoption. The dat-ref interviewee could see RE-SWOT
being integrated into their workflow if more competitors could be handled (cur-
rently, it supports two competitors besides the reference app), and if trend anal-
ysis was included. As a drawback, the tool uses Tableau Software, which could
make it unaffordable to some companies. Also the trv-ref participant thought
they could adopt the tool, when a functionality was created to support the anal-
ysis of trends. On the other hand, the pzl-ref CEO found no real incentive to
adopt the tool, unless a notification mechanism is put in place so that changes
in sentiment are automatically pushed to the product management.

6 Discussion and Future Work

We have presented the RE-SWOT method for eliciting requirements for mobile
apps based on competitor analysis through the automated processing of user re-
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views posted in app stores. RE-SWOT draws inspiration from strategic planning
and classifies app features as strengths, weaknesses, opportunities, and threats.

RE-SWOT employs NLP algorithms to automatically extract features from
the reviews and to classify the features according to the SWOT framework. The
results are rendered in an interactive visualization that helps analysts explore
their app’s market and identify possible requirements for the next releases.

Main findings. The feature extraction algorithm was evaluated positively by
the dat-ref participant, while the other two interviewees found that the results
include too many false positives. It is worth noting that the dat-ref receives 100
times the rate of reviews than the other reference apps; as such, we hypothesize
that the algorithm is more effective for apps with a high review volume.

The SWOT classification was understood quite well by all interviewees. The
most recurrent feedback was that not all strengths or weaknesses of the competi-
tors represent actual threats or opportunities. Our to-be-expected conclusion is
that the insights that RE-SWOT returns do not automatically result in new
requirements for the reference app; human analytical skills are essential.

The interactive visualization of the tool was indicated as a positive factor by
all interviewees. On the other hand, they indicated the need to include change
detection techniques, either via trend analysis or through a notification system
that informs analysts of significant changes in the sentiment toward a feature.

Validity evaluation. We discuss the major threats to validity based on the
distinction between internal, conclusion, construct, and external validity [30].

Internal validity. All of our interviewees adopted practices in which competi-
tor reviews were not considered. Therefore, the positive appreciation could be
explained by the fact the interviewees had never analyzed competitor reviews.
Moreover, the review volume differed greatly across apps, therefore resulting in
a large variability in terms of the period we analyzed.

Conclusion validity. The interviews were manually coded into observations, and
therefore we may have inserted our own beliefs during this process. Moreover,
the number of cases (N = 3) is insufficient to draw definitive conclusions.

Construct validity. RE-SWOT has been evaluated as a whole rather than by
its parts. Therefore, we cannot determine, for example, the extent to which
the SWOT classification mechanism is effective, for the practitioners may have
focused on other factors like the size of the circles (the volume).

External validity. As observational case studies were applied, there is no popu-
lation to sample from. Therefore, generalization is analytical rather than statis-
tical. Moreover, the number of reviews for case 2 and case 3 are rather low to
justify an automated approach; as such, the case of dating apps is probably the
most representative of the intended audience.
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Future directions. Many improvements to RE-SWOT are possible. For fea-
ture extraction, we adapted Guzman and Maalej’s technique [12], but we could
experiment with the SAFE framework [17] or other recent algorithms. Also, the
thresholds we used to determine the SWOT classes should be adjusted. Further-
more, as pointed out by the interviewees, trend analysis should be included for
increasing the impact of the tool. The sentiment score calculation can be im-
proved by looking at the text characteristics, instead of using only the number
of stars assigned by the users. Inevitably, more empirical evaluation is necessary;
in particular, we need to assess the effectiveness of the framework when used in
the daily practice of requirements engineers and product managers.

In general, this work offers numerous opportunities for research that combines
NLP and information visualization in RE; for another example of such synergy,
see our work on terminological ambiguity [6]. In order for automated techniques
to become useful for practitioners, the results of automation have to be turned
into requirements analytics tools [26] that are built for use by human analysts.
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