
Automated Extraction of Conceptual Models
from User Stories via NLP

Marcel Robeer, Garm Lucassen, Jan Martijn E.M. van der Werf, Fabiano Dalpiaz and Sjaak Brinkkemper
Department of Information and Computing Sciences

Utrecht University
Email: {m.j.robeer, g.lucassen, j.m.e.m.vanderwerf, f.dalpiaz, s.brinkkemper}@uu.nl

Abstract—Natural language (NL) is still the predominant no-
tation that practitioners use to represent software requirements.
Albeit easy to read, NL does not readily highlight key concepts
and relationships such as dependencies and conflicts. This con-
trasts with the inherent capability of graphical conceptual models
to visualize a given domain in a holistic fashion. In this paper,
we propose to automatically derive conceptual models from a
concise and widely adopted NL notation for requirements: user
stories. Due to their simplicity, we hypothesize that our approach
can improve on the low accuracy of previous works. We present
an algorithm that combines state-of-the-art heuristics and that is
implemented in our Visual Narrator tool. We evaluate our work
on two case studies wherein we obtained promising precision and
recall results (between 80% and 92%). The creators of the user
stories perceived the generated models as a useful artifact to
communicate and discuss the requirements, especially for team
members who are not yet familiar with the project.

Index Terms—User stories, conceptual modeling, NLP

I. INTRODUCTION

The software industry commonly uses natural language
(NL) notations to express software requirements [1]; a recent
study shows that NL is employed by over 60% of the users [2].
With the increasing adoption of agile development practices
such as Scrum, moreover, semi-structured yet NL notations
such as user stories are gaining momentum [3], [4].

Despite the advantages of NL requirements in terms of
ease of understanding and learning—we use NL daily for
communicating with others!—, this requirements notation also
suffer from drawbacks. The well-known problem of ambiguity
(see [5] for an authoritative review) is a central issue. However,
we focus here on another limitation: the difficulty of creating
a holistic view of the requirements that highlights the key
entities and relationships, and thereby supports identifying
dependencies, redundancies, and inconsistencies.

We align with existing proposals that complement NL
requirements with conceptual models in order to create this
holistic view that NL alone fails to provide (e.g., [6]–[9]).
However, we aim to go beyond the limitations of these inspir-
ing tools, which either (i) lack automation thereby requiring
human involvement to tag the text [7], [10], or (ii) have
low accuracy, often due to the ambitious attempt to support
arbitrarily complex requirements statements [8], [11].

Our recipe to overcome these limitations is as follows: (i)
we choose the notation of user stories, which is highly popular
among practitioners [3], [4] and that expresses concisely the
essential elements of requirements; (ii) to minimize the need

of human processing, we propose a fully automated software
tool; and (iii) we strive to obtain high accuracy, and we do
so by carefully choosing heuristics that help create a holistic
view of the requirements, and by ignoring those that contribute
with too fine-grained details (and are often less accurate).

Specifically, we make the following contributions:
• We combine natural language processing (NLP) heuristics

into an algorithm that creates conceptual models from
user stories;

• We present the Visual Narrator: a fully automated, open-
source tool that implements our algorithm and generates
conceptual models as OWL ontologies;

• We conduct a quantitative evaluation of the accuracy
of our implementation in terms of recall and precision
against two data sets from two case companies. The eval-
uation shows promising results with respect to a manual
tagging of the data sets from the two case companies.

• We report on a qualitative evaluation where we inter-
viewed the lead analysts from two case companies about
the usefulness of our approach.

This paper is a brick of our research line on user stories.
In previous work, we have proposed a conceptual model and
an NLP-enabled tool for writing high-quality user stories [12]
that obtained positive results in several case studies [13] and
we have studied the perception and adoption of user stories in
industry [4]. Here, we take high-quality user stories and use
them to extract conceptual models.

The rest of the paper is structured as follows. Sec. II
introduces baseline and related work. Sec. III reviews 23
heuristics from the literature and explains those that we choose
for our work. Sec. IV presents the architecture and the main
algorithm of the tool. Sec. V and Sec. VI report on the
quantitative and qualitative evaluations. Sec. VII discusses our
approach and presents future directions.

II. BACKGROUND

We present our baseline in Sec. II-A, and discuss the
relevant related work in Sec. II-B.

A. Baseline: conceptual anatomy of user stories

We build on previous work [13]–[15] and define a generic
conceptual model of stories that dissects a single user story
and defines its syntactic structure. We do so by assembling
the conceptual model as a UML class diagram in Fig. 1. User



stories follow a standard predefined format [14] to capture
three distinct aspects of a requirement:

1) Who wants the functionality;
2) What functionality the end users or stakeholders want

the system to provide; and
3) Why the end users and stakeholders need this function-

ality (optional).
These three aspects are captured in a simple textual template

to form a running sentence. Although many different templates
exist, 70% of practitioners use the template “As a 〈type of
user〉, I want 〈some goal〉 [so that 〈some reason〉]” [15].

User Story

Role Means Ends

Indicator Indicator

Subject

Main Verb

Main Object

1 1 0..1

1 1

1

1

1

Functional 

Role

1

Free Form
0..1

Indicator
1

Free Form
1

Fig. 1. Conceptual model defining the syntax of a user story

As per our previous work [13], the conceptual model
distinguishes between the role, means and ends parts of a user
story. Each of these parts features an indicator which delimits
the three basic parts of a user story. Jointly, the indicators
define the template of a user story.

The role part encompasses the role indicator and the
functional role, describing a generalized type of person who
interacts with the system. Throughout this paper, when no
ambiguity exists, we use the term role to denote both the full
part and the functional role. The means consists of a subject, a
main object of the functionality, and a main verb describing the
relationship between the subject and main object. The main
object can be represented explicitly by the direct object or
implicitly (e.g., ‘I want to log in’ actually refers to logging in
the system). Note that we extend our previous work [13] that
used the term action verb—which does not support state verbs
like ‘to see’—and replace it with the more general term main
verb. The rest of the means can assume too many variations
in reality; as such, we do not make any further distinction:
words are captured by the free form class.

For example, consider the user story “As a visitor, I want to
purchase a ticket so that I can attend the conference”. Here,
‘visitor’ is the functional role, ‘I’ is the subject, ‘a ticket’ the
main object (a direct object), and ‘purchase’ is the main verb

linking subject and object. There is no free form part for the
means, and the indicators are ‘As a’, ‘I want to’, and ‘so that’.

Although the ends has a similar structure to the means in this
example, this is not always the case. In [13], we have identified
three main purposes that the ends may take: (1) clarify the
means, (2) reference another user story, or (3) introduce a
qualitative requirement. These functions can be combined for
a single user story. This semantic distinction between the types
of ends goes beyond the scope of this paper, where we limit
ourselves to the syntactic structure of the user stories.

B. Related work: extracting models from requirements

Extracting conceptual models from NL requirements is a
long-standing research topic that is relevant in several do-
mains. Already in 1989, Saeki et al. described a method where
verbs and nouns are automatically extracted from NL, in order
for a requirements engineer to derive a formal specification of
the system [16]. One of the first tools that implement this idea
is NL-OOPS [17]. The authors demonstrate the capabilities
of NL-OOPS by generating a data model from a 250 word
text. Since then, many tools have been proposed with diverse
approaches and results. CM-builder [8] managed to extract
candidate attributes, classes and relationships from a 220 word
text with 73% recall and 66% precision. CIRCE [18] is a so-
phisticated tool that generates many different models including
ERD, UML and DFD from NL requirements. Experimental
application in three case studies indicated improvements in
software model analysis and changing requirements. All these
tools, however, require either human intervention or artificially
restricted NL in order to generate complete and consistent
models, prohibiting widespread adoption among practitioners.
Recognizing this gap in a structured literature review, Yue
et al. called for future approaches that fully automatically
generate complete, consistent and correct UML models [19].
Their latest tool, aToucan, generates reasonably high quality
class diagrams from use cases in comparison to diagrams cre-
ated by experts, managing to consistently outperform fourth-
year software engineering students in terms of completeness,
consistency and redundancy. Moreover, its output constitutes
initial models to be refined by experts [20]. Similarly, the tool
presented in [11] outperforms novice human modelers in gen-
erating conceptual models from natural language requirements.
Overall, their recall for identifying classes ranges from 85% to
100% depending on the case, while their precision is between
81% and 94%. The performance for relationships between
classes, however, is less impressive: recall is in between 50%
and 60%, while precision is in the 80%-100% range.

III. NLP HEURISTICS FOR USER STORY ANALYSIS

To extract meaningful models from NL requirements, re-
searchers have been using heuristic rules that identify concepts
and relationships whenever the text matches certain patterns
of the given language (usually English). The purpose of this
section is to select NLP heuristics that can be effectively
employed to derive conceptual models from user stories.



TABLE I
CLASSIFICATION OF HEURISTICS FOUND IN PREVIOUS LITERATURE FOR CONCEPTUAL MODEL GENERATION.

ID Rule head (if) Rule tail (then) Source(s)

Concepts
C1 Noun Potential concept [8], [21], [22]
C2 Common noun Concept [6], [9], [22], [23]
C3 Sentence subject Concept [11], [22]
C4 Compound noun Take compound together to form concept [11], [24]
C5 Gerund Concept [11], [23]

Non-hierarchical Relationships
R1 Verb Potential relationship [11], [21]
R2 Transitive verb Relationship [8], [9], [11], [23]
R3 Verb (phrase) linking the subject and an object Relationship [8], [11], [22]
R4 Verb followed by preposition Relationship including preposition [6]
R5 Noun-noun compound Non-hierarchical relationship between prefix and compound [24]

Hierarchical Relationships
H1 Verb ‘to be’ Subjects are children of parent object [9], [22]
H2 Head of noun-noun compound IS-A relationship between compound and head [24]

Attributes
A1 Adjective Attribute of noun phrase main [8], [9], [11], [22], [23]
A2 Adverb modifying a verb Relationship attribute [9], [23]
A3 Possessive apostrophe Concept attribute [8], [11]
A4 Genitive case Concept attribute [6], [11], [22]
A5 Verb ‘to have’ Concept attribute [8], [11], [22], [25]
A6 Specific indicators (e.g. ‘number’, ‘date’, ‘type’, . . . ) Concept attribute [6]
A7 Object of numeric/algebraic operation Concept attribute [23]

Cardinality
CA1 Singular noun (+ definite article) Exactly 1 [8], [21], [22]
CA2 Indefinite article Exactly 1 [8]
CA3 Part in the form “More than X” X..∗ [6], [8]
CA4 Indicators many, each, all, every, some, any ??..∗ [6], [8]

Through our study of the literature on conceptual model
generation, we have identified the 23 heuristics shown in
Table I. This overview groups the heuristics by the part of
a conceptual model they generate: concepts, non-hierarchical
relationships, hierarchical relationships, attributes, and cardi-
nality. The table presents as simple version of each rule as an
implication from a condition (the head) to a consequence (the
tail). As an example, the first concept heuristic should be read
as C1: “If a word is a noun, then it is a potential concept.”

For user stories, which are concise statements about the
functionality of a system, not all heuristics are equally relevant.
For example, user stories are not meant to include information
about attributes or cardinality [15], thereby making these
heuristic categories poorly relevant for our work. Other heuris-
tics are still ignored by or too difficult for state-of-the-art part-
of-speech taggers. For example, the de-facto standard Penn
Treebank tags cannot distinguish between gerunds and present
participle. This exclusion process results in 11 heuristics that
are particularly relevant for generating conceptual models from
user stories. In the following sub-sections, we explain the
chosen heuristics and provide illustrative examples.

A. Concepts and Non-hierarchical relationships

The most basic heuristics in the literature specify that (1)
nouns in a sentence denote a concept, and (2) verbs indicate
a potential relationship [21], [26]. This prompts us to define
the first concept and relationship heuristic as follows:

C1. “Every noun is a potential concept.”

R1. “Every verb is a potential relationship.”

Example A: Consider the user story “As a visitor, I want to
create a new account.” that comprises two nouns (visitor and
account), and one verb (create) when we exclude role and
means indicators. Rule C1 specifies to create two concepts vis-
itor and account and rule R1 originates a relationship between
these concepts named as the verb: create(visitor,account).

However, uncritically designating all nouns as concepts
would result in a conceptual model full of superfluous con-
cepts. Previous authors have employed the distinction between
proper nouns and common nouns to generalize some of the
identified concepts as more abstract instantiations [6], [9],
[22], [23]. In general, common nouns are concepts and proper



nouns are instances of these concepts that can be disregarded.
Transitive verbs have a similar function, referencing an object
in the sentence. These two phenomena lead to heuristics C2
and R2:

C2. “A common noun indicates a concept.”

R2. “A transitive verb indicates a relationship.”

To form relationships between concepts, a sentence should
contain three elements: the subject, the object and the verb
(phrase) linking the previous two. The subject is certainly
essential: in an active sentence, for instance, the subject is the
initiator—the so-called agent—of the main action performed
in the sentence. Therefore, it has its own heuristics:

C3. “The subject of a sentence is a concept.”

R3. “The verb (phrase) linking the sentence subject and an
object forms the relationship between these two.”

Example B: Let us consider the story “As John the manager,
I want to design a website.” The sentence comprises three
common nouns, one proper noun and one transitive verb. The
person John—a proper noun—can be generalized to his job
description manager (C2). Therefore, John is an instance of
concept manager. Note that this proper noun defines the con-
cept John because heuristic C3 says that, no matter its type, the
subject of a sentence leads to a concept. The transitive verb has
direct object website, and subject I which refers to John (R2).
As we do not know whether the ability to design a website
applies to John or to managers in general, we create concept
John (C3) with relationship design(John,website) (R3).

Concerning relationships, Omar et al. [6] distinguish be-
tween two types of verbs that indicate relationships: general
transitive verbs and verbs followed by a preposition. These
prepositions significantly change the meaning of a relationship,
and are therefore captured in a separate heuristic:

R4. “If a verb is followed by a preposition, then the preposi-
tion is included in the relationship name.”

Example C: For the user story “As a visitor, I want to
search by category”, we first identify the subject I (C3). The
sentence has no direct object. The preposition by (R4) changes
the meaning of the relationship from searching something to
searching by something. Therefore, we obtain the relationship
search_by(I,category). Since I refers to the functional role
visitor, it results in the relationship search_by(visitor,category).

B. Compound Nouns

Compound nouns describe a concept using multiple words.
Most often these are sequences of nouns or adjectives followed
by one or more nouns. To accurately construct a conceptual
model, we consider the whole compound noun as the concept.
Compound nouns are known to have many inherent relation-
ships, as there are many ways to combine them [27]. However,
extracting this requires the synthesis of lexical, semantic and
pragmatic information, which is a complex task [28] that can

hardly lead to accurate results. Therefore, we limit ourselves
to a simple heuristic proposed by Vela and Declerck [24] by
considering compound nouns of length two only:

C4. “Noun compounds are taken together to form a concept.”

R5. “In noun-noun compounds there is a non-hierarchical
relationship between the prefix and compound.”

Example D: For the compound noun “event organizer” we
create a compound concept event_organizer (C4) and a “has”
relationship has_organizer(event,event_organizer) (R5).

C. Hierarchical Relationships

The ontology generation domain pays special attention to
generalization relationships, often referred to as IS-A relation-
ships [9], [22]. Tenses of the verb to be typically indicate a
hierarchical relationship between two concepts. The subject of
the relationships on the left side of the verb is a specialization
of the parent object on the right side of the verb to be:

H1. “The verb ‘to be’ indicates a hierarchical relationship:
the subject is taken as a specialization of the parent object.”

In addition, Vela and Declerck [24] note that the nouns
in compounds have a generalization relationship. Compound-
noun concepts are a form of a more abstract concept, e.g.,
database_administrator is a type of administrator. This is
captured by the following heuristic:

H2. “If there is a noun-noun compound present, the head of
the compound is the parent of the compound concept.”

Example E: Consider the user story “As a visitor, I can change
my account password.” In this user story, heuristics C4, C5
and H2 apply on noun compound account password. First,
we create compound concept account_password (C4), which
is a type of password: IS-A(account_password,password)
(H2). In addition, we create a ‘has’ relationship (R5)
has_password(account,account_password).

IV. THE VISUAL NARRATOR TOOL

To enable the automated extraction of conceptual models
from user stories, we developed the Visual Narrator tool on the
basis of the 11 heuristics detailed in Sec. III. Visual Narrator
takes a set of user stories as input and generates a conceptual
model as output. It is built in Python and relies on the natural
text processor spaCy (http://spacy.io), a recent proposal in NLP
with excellent performance and that implements algorithms
needing minimal to no tuning. Additionally, phrasal verb
extraction is performed using an algorithm proposed in [29].

Our tool only accepts user stories that use the indicators
as identified by Wautelet [14]: As / As a(n) for the role, I
want (to) / I can / I am able / I would like for the means,
and so that for the ends part. Syntactically invalid user stories
are not processed; in order to sanitize these stories, analysts
should pre-process them using tools such as AQUSA [13].

In addition to generating a holistic conceptual model, Visual
Narrator can also generate separate models per role to help



VISUAL NARRATOR

«component»
UserStory

«component»
Miner

«component»
spaCy

«component»
Matrix

Unprocessed
User Story

User Story
object

WeightedToken

User Story
Set

Conceptual
Model

«component»
Constructor

«component»
Generator

«component»
Ontology

«component»
PatternFactory

«component»
PatternIdentifier

Ontology
object

Pattern

Model

«component»
WeightAttacher

Term-by-
US matrix

User Story
object

«component»
Processor

Fig. 2. Component Diagram of the Visual Narrator tool

analysts focus on an individual role. Furthermore, analysts
have the option to fine-tune the sensitivity of the tool: (i)
weights for each type of concept (role, main object, compound,
etc.) can be specified to determine their relative importance,
and (ii) a threshold can be expressed to exclude from the
generated models the least frequent entities by computing a
ranking based on frequency and concept weight.

A. Architecture

The main architecture of Visual Narrator is shown in Fig. 2
and depicts two main components: (1) the Processor analyzes
and parses user stories according to the syntactic model for
user stories (Fig. 1), while (2) the Constructor creates the
actual conceptual model starting from the parsed stories.

First, the Processor analyzes the user story set. The Miner
component uses spaCy to parse each user story into to-
kens, which hold the term itself, its part-of-speech tag and
relationships with other tokens. These tokens are stored in
the UserStory component and used to infer concepts and
relationships, and to determine token weights.

Next, the Matrix component removes stop words from the
collection of tokens and then attaches a weight to each term,
based on the frequency and on the weights that were specified
as input parameters. This step results in a Term-by-User-Story
matrix containing a weight for each term in the individual
user stories. The summation of the weights for a given term
is added to each token, resulting in a set of WeightedTokens.

The Constructor then generates the conceptual model by
further processing the WeightedTokens. This starts in the
PatternIdentifier component, which applies the heuristics to
identify all patterns in the user story. The PatternFactory
component creates an internal conceptual Model based on
the patterns and stores it in the Ontology component. Parts
of the Ontology are linked to the user story they originated
from. Note that the PatternFactory filters out all concepts
and relationships with a weight smaller than a user-specified
threshold. Finally, two different Generators output an onto-
logical representation of the Ontology object as an OWL 2
ontology and as a Prolog program.

Our implementation adapts some of the heuristics, either
due to the specific NL toolkit spaCy or to further optimize the
results. We modify C2 by including both common and proper
nouns, because proper nouns often refer to domain-specific
concepts such as the name of a software product or a library.
To improve accuracy, we replace some pronouns with the
noun they refer to when no ambiguity exists (see Sec. IV-B).
Effectively, this means Visual Narrator assigns every noun
to a new or existing concept. We did not implement H1
because the correct application of the heuristics requires a deep
understanding of the semantics of the “to be” relationship.

B. Extraction Algorithm

To extract a conceptual model from user stories, Visual
Narrator implements the procedure DERIVECM presented in
Algorithm 1. The procedure takes as input a set of raw user
stories S and empty sets of concepts C and relationships R,
and populates C and R while parsing the stories and applying
the heuristics defined in the previous sections.

The procedure starts in line 2 by defining the valid indicators
ind for splitting the user stories into role, means, end. The
cycle of lines 3–14 excludes syntactically incorrect user stories
and creates the set of concepts, including hierarchical ones.
Every story (r,m, e) is initially split using the indicators (line
4); if this operation fails, the story is discarded and the loop
continues to the next story (line 5). If a story is identified, it
is added to the set of syntactically valid user stories S’.

Every part of a syntactically valid user story (role, means,
end) is parsed (line 8). Then, the heuristics to identify nouns
(C2) and the subject of the sentence (C3) are executed (lines
9–10); all identified nouns are added to the set of concepts C.
Lines 11–14 process compound nouns: the compound is added
to C according to heuristic C4, a specialization relationship
is created linking the sub-class to the super-class (H2), and a
non-hierarchical “has” relationship is created from the prefix
of the compound to the compound itself (R5).

Lines 15–29 iterate over the set S′ of syntactically correct
user stories with the intent of identifying relationships where
concepts in C are linked through associations created by
processing the verbs in the user stories. Lines 16–17 modify
the means and the end by setting their subject correctly: the
subject of the means (the “I” of the indicator “I want to”)
is replaced by the subject of the role r; a similar processing
applies to ends whose raw subject is “I” (e.g., “so that I. . . ”).



Algorithm 1 Pseudo-code of DERIVECM that builds a con-
ceptual model by mining stories and applying the heuristics

1: procedure DERIVECM(Stories S, Concepts C, Rels R)
2: ind = ({As a, . . . },{I want, I can, . . . },{So that})
3: for each s ∈ S do
4: (r,m,e) = split-by-indicators(s,ind)
5: if (r,m,e) == null then continue
6: else S′ = S′ ∪ (r,m, e)
7: for each p ∈ {r,m, e} do
8: pt = create-parse-tree(p)
9: C = C ∪ find-nouns(pt) [C2]

10: C = C ∪ subject-of(pt) [C3]
11: for each cn∈comp-nouns(pt) do
12: C = C ∪ {cn} [C4]
13: R = R ∪ IS-A(cn, head(cn)) [H2]
14: R = R ∪ has(prefix(cn), cn) [R5]
15: for each (r,m, e) ∈ S′ do
16: replace-subject(m,r)
17: if subject-of(e) == “I” then replace-subject(e,r)
18: for each p ∈ {m, e} do
19: subj = find-subject(p)
20: if subj == null then continue
21: v = find-main-verb(p)
22: obj = find-direct-object(p) [R2]
23: if obj == null then
24: obj = find-non-direct-object(p) [R3,R4]
25: if obj == null then continue
26: if subj, obj ∈ C then
27: R = R ∪ v(subj, obj)
28: else if subj ∈ C ∧ p == m then
29: R = R ∪ v(subj, system)

Both means and end are processed in lines 18–29. Subject,
main verb and direct object (R2) are identified in lines 19,
21, 22, respectively. If no subject is identified, the algorithm
continues to the next element: we do not look for verbs when
the subject is unclear or nonexistent. If a direct object is not
found, an indirect object is searched for applying heuristics R3
and R4 (lines 23–24). If no object is found, the cycle continues
to the next element (line 25). If both subject and object are in
C, a relationship with the name of the verb is created between
them (lines 26–27). In case only the subject is in C and we
are analyzing the means, a relationship is created from the
subject to a special concept called system. For example, the
story “As a user, I want to login” would result in a relationship
login(user,system). The same rule applies only to the means
because this part refers to a desired functionality, while the
structure of the end is less rigid [13].

V. QUANTITATIVE EVALUATION: ACCURACY

We evaluate the accuracy and feasibility of our approach
by applying Visual Narrator to two data sets obtained from
two case study companies. The data sets and their evaluation
documents are available online1. In Sec. V-A, we determine the
accuracy of our implementation of the heuristics (Algorithm 1)
by comparing the results of Visual Narrator to a manual
labeling of the data sets done by one of the authors. In
Sec. V-B, we discuss the limitations of our approach in terms

1http://www.staff.science.uu.nl/~lucas001/conc_modeling_user_stories.zip

of important concepts and relationships that are not recognized
due to either NLP limitations, our algorithm, or unanticipatable
structure of the user stories.

A. Heuristics Accuracy

To determine the accuracy of our implemented heuris-
tics, one author—different from the developer—analyzed and
tagged the concepts and relationships in the user stories of
the two case studies by manually applying Algorithm 1. This
tagging was then compared against the outputs of the tool. We
argue for this to be a more objective evaluation than comparing
with the subjective output consisting of all human recognized
concepts and relationships in a text.

Our evaluation has two aims:
• To determine quantitatively to what extent the NLP

toolkit that was employed fails to deliver accurate results
due to the difficulty of correctly tagging sentences.

• To analyze qualitatively the limitations of our imple-
mentation in terms of important information that is not
recognized correctly.

We determine true positive, false positive and false negative
elements (concepts and relationships) as follows:
• True positive: the element is identified both by the tool

and by the manual analysis.
• False positive: the element is identified by the tool but

not by the manual analysis.
• False negative: the element is not identified by the tool

while it was listed in the manual analysis.
Note that multiple heuristics may apply to a given text

chunk. For example, three heuristics apply to a compound: C4,
H2, and R5. Thus, if the tool misses a compound, it actually
generates three false negatives; on the other hand, if the tool
and the manual analysis match, three true positives are gen-
erated. Moreover, the incorrect identification of a relationship
(e.g., see(visitor,content) instead of see(visitor,display_name))
results in both a false positive (the wrong relationship) and a
false negative (the missed out relationship).

We report on the accuracy in two ways: (i) on individual
user stories, by aggregating the number of true positives, false
negatives and false positives for concepts and relationships;
and (ii) on the obtained conceptual model, by comparing the
manually created one and the generated one.

Making this distinction is important when some concepts
appear multiple times: consider, for example, a compound
noun (C4, H2, R5) that appears in 20 different user stories
in a data set. This would imply 20 false negative concepts and
40 false negative relationships (20 times H2 and 20 times R5).
On the other hand, the resulting conceptual model would only
miss one concept and two relationships.

Tables II–V report the results using the same format. They
have three macro-columns: concepts, relationships, and overall
(concepts+relationships). Each macro-column has three sub-
columns to denote true positives (TP), false positives (FP)
and false negatives (FN). The rows represent the number of
instances (the number of identified and missed out concepts



and relationships), the percentile splitting of TP, FP, and FN,
the precision, and the recall.

1) WebCompany: This is a young Dutch company that
creates tailor-made web business applications. The team con-
sists of nine employees who iteratively develop applications in
weekly Scrum sprints. WebCompany supplied 98 user stories
covering the development of an entire web application focused
on interactive story telling that was created in 2014.

73 of these 98 user stories were syntactically correct, usable
and relevant for conceptual model generation [13]. Part of the
generated conceptual model is shown in Fig. 3.

Administrator User
find, remove, manage, ban

Media Element

add, edit, remove

Media
has_element Media 

Gallery

has_gallery

Element Gallery

IS-A ���A

update, delete, add

Content List

search, manage, 
see

Mistake

correct

Account

Fig. 3. Partial model for WebCompany generated with Visual Narrator

The accuracy results of the individual user story analysis
shown in Table II are quite positive. The overall precision and
recall are 91% and 92%, respectively. The accuracy is higher
for concepts than for relationships; for concepts, precision
and recall are above 95%, while for relationships precision
is 83.7% and recall is 87.2%. This is not surprising, for
a relationship is identified correctly only if the relationship
name is perfectly matched and source and end concepts are
identified. The very low number of false positives is striking.
The few exceptions are caused by complex phrase chunks
that the NLP tooling fails to identify (e.g., User-only was
recognized as a compound concept user_only).

The accuracy of the generated conceptual model (Table III)
is also pretty good, although a bit less precise than the
accuracy of the individual user story analysis: overall precision
is 85.2% and recall is 88.2%. Interestingly, precision and recall
for relationships are comparable to those of Table II, while
concepts have obtained lower accuracy: 89.8% precision and
91.4% recall. This is due to the fact that the individual user
story set contained several occurrences of the same concepts
that were correctly identified by the tool, while the concepts
that the tool would not correctly identify had less occurrences.

2) CMSCompany: This company is located in the Nether-
lands, has 120 employees and serves circa 150 customers.
Their supplied user story set consists of 35 stories for a
complex CMS product for large enterprises. The user stories
represent a snapshot of approximately a year of development in
2011. The data set of CMSCompany included 32 syntactically
correct user stories. Despite the smaller size, this data set
is particularly intriguing due to the use of long user stories
with non-trivial sentence structuring such as: “As an editor, I

TABLE II
ACCURACY OF INDIVIDUAL USER STORY ANALYSIS FOR THE

WEBCOMPANY CASE (N=73).

Concepts Relationships Overall
TP FP FN TP FP FN TP FP FN

Instances 387 3 15 211 10 31 598 13 46
Percentage 95.6 0.7 3.7 83.7 4.0 12.3 91.0 2.0 7.0
Precision 95.6 83.7 91.0
Recall 96.3 87.2 92.9

TABLE III
ACCURACY OF THE GENERATED CONCEPTUAL MODEL FOR THE

WEBCOMPANY CASE.

Concepts Relationships Overall
TP FP FN TP FP FN TP FP FN

Instances 106 2 10 147 8 24 253 10 34
Percentage 89.8 1.7 8.5 82.1 4.5 13.4 85.2 3.4 11.4
Precision 89.8 82.1 85.2
Recall 91.4 86.0 88.2

want to search on media item titles and terms in the Media
Repository in a case insensitive way, so the number of media
item results are increased, and I find relevant media items
more efficiently”.

Table IV presents the results of the analysis of individual
stories. The number of identified concepts is proportionally
higher than for WebCompany: the manual analysis (TP+FN)
reveals 8.9 concepts per user story (N=285) for CMSCom-
pany compared to 5.5 concepts per user story (N=402) for
WebCompany. This is due to the fact that the user stories for
CMSCompany are longer and concept-rich.

If we analyze accuracy, we clearly see that precision and
recall are lower for the CMSCompany data set. The lower
accuracy is mostly due to the relationships (precision 67.2%
and recall 75.3%); the identification of concepts also shows
lower accuracy (precision 90.0% and recall 91.9%) but not
significantly lower than in WebCompany. The main determi-
nant of this performance is the existence of hard-to-process
compound nouns consisting of three or four nouns, which the
NLP tooling was unable to identify consistently. While English
is a right-headed, left-branching language for compounds, the
NLP parser did not always apply this rule, thereby identifying
the wrong compound (C4) and its relationships (H2, R5). A
missed out compound also implies missing out the relation-
ships when the compound is a direct object (R2) or a non-
direct object (R3 or R4).

Table V reports on the accuracy of the conceptual model.
The less accurate parsing is also reflected on the conceptual
model, which is not as accurate as that of WebCompany
(Table III): overall precision and recall are 79.3% and 85.3%.
However, unlike the first case study, the results for the rela-
tionships in the conceptual model are better than those for the
individual user stories. The reason is that some relationships
were missed out in some user stories, but recognized correctly
in others, depending on the complexity of the sentence. Among
the incorrectly identified relationships, most of them are due
to the (non-)identification of a compound noun.



TABLE IV
ACCURACY OF INDIVIDUAL USER STORY ANALYSIS FOR THE

CMSCOMPANY CASE (N=32).

Concepts Relationships Overall
TP FP FN TP FP FN TP FP FN

Instances 262 6 23 119 19 39 381 25 62
Percentage 90.0 2.1 7.9 67.2 10.7 22.0 81.4 5.3 13.3
Precision 90.0 67.2 81.4
Recall 91.9 75.3 86.0

TABLE V
ACCURACY OF THE GENERATED CONCEPTUAL MODEL FOR THE

CMSCOMPANY CASE.

Concepts Relationships Overall
TP FP FN TP FP FN TP FP FN

Instances 124 4 13 114 17 28 238 21 41
Percentage 87.9 2.8 9.2 71.7 10.7 17.6 79.3 7.0 13.7
Precision 87.9 71.7 79.3
Recall 90.5 80.3 85.3

B. Analysis and Discussion

The overall results are promising and generally positive. The
simple, semi-structured nature of user stories makes them an
ideal candidate for NLP analysis. The problems arise when, as
in the second case study, people deviate from the simplicity of
the format and formulate complex requirements that go beyond
the purpose of the “As a. . . I want. . . so that” template. In the
next paragraphs, we present some key challenges concerning
NLP processing that our evaluation revealed.

Compounds are a difficult element to identify correctly.
Their proper identification depends on their position within
a sentence. For example, the spaCy tagger would find the
compound events_section in the sentence “I keep the events
section”, but it would miss it in the sentence “I can keep
the events section”. Also, we do not support compounds that
consist of three nouns, such as “profile page statistics”.

Verbs may be difficult to link to the proper object. For
example, for CMSCompany, our implementation identifies the
relationship avoid(marketeer,redirects) in the sentence “Mar-
keteer can avoid duplicate content easily without having to
set permanent redirects”, instead of avoid(marketeer,content).
While we focused on linking the subject to the main object
of the sentence through the verb, there are also sentences
requiring higher arity relationships. For instance, the sentence
“The user can add new elements to the gallery” would require
the creation of an n-ary association “add-something-to” tying
together the concepts user, element and gallery.

Conjunctions are also a challenge. For the time being, we
decided to overlook them, guided by our conceptual model of
user stories that calls for their atomicity and minimality [13].
However, our second case study shows several examples of
stories that violate these principles, using the conjunction
“and” to specify multiple requirements or expressing condi-
tions using the conjunction “when”.

Additionally, we currently omit adjectives and adverbs.
This prevents us from identifying specializations and quality
requirements. For example, “external link” is an adjective-

noun compound that could induce an attribute of link or a
specialization. Also, adverbs that qualify verbs (“easily”, “in-
tuitively”, “faster”) could lead to more accurate relationships
that indicate the qualities that the system should comply with.

VI. EVALUATION WITH EXPERTS

We evaluate the feasibility and usefulness of our approach
by discussing the output of Visual Narrator with leading
analysts from the companies that supplied the two data sets.
During a 30-60 minute interview, the researcher showed two
types of conceptual models. A single large conceptual model
of the entire user story set and multiple smaller conceptual
models; one for each role in the set. The purpose of the
interview was to answer three questions:
Q1. What is the interviewee’s initial perception of the appli-

cability of the conceptual models?
Q2. How does the interviewee currently detect incomplete-

ness, conflicts and dependencies between user stories?
Q3. How would the interviewee use the conceptual models to

detect incompleteness, conflicts and dependencies?
To prevent hypothesis guessing and/or acquiescence bias,

the researcher started the discussion by showing the gener-
ated images and asking the interviewee to talk freely. Only
after (s)he explained the possible applications, the researcher
mentioned incompleteness, conflicts and dependencies.

A. WebCompany

We conducted an interview with the founder and project lead
of WebCompany. His initial perception (Q1) of the conceptual
model was positive. At first glance, he immediately recognized
which set of user stories the conceptual model was created
from. While studying the details, the interviewee quickly no-
ticed two inconsistencies within the conceptual model. In both
cases, different words refer to the same real-world concept or
action: information vs content and delete vs remove.

On the other hand, the interviewee pointed out that the
conceptual model should distinguish visually between different
concept types: roles, means, ends. Role, in particular, should
be visually recognizable from the other concepts in a user
story. Indeed, when reading the smaller conceptual model
for each of the roles, the interviewee identified the actions
quickly and easily. Nevertheless, the interviewee thought there
is value in the holistic visualization when combined with the
smaller role-centered conceptual models. By presenting the
information on different levels of abstraction, the interviewee
believes he can effectively present specific viewpoints.

The interviewee thinks Visual Narrator is primarily useful
for one task: creating a common understanding of the intended
software among business analysts, developers and clients.
This is preferable than discussing the user stories themselves,
because clients actively dislike reading a set of user stories.
The visualization helps the stakeholders (Q3):
• Detect completeness of the application by discussing

whether the visualization is missing any functionality;
• Ensure effective domain-driven design practices by de-

tecting and resolving inconsistencies in used terminology;



• Prioritize requirements in an optimal sequence by identi-
fying technical dependencies before development starts.

Concerning Q2, WebCompany ensures completeness by
guiding clients through a concept trajectory: multiple sessions
where the customer and project lead write user stories and
create wireframes to ensure a common understanding. Yet,
stakeholders frequently change their mind during development.

B. CMSCompany

We interviewed a software product manager of CMSCom-
pany. His initial perception of the conceptual models (Q1) was
positive. The interviewee’s first reaction to the large overview
was recognition of core elements of the user stories: roles, ac-
tions and objects. This was followed by hints on how to correct
some details. While doing this, the interviewee remarked that
he recognized the structure of the application in the conceptual
model, despite the small size of the user story set. The
interviewee was particularly impressed by Visual Narrator’s
ability to extract and distinguish between item, item_title and
title (a compound). He explained that although the distinction
between item_title and title might seem redundant, the system
actually has four different kinds of item!

As a drawback, the interviewee noted that products with
hundreds or thousands of user stories may lead to overly
large and complicated models, thereby inhibiting the compre-
hensibility of the generated visualization. As a solution, the
interviewee suggested to split the visualization along different
dimensions: per release, role, epic or clustered in functional
areas. This improvement could make our tool useful for:
• Identifying dependencies between user stories by visual-

izing the interrelationships;
• Educating new employees by explaining difficult details

and nuances of the system;
• Analyzing the impact of a new release by projecting new

changes on the current situation;
• Detecting unnecessary and/or redundant roles.
Concerning Q2, the interviewee explained that the company

employs no specific way for detecting and resolving incom-
pleteness, conflict and dependency issues. The poker planning
meeting is the primary forum to uncover technical issues.
Although incompleteness, conflicts and dependencies are not
explicitly discussed during this meeting, the participants will
bring them up when necessary. The interviewee expects the
usefulness of Visual Narrator to be marginal during this
meeting (Q3), because the generated conceptual models are
not 100% correct, and software engineers are reluctant to work
with inaccurate models.

From a functional perspective, the interviewee relies on
instinct and experience to pro-actively detect potential con-
flicts as well as opportunities to combine dependencies. He
estimated that a new employee needs between 1 or 2 years
of experience to obtain this degree of proficiency. The inter-
viewee finds that the highest potential for Visual Narrator is
in educating and supporting recently hired employees that are
not yet familiar with the system in detecting and resolving
incompleteness, conflict and dependency issues (Q3).

VII. DISCUSSION AND OUTLOOK

We summarize and present our conclusions in Sec. VII-A,
discuss the most relevant threats to validity in Sec. VII-B, and
outline our main future directions in Sec. VII-C.

A. Summary and conclusions

Natural language is the most adopted notation for require-
ments [2]. Unfortunately, text does not readily provide a holis-
tic view of the involved entities and relationships. In line with
other authors [6]–[9], we argue that extracting a conceptual
model can ease the communication between stakeholders.

Our proposed Visual Narrator tool automatically generates
a conceptual model from a collection of agile requirements
expressed as user stories. The tool orchestrates a selection of
state-of-the-art NL processing heuristics to do so. In order to
obtain high precision and recall we focus on the key details
of user stories, concepts and relationships, and ignoring more
sophisticated aspects such as attributes and cardinality.

Our evaluation on two case studies showed promising
accuracy results, especially when user stories are concise state-
ments of the problem to solve—as they should be [15]—and
not lengthy, low-level descriptions of the solution. The creators
of the data sets gave a positive opinion of our approach,
and their insights inform our future vision (Sec. VII-C). In
comparison to state-of-the-art tools such as [11], our approach
performs similarly in terms of class recall and precision, but it
is superior in relationship recall. Keep in mind, however, that
our approach includes fewer relationships heuristics.

B. Threats to validity

External validity threats reduce the generalizability of the
results. More reliable accuracy results require evaluations on
further data sets. Also, our examined user stories are written
by people with professional English proficiency instead of
by native speakers. Some words were misspelled and some
uncommon grammar structures were used: the effectiveness
of NLP may have been slightly affected.

Construct validity threats concern the degree to which a
test measures what it intends to measure. Measuring accuracy
requires understanding the correct interpretation of a sentence;
it is well known that NL is inherently ambiguous. To reduce
the risks, we limited ourselves to the more objective criterion
of compliance with the algorithm, instead of the more general
case of recognizing all concepts and relationships in the text.

Internal validity threats focus on how the experiments were
conducted. The data set was tagged manually and there could
be some subjective interpretation. Moreover, our data sets were
obtained through convenience sampling from industry contacts
that would be available to discuss the results.

C. Future directions: the Interactive Narrator

Our promising results pave the way for further work that
extends and improves Visual Narrator. We aim to create the so-
called Interactive Narrator, an advanced tool that fosters and
facilitates effective discussion among stakeholders about user



stories [15]. We envision Interactive Narrator as a real-time,
modern documentation tool for agile development [30].

This tool should provide multiple visualization options of
the conceptual model. Zooming in/out should enable revealing
and hiding elements based on the weights of the elements com-
puted by the WeightAttacher in Fig. 2. The Interactive Narrator
should also support specific views for different stakeholder
types [31], e.g., developers, clients, and users. We refer the
interested reder to [32] for an exploratory study of techniques
for visualizing Visual Narrator’s output.

As highlighted by the interviewees in Sec. VI, Interactive
Narrator should help identify and resolve inconsistencies, de-
pendencies [33], and redundancies between the requirements.
The conceptual model can also play a role in reducing the
ambiguity of the requirements [34]. These possible uses are
enabled by the advantage of a graphical representation over
NL in holistically representing a given domain.

Several improvements can be made to the natural language
processing algorithms. We should develop support for elab-
orate concepts such as complex compounds, verbs entailing
n-ary relationships, conjunctions, adjectives, adverbs and ref-
erences (‘this’, ‘that’, etc.), but particular attention should be
paid to maintaining good-enough accuracy. Also, we could
use techniques to identify synonyms and homonyms [35],
especially in the context of redundancy identification.

REFERENCES

[1] C. J. Neill and P. A. Laplante, “Requirements Engineering: The State
of the Practice,” IEEE software, vol. 20, no. 6, p. 40, 2003.

[2] M. Kassab, C. Neill, and P. Laplante, “State of Practice in Requirements
Engineering: Contemporary Data,” Innovations in Systems and Software
Engineering, vol. 10, no. 4, pp. 235–241, 2014.

[3] M. Kassab, “The Changing Landscape of Requirements Engineering
Practices over the Past Decade,” in Proc. of EmpiRE. IEEE, 2015, pp.
1–8.

[4] G. Lucassen, F. Dalpiaz, J. M. E. M. van der Werf, and S. Brinkkemper,
“The Use and Effectiveness of User Stories in Practice,” in Proc. of
REFSQ, ser. LNCS, vol. 9619. Springer, 2016, pp. 205–222.

[5] D. M. Berry, E. Kamsties, and M. M. Krieger, “From contract drafting
to software specification: Linguistic sources of ambiguity,” School of
Computer Science, University of Waterloo, ON, Canada, Tech. Rep.,
2001.

[6] N. Omar, J. Hanna, and P. McKevitt, “Heuristics-Based Entity-
Relationship Modelling through Natural Language Processing,” in Proc.
of AICS, 2004, pp. 302–313.

[7] S. Du and D. P. Metzler, “An Automated Multi-component Approach to
Extracting Entity Relationships from Database Requirement Specifica-
tion Documents,” in Proc. of NLDB, ser. LNCS, vol. 3999. Springer,
2006, pp. 1–11.

[8] H. Harmain and R. Gaizauskas, “CM-Builder: A Natural Language-
Based CASE Tool for Object-Oriented Analysis,” Automated Software
Engineering, vol. 10, no. 2, pp. 157–181, 2003.

[9] S. Hartmann and S. Link, “English Sentence Structures and EER
Modeling,” in Proc. of APCCM, 2007, pp. 27–35.

[10] S. P. Overmyer, B. Lavoie, and O. Rambow, “Conceptual Modeling
through Linguistic Analysis Using LIDA,” in Proc. of ICSE. IEEE
Computer Society, 2001, pp. 401–410.

[11] V. B. R. V. Sagar and S. Abirami, “Conceptual Modeling of Natural
Language Functional Requirements,” Journal of Systems and Software,
vol. 88, pp. 25–41, 2014.

[12] G. Lucassen, F. Dalpiaz, J. M. E. M. van der Werf, and S. Brinkkemper,
“Forging High-Quality User Stories: Towards a Discipline for Agile
Requirements,” in Proc. of RE. IEEE, 2015, pp. 126–135.

[13] ——, “Improving agile requirements: the quality user story framework
and tool,” Requirements Engineering, pp. 1–21, 2016.

[14] Y. Wautelet, S. Heng, M. Kolp, and I. Mirbel, “Unifying and Extending
User Story Models,” in Advanced Information Systems Engineering, ser.
LNCS, vol. 8484. Springer, 2014, pp. 211–225.

[15] M. Cohn, User Stories Applied: for Agile Software Development. Red-
wood City, CA, USA: Addison Wesley Professional, 2004.

[16] M. Saeki, H. Horai, and H. Enomoto, “Software Development Process
from Natural Language Specification,” in Proc. of ICSE. ACM, 1989,
pp. 64–73.

[17] L. Mich, “NL-OOPS: From Natural Language to Object Oriented
Requirements Using the Natural Language Processing System LOLITA,”
Natural Language Engineering, vol. 2, pp. 161–187, 6 1996.

[18] V. Ambriola and V. Gervasi, “On the Systematic Analysis of Natural
Language Requirements with CIRCE,” Automated Software Engineer-
ing, vol. 13, no. 1, pp. 107–167, 2006.

[19] T. Yue, L. C. Briand, and Y. Labiche, “A Systematic Review of
Transformation Approaches between User Requirements and Analysis
Models,” Requirements Engineering, vol. 16, no. 2, pp. 75–99, 2010.

[20] ——, “aToucan: An Automated Framework to Derive UML Analysis
Models from Use Case Models,” ACM Trans. Softw. Eng. Methodol.,
vol. 24, no. 3, pp. 13:1–13:52, 2015.

[21] F. Meziane and S. Vadera, “Obtaining E-R Diagrams Semi-
Automatically from Natural Language Specifications,” in Proc. of ICEIS,
2004, pp. 638–642.

[22] A. M. Tjoa and L. Berger, “Transformation of Requirement Specifica-
tions Expressed in Natural Language into an EER Model,” in Proc. of
ER, ser. LNCS. Springer, 1993, vol. 823, pp. 206–217.

[23] P. P. Chen, “Entity-Relationship Diagrams and English Sentence Struc-
ture,” in Proc. of the 1st International Conference on the Entity-
Relationship Approach to Systems Analysis and Design, 1983, pp. 13–14.

[24] M. Vela and T. Declerck, “A Methodology for Ontology Learning:
Deriving Ontology Schema Components from Unstructured Text,” in
Proc. of SAAKM, 2009, pp. 22–26.

[25] G. Aguado De Cea, A. Gómez-Pérez, E. Montiel-Ponsoda, and M. C.
Suárez-Figueroa, “Natural Language-Based Approach for Helping in the
Reuse of Ontology Design Patterns,” in Proc. of EKAW, ser. LNCS, vol.
5268. Springer, 2008, pp. 32–47.

[26] E. S. Btoush and M. M. Hammad, “Generating ER Diagrams from
Requirement Specifications Based on Natural Language Processing,”
International Journal of Database Theory and Application, vol. 8, no. 2,
pp. 61–70, 2015.

[27] C. L. Gagné, “Lexical and Relational Influences on the Processing of
Novel Compounds,” Brain and Language, vol. 81, no. 1–3, pp. 723–735,
2002.

[28] M. Lapata, “The Disambiguation of Nominalizations,” Comput. Lin-
guist., vol. 28, no. 3, pp. 357–388, 2002.

[29] W. Li, X. Zhang, C. Niu, Y. Jiang, and R. Srihari, “An Expert Lexicon
Approach to Identifying English Phrasal Verbs,” in Proc. of ACL, 2003,
pp. 513–520.

[30] E. Rubin and H. Rubin, “Supporting Agile Software Development
through Active Documentation,” Requirements Engineering, vol. 16,
no. 2, pp. 117–132, 2010.

[31] P. F. Pires, F. C. Delicato, R. Cóbe, T. Batista, J. G. Davis, and
J. H. Song, “Integrating Ontologies, Model Driven, and CNL in a
Multi-Viewed Approach for Requirements Engineering,” Requirements
Engineering, vol. 16, no. 2, pp. 133–160, 2011.

[32] G. Lucassen, F. Dalpiaz, J. M. E. M. van der Werf, and S. Brinkkemper,
“Visualizing user story requirements at multiple granularity levels via
semantic relatedness,” in Proc. of ER, 2016.

[33] J. Wang and Q. Wang, “Analyzing and Predicting Software Integration
Bugs Using Network Analysis on Requirements Dependency Network,”
Requirements Engineering, pp. 1–24, 2014.

[34] D. Popescu, S. Rugaber, N. Medvidovic, and D. M. Berry, “Reducing
Ambiguities in Requirements Specifications Via Automatically Created
Object-Oriented Models,” in Innovations for Requirement Analysis.
From Stakeholders’ Needs to Formal Designs, ser. LNCS, vol. 5320.
Springer, 2008, pp. 103–124.

[35] I. Omoronyia, G. Sindre, T. Stålhane, S. Biffl, T. Moser, and
W. Sunindyo, “A Domain Ontology Building Process for Guiding
Requirements Elicitation,” in Proc. of REFSQ, ser. LNCS, vol. 6182.
Springer, 2010, pp. 188–202.


