Dynamic Meteorology: lecture 2

13/9/2019 (Friday)

Sections 1.3-1.5 and Box 1.5

- Potential temperature
- Radiatively determined temperature (boxes 1.1-1.4)
- Buoyancy (-oscillations) and static instability,
- Brunt-Vaisala frequency
- Introduction to project 1 (problem 1.6) (in couples)
- Convective Available Potential Energy (CAPE)

19/9/2018: tutorial

- Problems 1.1, 1.3, 1.4, 1.6 + extra problems in this lecture
- project 1 in couples
Potential temperature, θ

\[
\theta \equiv T \left(\frac{p_{\text{ref}}}{p} \right)^k
\]

\(\kappa \equiv \frac{R}{c_p} \)

\(R = c_p - c_v \)

\[
J \, dt = c_v \, dT + pd\alpha
\]

\[
d\theta = \frac{J}{\Pi}
\]

\[
\Pi \equiv c_p \left(\frac{p}{p_{\text{ref}}} \right)^k
\]

If \(J=0 \) (adiabatic) \(\theta \) is materially conserved!!
Zonal mean and time mean (over the period 1979-2001) stratification of the atmosphere (potential temperature), as deduced from a state of the art data-assimilation system. Labels are in Kelvin (K): potential increases with height!
In an “ideal atmosphere”
(well mixed, one greenhouse gas, Solar radiation absorbed only by earth’s surface):

Equilibrium temperature, determined by radiation (see box 1.4) is

\[T = \left(\frac{Q}{2\sigma} \left(\frac{Q_a q_a P}{g} + 1 \right) \right)^{1/4} \] (eq. 1.27a)

Problem 1.5 (page 38)

Show that this is a statically stable temperature profile for earth-like values of the parameters \(Q, g, \sigma_a, q_a \) and \(p \)
Vertical motion due to “buoyancy”

\[p_b - p_t = -dp = \frac{F_p}{dx\,dy} \]

Vertical component of equation of motion:

\[m \frac{dw}{dt} = -V \frac{\partial p}{\partial z} - mg \]

http://en.wikipedia.org/wiki/Buoyancy
Vertical motion due to “buoyancy”

Vertical component of equation of motion:

\[m \frac{dw}{dt} = -V \frac{\partial p}{\partial z} - mg \]

Hydrostatic balance:

\[0 = -V_0 \frac{\partial p_0}{\partial z} - mg \]

Perturb this equilibrium state so that:

\[m \frac{dw}{dt} = -(V_0 + V') \frac{\partial (p_0 + p')}{\partial z} - mg \]
Vertical motion due to “buoyancy”

Vertical component of equation of motion:

\[m \frac{dw}{dt} = -(V_0 + V')(\frac{\partial p_0}{\partial z} + \frac{\partial p'}{\partial z}) - mg = -V_0 \frac{\partial p_0}{\partial z} - V' \frac{\partial p_0}{\partial z} - V \frac{\partial p'}{\partial z} - mg \]

Hydrostatic balance:

\[0 = -V_0 \frac{\partial p_0}{\partial z} - mg \]

Pressure distribution on an immersed cube

http://en.wikipedia.org/wiki/Buoyancy
Vertical accelerations

Previous slide:
\[
m \frac{dw}{dt} = -V' \frac{\partial p_0}{\partial z} - V \frac{\partial p'}{\partial z}
\]

\[
\frac{\partial p_0}{\partial z} = -\rho_0 g
\]
(hydrostatic balance)

Air-parcel accelerates in vertical direction due to gravity and due to the pressure gradient

\[
m \frac{dw}{dt} = \rho_0 g V' - V \frac{dp'}{dz}
\]

Source of a sound wave

Archimedes force ("buoyancy")

Weight of the air displaced

Archimedes (287-212BC): “A body or element immersed or floating in a fluid at rest experiences an upward thrust which is equal to the weight of the fluid displaced”

problem 1.1
Vertical accelerations

Previous slide:

\[
m \frac{dw}{dt} = \rho_0 g V' - V \frac{dp'}{d z} \]

\[p' \approx 0\]

\[m \frac{dw}{dt} \approx \rho_0 g V' \]

(vertical motion due to “buoyancy”)

Equation of state:

\[p_0 (V_0 + V') = m R (T_0 + T')\]

\[p_0 V_0 = m R T_0\]

\[p_0 V' = m R T'\]

\[\frac{dw}{dt} \approx g \frac{T'}{T_0} \approx g \frac{\theta'}{\theta_0}\]

Gravity is dynamically important if there are temperature differences
Acceleration due to buoyancy

Vertical acceleration:
\[\frac{d^2 z}{dt^2} = g \frac{\theta'}{\theta_0} \]

At \(z = z^* \) an **air parcel** has potential temperature, \(\theta = \theta^* \)

Potential temperature of this air parcel is conserved!

Assume that in the **environment**: \(\theta_0 = \theta^* + \frac{d\theta_0}{dz} \delta z \)
Acceleration due to buoyancy

Vertical acceleration: \[
\frac{d^2 z}{dt^2} = g \frac{\theta'}{\theta_0}
\]

At \(z = z^*\) an **air parcel** has potential temperature, \(\theta = \theta^*\)

Potential temperature of this air parcel is conserved!

Assume that in the **environment**: \(\theta_0 = \theta^* + \frac{d\theta_0}{dz} \delta z\)

Buoyant force is proportional to

\[
\frac{\theta'}{\theta_0} = \frac{\theta^* - \theta^* - \frac{d\theta_0}{dz} \delta z}{\theta_0} = -\frac{d\theta_0}{dz} \delta z
\]

Therefore

\[
\frac{d^2 \delta z}{dt^2} = -\frac{g}{\theta_0} \frac{d\theta_0}{dz} \delta z
\]
Stability of hydrostatic balance

Repeat:

\[
\frac{d^2 \delta z}{dt^2} = - g \frac{d \theta_0}{\theta_0} \delta z \equiv -N^2 \delta z
\]

Brunt Väisälä-frequency, \(N \):

\[
N^2 \equiv \frac{g}{\theta_0} \frac{d \theta_0}{dz}
\]
Stability of hydrostatic balance

\[
\frac{d^2 \delta z}{dt^2} = -\frac{g}{\theta_0} \frac{d\theta_0}{dz} \delta z \equiv -N^2 \delta z
\]

Brunt Väisälä-frequency, \(N \):

\[N^2 \equiv \frac{g}{\theta_0} \frac{d\theta_0}{dz} \]

The solution:

\[\delta z = \exp(\pm iNt) \]

If \(N^2 = \frac{g}{\theta_0} \frac{d\theta_0}{dz} < 0 \) Exponential growth \(\rightarrow \) instability

If \(N^2 = \frac{g}{\theta_0} \frac{d\theta_0}{dz} > 0 \) oscillation \(\rightarrow \) stability
manifestation of static instability

Formation of cumulus clouds

Figure 1.26: (Espy, 1841) (Leslie Bonnema, 2011)
manifestation of static stability

Mountain induced vertical oscillations
Brunt Väisälä frequency

\[N^2 \equiv \frac{g}{\theta_0} \frac{d\theta_0}{dz} \]

\(N \) is about 0.01-0.02 s\(^{-1}\)

Extra problem:

Demonstrate that the Brunt-Väisälä frequency is constant in an isothermal atmosphere.

What is the typical time-period of a buoyancy oscillation in the isothermal lower stratosphere?
Parcel model of a buoyancy oscillation in a stratified environment

Construct a numerical model (in e.g. Python; see next 2 slides), which calculates the vertical position and vertical velocity of a dry air-parcel, which is initially at rest just above the earth’s surface. Initially this air parcel is warmer than its environment. The governing equations are

\[
\frac{dz}{dt} = w; \quad \frac{dw}{dt} = g \frac{\theta'}{\theta_0}; \quad \frac{d\theta}{dt} = 0.
\]

The potential temperature of the environment of the air parcel is

\[
\theta_0 = \theta_0(0) + \Gamma z.
\]

A more complicated environmental potential temperature is prescribed in problem 1.6.
Python 3: Fibonacci series up to n
>>> def fib(n):
 a, b = 0, 1
 while a < n:
 print(a, end=' ')
 a, b = b, a+b
 print()
>>> fib(1000)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

Functions Defined

The core of extensible programming is defining functions. Python allows mandatory and optional arguments, keyword arguments, and even arbitrary argument lists. [More about defining functions in Python 3](https://docs.python.org/3/tutorial/errors.html)

Python is a programming language that lets you work quickly and integrate systems more effectively. [Learn More](https://docs.python.org/3/)

Get Started

Whether you’re new to programming or an experienced developer, it’s easy to learn and use Python.

Start with our Beginner’s Guide

Download

Python source code and installers are available for download for all versions! Not sure which version to use? Check here.

Latest: Python 3.5.2 - Python 2.7.12
Learn by example

Solution problem 0.1 in Python

See the Python-script *Problem0.1AD.py* on Blackboard (Assignments)

```python
#Problem 0.1 Atmospheric Dynamics

import numpy as np
import matplotlib.pyplot as plt

a = 3.75
len_t = 40
n_len = 2

Y = np.zeros((len_t, n_len))
t = np.zeros((len_t))

for n in range(n_len):
    i = 0
    t[i] = 0
    Y[i, 0] = 0.5  # initial condition 1
    Y[i, 1] = 0.51  # initial condition 2
    for i in range(len_t):
        if i>0:
            Y[i, n] = (a * Y[i-1, n]) - (Y[i-1, n] ** 2)
            t[i] = t[i-1]+1

plt.plot(t, Y[:, 0], label='Y[0]='+str(Y[0,0]), color='blue')
plt.plot(t, Y[:, 1], label='Y[0]='+str(Y[0,1]), color='red')
plt.ylabel('time')
plt.title('Problem 0.1: solution for two slightly different initial conditions')
plt.legend()
plt.text(1, 3.75, 'a=3.75', fontsize=14, color='black')
plt.show()
```
Convective Available Potential Energy (CAPE)

Given by:
\[\frac{dw}{dt} = g \frac{\theta'}{\theta_0} \equiv Bg \]

Where:
- \(B = \text{buoyancy} \)
- \(B \equiv \frac{\theta'}{\theta_0} \)

Assuming a stationary state and horizontal homogeneity, we can write:
\[\frac{dw}{dt} \approx w \frac{dw}{dz} = Bg. \]

Or
\[wdw = Bgdz. \]
Integrate this equation from a level z_1 to a level z_2. An air parcel, starting its ascent at a level z_1 with vertical velocity w_1, will have a velocity w_2 at a height z_2 given by

$$w_2^2 = w_1^2 + 2 \times CAPE,$$

where

$$CAPE = g \int_{z_1}^{z_2} Bdz.$$

What is CAPE in your model problem of **project 1 (problem 1.6)**? What is the associated maximum value of w? Does your model reproduce this value?
The relatively sharp downdraughts at the edge of the cumulus cloud are a typical feature of cumulus clouds. What effect is responsible for these downdraughts?

The vertical motion in a **fair weather cumulus cloud** 1.5 km deep, over a track about 250 m below cloud top
Updraughts in cumulus clouds

Upward velocities of 50 m/s!
What value of CAPE is required to get this upward velocity?

The vertical motion in (b) a cumulo-nimbus cloud more than 10 km deep, over a track 6 km above the ground
Vendredi 13 septembre 2019
7:45 locale
Next: Tutorial

Wednesday, 18/9/2019

Problems 1.1, 1.3, 1.4, 1.6 + extra problems of lecture 2

project 1 in couples
Dynamic Meteorology: lecture 3

Sections 1.9-1.11, 1.14-1.15

Moist (cumulus) convection
Relative humidity, mixing ratio
Clausius Clapeyron equation
Dew point (lapse rate)
Lifted condensation level
Equivalent potential temperature

25/9/2019: tutorial

Problems 1.7, 1.8 + extra problems