PV-θ – View* of Diabatic-Dynamical Interaction in the General Circulation

Aarnout van Delden
Institute for Marine and Atmospheric Research Utrecht (IMAU)
Utrecht University, The Netherlands
a.j.vandelden@uu.nl

* Inspired by Hoskins, Tellus, 1991
This talk:

Is about the zonal mean potential vorticity (PV-) distribution, the associated jets and how diabatic processes (radiation and latent heat release) interact with adiabatic dynamical processes (heat and momentum transport) to produce this PV-distribution.

\[PV \equiv Z \equiv \frac{\zeta_\theta + f}{\sigma} \quad [m^2 K s^{-1} kg^{-1}] \quad 10^{-6} \ m^2 K s^{-1} kg^{-1} \equiv 1 \ PVU \]

isentropic density

relative vorticity on an isentropic surface
Other variables playing a central role

Potential temperature \((\theta)\) *is the vertical coordinate*

\[
\theta \equiv T \left(\frac{p_{\text{ref}}}{p} \right)^{\frac{R}{c_p}} \quad [\text{K}]
\]

Isentropic density:

\[
\sigma = -\frac{1}{g} \frac{\partial p}{\partial \theta} = \frac{\rho \partial z}{\partial \theta} \quad [\text{kg m}^{-2}\text{K}^{-1}]
\]
This talk

Observed hemispheric mean isentropic density profile

Isentropic density and cross-isentropic flow determined by radiation

Observed zonal mean isentropic density and cross-isentropic flow

Zonal mean PV-anomalies in the upper troposphere and lower stratosphere

Link between zonal mean zonal wind and zonal mean PV-anomalies (PV-inversion)

Simulations revealing the mechanisms that establish the zonal mean PV-distribution and associated jets
Observed mean isentropic density profile

Average isentropic density in N. hemisphere poleward of 10° latitude

CIRA (COSPAR International Reference Atmosphere)

Observed mean isentropic density profile

Average (10°N-NP) at each isentropic level

stratosphere

|Z|: large

troposphere

|Z|: small

\(\sigma_{\text{ref}}(\theta) \)

\(\sigma_{\text{ref}} \) [kg m\(^{-2}\) K\(^{-1}\)]

Potential temperature [K]

0 50 100 150 200 250

July

January

σ_{\text{ref}} [kg m\(^{-2}\) K\(^{-1}\)]
Theoretical radiative equilibrium isentropic density

homogeneous “grey” atmosphere

One well-mixed greenhouse gas and no atmospheric absorption of Solar radiation
Theoretical radiative equilibrium isentropic density

homogeneous “grey” atmosphere

One well-mixed greenhouse gas and no atmospheric absorption of Solar radiation

In reasonable agreement with observations!
Potential temperature: January 15

(in a “grey”, homogeneous atmosphere)

Radiative equilibrium

Radiatively “determined”

Unit: K
Observed potential temperature: January

Tropical Middleworld is inflated with mass !!

* Hoskins, Tellus 1991
Cross-isentropic flow, determined by radiation

(in a “grey”, homogeneous atmosphere)

\[d\theta/dt \quad \text{Unit: K day}^{-1} \]

Cooling in winter hemisphere
Heating in summer hemisphere
Tropics in radiative equilibrium

\[C=10^6 \text{ J K}^{-1} \text{ m}^2 \]

January 15
Cross-isentropic flow, determined by radiation (in a “grey”, homogeneous atmosphere)

\[\frac{d\theta}{dt} \]
Unit: K day\(^{-1}\)

Cooling in winter hemisphere
Heating in summer hemisphere
Tropics in radiative equilibrium

In reality (see next slide):

Cooling in winter hemisphere
Cooling in summer hemisphere below 850 K (10 hPa)
Heating in tropics
Cross-isentropic flow, observed

Earth's surface

DIABATIC HEATING
(radiation)

DIABATIC COOLING
(radiation)

Middleworld

> 2.5 K day⁻¹

Thanks to Paul Berrisford
\[\sigma = -\frac{1}{g} \frac{\partial p}{\partial \theta} \]

Tropical Middleworld is inflated with mass!!

\(\sigma: \text{small}\) \(\sigma: \text{large}\)

Middleworld

Earth’s surface

\(g\)
Tropical Middleworld is inflated with mass!!

\[Z = \frac{\xi_\theta + f}{\sigma} \]

\(\sigma \): small

\(Z \): large

\(\sigma \): large

Middleworld

\(Z \): small

\(Z \): large

500 hPa

100 hPa

200 hPa

100 hPa

500 hPa

90°N

60°N

30°N

90°S

January

CIRA
Enhanced slope of dynamical tropopause

Cold point tropical tropopause

Middleworld

"dynamical tropopause"
What mechanisms lead to these meridional gradients in mass & PV?

Cold point tropical tropopause

$T=202\, K$

$Z=2\, PVU$

$Z=-2\, PVU$

$|Z|: \text{ larger}$

enhanced meridional slope of the “dynamical tropopause”
"potential vorticity substance" (PVS)

\[PV \equiv Z \equiv \frac{PVS}{\sigma} \]

is the "mixing ratio" of PVS

Impermeability theorem for PVS *:

cross-isentropic flux of PVS=0

i.e. no flux of PVS across isentropic surfaces!

Cross-isentropic mass flux:

\[I_d \equiv \frac{d\theta}{dt} \sigma \]

\(\partial I_d / \partial \theta > 0 \) leads to concentration of PVS (decrease of \(\sigma \)), therefore increase of PV

(extratropics)

\(\partial I_d / \partial \theta < 0 \) leads to dilution of PVS (increase of \(\sigma \)), therefore decrease of PV

(tropics)
Cross-isentropic mass flux divergence in the Middleworld

\[I_d \equiv \frac{d\theta}{\sigma} \]

\[\sigma \approx 10 \text{ kg m}^{-2}\text{K}^{-1} \]

\[\sigma \approx 100 \text{ kg m}^{-2}\text{K}^{-1} \]

\[\frac{\partial I_d}{\partial \theta} < 0 \]

Dilution of PVS

Middleworld

Mass in

Mass out

Earth’s surface

Latitude, \(\phi \)
Cross-isentropic mass flux divergence in the Middleworld

Potential temperature, $\Theta [K]$

Latitude, ϕ

Mass out

Dilution of PVS

Concentration of PVS

Earth's surface

January ERA40 & CIRA

500 hPa

200 hPa

100 hPa

50 hPa

200 hPa

500 hPa
Cross-isentropic mass flux divergence in the Middleworld

potential temperature, $\Theta [K]$

Concentration of PVS
Dilution of PVS
Concentration of PVS

Earth’s surface

latitude, ϕ
equator
Cross-isentropic mass flux divergence in the Middleworld

\[\theta = 315 - 370 \text{ K} \]

ERA40 & CIRA

- **PV is enhanced**
- **PV is reduced**

Unit: kg m\(^{-2}\) day\(^{-1}\)

** weak diabatic mass-divergence**

** weak diabatic mass-divergence**
Observed zonal mean *PV*-distribution

Define:

Reference state

\[Z = Z_{\text{ref}} \equiv \frac{f}{\sigma_{\text{ref}}} \]

Reference state + anomaly

\[Z = Z_{\text{ref}} + Z' \]

Non-dimensional *PV*-anomaly

\[Z^* = \frac{Z'}{Z_{\text{ref}}} \]
Analysed [PV] anomaly

January n.h.

Analysed positive and negative PV-anomalies

\[Z^* = \frac{Z'}{Z_{\text{ref}}} \]

Unit: [PV]: non-dimensional

[u]: m s\(^{-1}\)

January (CIRA)
Analysed $[PV]$ anomaly

January n.h.

Analysed *positive* and *negative* PV-anomalies

\[
Z^* = \frac{Z'}{Z_{\text{ref}}}
\]

Unit: $[PV]$: non-dimensional

$[u]$: m s$^{-1}$

Stratospheric winter positive PV-anomaly

Surf zone

Ex-UTLS positive PV-anomaly
Now I will show, by piecewise PV-inversion, that the Ex-UTLS PV-anomaly induces the subtropical jet and westerly flow in the troposphere and lower stratosphere
Relation $PV ([Z])$ and zonal wind, $[u]$

Zonal mean potential vorticity (PV) inversion equation looks like this:

$$\frac{\partial^2 [u]}{\partial y^2} + A \frac{\partial^2 [u]}{\partial \theta^2} = \frac{df}{dy} - \sigma \frac{\partial [Z]}{\partial y}$$

r.h.s. represents the “forcing”. If “forcing”=0 and homogeneous boundary conditions*, then solution of this elliptic equation is $[u]=0$ (rest state).

This is the case if

$$[Z] = Z_{\text{ref}} \equiv \frac{\sigma_{\text{ref}}}{f}$$

Is associated with the state of rest!

PV-anomalies induce the full zonal wind!!

(no thermal wind at lower boundary!)
Analysed [PV] anomaly

January n.h.

Analysed positive PV-anomalies

\[Z^* = \frac{Z'}{Z_{\text{ref}}} \]

Unit: [PV]: non-dimensional

Januray (CIRA)
Analysed $[u]$

January n.h.

Analysed positive PV-anomalies and $[u]$ (zonal mean zonal wind)

Unit: $[PV]$: non-dimensional
$[u]$: m s$^{-1}$

$$Z^* = \frac{Z'}{Z_{ref}}$$
Inverted \([u]\)

January n.h.

Inverted zonal mean zonal wind velocity [m/s] and analysed positive PV-anomalies

Unit: \([PV]\): non-dimensional
\([u]\): m s\(^{-1}\)

\[Z^* = \frac{Z'}{Z_{ref}}\]
Piecewise inverted \([u]\)

January n.h.

Inverted zonal mean zonal wind velocity if \(PV\)-anomaly below \(\theta=\Theta_0\) and lower boundary temperature anomaly are removed.

Unit: \([PV]\): non-dimensional
\([u]\): m s\(^{-1}\)

\(\Theta_0=480\) K

All anomalies removed
Piecewise inverted \([u]\)

January n.h.

Inverted zonal mean zonal wind velocity if *PV*-anomaly above \(\theta=\Theta_0\) is removed.

Unit: \([PV]\): non-dimensional

\([u]\): m s\(^{-1}\)

Potential temperature [K]

Latitude [°N]

\(\Theta_0=480\text{ K}\)

All anomalies removed
Ex-UTLS PV-anomaly induces the subtropical jet and the surface westerlies

What processes establish the Ex-UTLS PV-anomaly?

There is more to it than diabatic convergence or divergence of mass in the Middleworld,
Basic question is:

Why is the cross-isentropic flow upward in the tropics and downward in the extratropics?

2D (lat, height) primitive equation model

Contains parametrizations of

1 Radiation
2 Dry convective adjustment
3 “Wave drag”
4 Water cycle (latent heat release)
Permanent equinox steady state: *no drag; no water*

Legend:

\[\theta\]: K

\[u\]: m s\(^{-1}\)

Dynamical tropopause
Permanent equinox steady state: \textit{drag}; no water

Radiation + adiabatic dynamics

Legend

$[\theta]$: K
$[u]$: m s$^{-1}$
$[\text{drag}]$: 10$^{-5}$ m s$^{-2}$

Wave drag between 10 and 25 km a.s.l. and only if $[u]>0$.
Permanent equinox steady state: *drag + water*

Add: water cycle (latent heat release)

Legend

- \[\theta \]: K
- \[u \]: m s\(^{-1}\)
- \[\text{drag} \]: 10\(^{-5}\) m s\(^{-2}\)

Wave drag between 10 and 25 km a.s.l. and only if \[u \] > 0.

Heating due to latent heat release

Legend

- Subtropical jet
- Stratospheric jet
- "wave drag"

Units

- \[\text{day} \] = 1095.0
- \[\text{run} \] = 1f
Conclusion

All features of the zonal mean general circulation are interconnected!

The zonal mean general circulation, including the subtropical jets, the cold-point tropical tropopause and the strong meridional gradient of the dynamical tropopause, is a product a complex interaction between radiation, latent heat release and heat transport by the circulation.

“Wave drag” (in fact PV-mixing !) plays a crucial role
Thank you

Thanks also to Yvonne Hinssen, Theo Opsteegh, Wouter de Geus, Roos de Wit, Niels Zweers, Koen Manders, Bruce Denby and Marcel Portanger.

Results of this research are published in Tellus-A (2012, 2014) http://www.staff.science.uu.nl/~delde102/publications.htm
References

A.J. van Delden and Y.B.L. Hinssen, 2012: PV-theta view of the zonal mean state of the atmosphere. *Tellus A* 2012, 64, 18710, http://dx.doi.org/10.3402/tellusa.v64i0.18710

A.J. van Delden, 2014: PV-theta view of Diabatic-Dynamical Interaction in the General Circulation. Accepted for publication in *Tellus A (18 October 2014)*

http://www.staff.science.uu.nl/~delde102/publications.htm