Diabatic-Dynamical Interaction in the General Circulation (lecture 1)

In the coming period we are going to study the interaction between dynamics and diabatic processes.

Diabatic processes:
Absorption and emission of radiation
Energy transformations associated with the water cycle
Dynamics:
Atmospheric circulation
http://www.staff.science.uu.nl/~delde102/C\&HC.htm

The General Circulation

What do we want to understand?

Position and intensity of subtropical jet

Cold tropical tropopause

Position of extratropical tropopause

Separation between subtropical jet and stratospheric jet

Zonal mean zonal stratospheric wind reversal

Seasonal cycle of the Hadley circulation

Important processes

Radiation

Circulation

Energy sources/sinks associated with phase changes of water

"Wave drag"

Lecture notes

Chapter 12 of lecture notes on Atmospheric Dynamics

http://www.staff.science.uu.nl/~delde102/AtmosphericDynamics.htm

Potential vorticity
Wave drag

Chapters 2, 7, 8, 10 and 11 are also of interest

Hadley circulation

Program of the C\&HC-2

23 April: Introduction to radiative transfer; "grey gas"; radiative equilibrium
study sections 2.1-2.4 \& boxes 2.1-2.4;
(1) problem 12.1 (response time) (0.5)

30 April: Radiatively determined state; Reanalyses
(2) problem 12.2 (radiation at TOA; ERA-Interim) (2.0)

7 May: Radiative-dynamical interaction in a dry atmosphere; GCM's
(3) article for review (yes/no); Topic of presentation (GCM)

14 May: Role of water cycle in the general circulation (the ITCZ)
(4) problem 12.3 (check of model assumptions) (2.5)

21 May: Role of wave drag in the general circulation (the surf zone)
(5) problem 12.5-12.9 (what-if? thought experiments) (1)

4 June: The Hadley-circulation
(6) problem 12.12 (Hadley-circulation theory) (1)

11 June: Isentropic coordinates and potential vorticity (inversion)
(7) problem 12.10 (isentropic density profile) (1)

18 June: Zonal mean mass- and potential vorticity budget
25 June: (8) presentations on GCM's (2.0)
No exam

Content of first lecture

Introduction to radiative transfer

Absorption of radiation: Bougeur-Lambert-Beer Law.
Radiative energy budget equation: Schwarzschild's equation.
Radiative equilibrium: solution of Schwarzschild's equation.
>>Radiatively determined temperature as a function height
Division of the atmosphere in troposphere and stratosphere.
Box 2.2, 2.3 and 2.4 of the lecture notes
http://www.staff.science.uu.nl/~delde 102/C\&HC.htm

BOX 2.2

Absorption of radiation

Bouguer-Lambert-Beer Law: $I=I_{0} \exp (-\kappa z) \rightarrow d I=-\kappa I d z$
κ is the absorption coefficient
$K z$ is the optical path
$\frac{1}{\kappa}$ is the absorption length (unit: m)

Absorption cross section

Figure 2.48.
Absorption cross sections of the strongest absorbing atmospheric constituents

Grey gas: absorption cross section is constant in long wave domain.

Absorption cross section CO_{2}

Absorption cross section CO_{2} depends on wavelength

peak long wave radiation spectrum

Kirchhoff's law

absorption coefficient=emission coefficient

Let us
Investigate the temperature profile in an atmosphere which is transparent to Solar radiation

Upwelling and downwelling radiation

upwelling downwelling
net in from the top $=I_{-}-I_{+}$

atmospheric layer
height, z

net out from the bottom $=\left(I_{-}-I_{+}\right)-\left(\Delta I_{-}-\Delta I_{+}\right) \quad I_{+}-\Delta I_{+} \quad I_{-}-\Delta I_{-}$

Net absorbed radiation is $\left(\Delta I_{-}-\Delta I_{+}\right)$
Radiation balance: $\Delta I_{-}=\Delta I_{+}$

BOX 2.4

"Planck emission"

Previous slide: Radiation balance: $\Delta I_{-}=\Delta I_{+}$
Fluxes include "Planck emission" of the atmospheric layer!!! Black body "Planck emission": $B \equiv \sigma T^{4}$
Atmospheric layer itself emits: $\widehat{\kappa \Delta z, B}$

BOX 2.4

Schwarzschild's equations

Energy budget:
$\frac{\text { upwelling radiation: absorbed }}{-\Delta I_{+}=+\kappa \Delta z\left(I_{+}-\Delta I_{+}\right)-\kappa B \Delta z}$ emitted
Optically thin layer:
$-\Delta I_{+}=+\kappa \Delta z I_{+}-\kappa B \Delta z$
Likewise:
downwelling radiation:
$\Delta I_{-}=\kappa \Delta z I_{-}-\kappa B \Delta z$

Previous slide: Radiation balance: $\Delta I_{-}=\Delta I_{+}$

BOX 2.4

Schwarzschild's equations

Energy budget:

upwelling radiation:
$-\Delta I_{+}=+\kappa \Delta z I_{+}-\kappa B \Delta z$
downwelling radiation:
$\Delta I_{-}=\kappa \Delta z I_{-}-\kappa B \Delta z$
$\downarrow \Delta I_{-}=\Delta I_{+}$
$+\overline{I_{+}+I_{-}-2 B=0}$
 and

- $\Delta I_{+}+\Delta I_{-}=-\kappa\left(I_{+}-I_{-}\right) \Delta z$

BOX 2.4

Continuous homogeneous atmosphere

Definition: $\bar{I} \equiv I_{+}+I_{-}$and $I \equiv I_{+}-I_{-}$

 Value of B at $\delta=0$ ($=$ TOA)

BOX 2.4

Schwarzschild's equation: solution

$\overline{I \equiv 2 B}$
$\frac{d \bar{I}}{d \delta} \equiv I \longrightarrow B \equiv \frac{1}{2} I \delta+B_{0} \quad \begin{aligned} & B_{0} \text { is an integration constant } \\ & \text { Value of } B \text { at } \delta=0(\mathrm{TOA})\end{aligned}$
$\frac{d I}{d \delta}=0$

At TOA:
$I_{+}=\frac{1}{4} S_{0}\left(1-\alpha_{p}\right) \equiv Q$
and
$I \equiv I_{+}-I_{-}=I_{+}=Q$

BOX 2.4

Schwarzschild's equation: upper bc

$\bar{I} \equiv 2 B$
$\longrightarrow \bar{I}=I+2 I_{-} \equiv 2 B$
$\frac{d \bar{I}}{d \delta} \equiv I$
$\frac{d I}{d \delta}=0$
at TOA this is: $I=2 B$ or $Q=2 B_{0}$

BOX 2.4

Skin temperature

General solution:
$B \equiv \sigma T^{4}=\frac{1}{2} Q(\delta+1) \longrightarrow T=4 \sqrt{\frac{Q(\delta+1)}{2 \sigma}}$
If $\delta \ll 1$ then $T=\sqrt[4]{\frac{Q}{2 \sigma}} \equiv T_{\text {skin }}$
"skin temperature"
$T_{\text {skin }}$ is temperature of the optically thin stratosphere

BOX 2.4

Radiative equilibrium at surface

$Q+I_{-}-I_{+}=0$
\uparrow upwelling radiation (emitted radiation): $I_{+}=\sigma T_{S}^{4}$ downwelling radiation (back-radiation)
absorbed solar radiation
(atmosphere is transparent to Solar radiation)

Earth's surface is a black body

We had:

$$
\bar{I} \equiv 2 B=I_{+}+I_{-} \quad \text { or } \quad I_{-}=2 B-I_{+}
$$

BOX 2.4

Radiative equilibrium at surface

So we have:
$\begin{aligned} & \begin{array}{l}Q+I_{-}-I_{+}=0 \\ I_{+}=\sigma T_{S}^{4} \\ I_{-}=2 B-I_{+}\end{array}\end{aligned} \rightarrow Q+2 B-2 \sigma T_{S}^{4}=0 \rightarrow T_{S}=\left(\frac{Q\left(\delta_{S}+2\right)}{2 \sigma}\right)^{1 / 4}$ Surface temperature:
and optical path at earth's surface
$B \equiv \sigma T^{4}=\frac{1}{2} Q(\delta+1)=\frac{1}{2} Q\left(\delta_{s}+1\right)$
at earth's surface

Atmospheric temperature, just above surface:
$T_{S a}=\left(\frac{Q\left(\delta_{S}+1\right)}{2 \sigma}\right)^{1 / 4}$

BOX 2.4

Radiative equilibrium: full solution

Atmospheric temperature:

$$
T=\sqrt[4]{\frac{Q(\delta+1)}{2 \sigma}}=T_{\text {skin }}(\delta+1)^{1 / 4}
$$

Surface temperature:

$$
T_{S}=\left(\frac{Q\left(\delta_{S}+2\right)}{2 \sigma}\right)^{1 / 4}=T_{\text {skin }}\left(\delta_{S}+2\right)^{1 / 4} \quad T_{S}>T_{S a}
$$

Atmospheric temperature, just above surface:
$T_{S a}=\left(\frac{Q\left(\delta_{S}+1\right)}{2 \sigma}\right)^{1 / 4}=T_{\text {skin }}\left(\delta_{S}+1\right)^{1 / 4}$

Surface temperature higher than atmospheric temperature near surface

BOX 2.4

Radiative equilibrium: full solution

Atmospheric temperature:
$T=T_{\text {skin }}(\delta+1)^{1 / 4}$
Surface temperature:
$T_{S}=T_{\text {skin }}\left(\delta_{S}+2\right)^{1 / 4}$
δ is related to height or pressure:
$-\kappa d z=\left(\sigma_{a} q_{a} / g\right) d p=d\left(\sigma_{a} q_{a} p / g\right) \equiv d \delta$
q is the specific concentration by mass of the absorber

$$
\begin{gathered}
\delta=\sigma_{a} q_{a} p / g \approx \sigma_{a} r_{a} p / g \\
\delta_{s} \approx \sigma_{a} r_{a} p_{s} / g
\end{gathered}
$$

r_{a} is the mixing ratio by mass of the absorber

BOX 2.4

Radiative equilibrium: full solution

Atmospheric temperature:
$T=T_{\text {skin }}(\delta+1)^{1 / 4}$
Surface temperature:
$T_{S}=T_{\text {skin }}\left(\delta_{S}+2\right)^{1 / 4}$

BOX 2.4

Radiative equilibrium: full solution

Temperature [K]
214.2 K (skin temperature)

Stratosphere is the optically thin upper part of the atmosphere

Assignment 1

Problem 12.1 HAND IN ANSWER on 30/4
(study the theory of box 2.4 and chapter 2.4)
http://www.staff.science.uu.nl/~delde102/C\&HC.htm

Next lecture

Wednesday 30/4, 2014, 13:15
Seasonal cycle of radiative equilibrium and radiatively determined state as a function of latitude, height and time

Radiation drives circulation, but circulations also determines radiation: Radiative-dynamical interaction

