Coordinating tasks in agent organizations
Or: Can we ask you to read this paper?

Virginia Dignum and Frank Dignum

Abstract. Support for new forms of organization and social interaction requires understanding the influence of structure on behavior. Goal dependencies indicate some relationship between roles, through which actions can be coordinated. Social relationships determine different types of power links between roles. Efficient coordination requires that goal dependency and power structure are well tuned to each other. In this paper, we will investigate what is the exact nature of this relationship between roles in an organization and what are the consequences of different structure forms. We will also see what is the difference if the relations are not hierarchical but organized through a market or network structure.

1 Introduction

One of the main issues in agent organizations is the specification of coordination mechanisms between agents playing roles in a regulated social environment. Coordination can be defined as the process of managing dependencies between activities [17]. One way to coordinate is to manage functional dependencies. In this sense, which is the most commonly used in Multi-Agent Systems (MAS) research, coordination refers to the allocations of tasks to agents, such that common goals are achieved. Coming forth from Organizational Theory, another way to manage dependencies, considers the supervision and collaboration relations between actors. In this sense, coordination refers to the specification of power and authority relations between agents. Although the two perspectives are interrelated, they are based on different concepts and views on organizations, and their differences are not explicitly accounted for in most MAS models.

Both in Organizational Theory as in MAS, the concept of role plays an important role in the specification of coordination. We present a role-based model for organizations that integrates both views. Role hierarchies define the links through which one role can exercise power over, or otherwise influence, other roles. This means that a role can demand the realization of a goal from another role, or request goals from another role. In organizational contexts this can also mean that the responsibility of some tasks lays with the role in the top of the hierarchy. Role dependencies indicate how the goals of different roles depend on each other, and how interaction is to be achieved. Each role dependency indicates a need for coordination between those roles. The way interaction is to be organized between the roles, depends on the organizational power structures between the roles.

In this paper, we discuss the implications of the coordination type to the dependencies between roles. Given that one role depends on another to achieve a goal, the realization of that goal will depend on the social relationship between the roles, that is, whether the role has power over the other role. We distinguish between hierarchical, network and market social relationships between roles. Although role hierarchies can be thought of in terms of hierarchical organizations, we argue that the reason to call an organization hierarchical is not just because the roles are structured in some kind of a hierarchy (or tree), but has more bearing on the type of coordination used between roles that are related. A tree shaped organization usually also indicates that the roles coordinate in a hierarchical way (through commands), but this is not necessarily so. Even in such an organization, each role might offer a task to its “subordinates” (using something like contract net and a market mechanism) instead of delegating it.

The paper is organized as follows. In sections 2 and 3 we introduce both perspectives on coordination: from Organizational Theory as the representation of the social structure, and from MAS as the specification of task relationships. In section 4, we describe how the concept of role can integrate both views, by means of role dependencies and coordination types. Section 5 shows the consequences of this integration for the semantics of the role-based coordination model. Finally, we present our conclusions and directions for future research in section 6.

2 Social Structure

Social structures are the medium for human activities. Support for new forms of social interaction and organization requires understanding the influence of structure on behavior. Behavior and structure are interleaved; people go through a socialization process and become dependent on the existing social structures, but at the same time structures are modified by their activities. Giddens’ structuration theory offers an account of social life in terms of structure and agency [13]. Giddens argues that order, or structure, is primarily created as a medium for practical activity. This instantiation of practical activity is not based on a even distribution of power and resources, but asymmetry and domination are, in fact, part of the natural order. Different power relations between actors and the utilization of different resources are at the basis of the development of particular structural principles. It is useful to consider groups and organizations from a structuration perspective because doing so: (a) helps one understand the relative balance of deterministic influences and willful choices that characterize groups; (b) suggests possibilities for how members may be able to exert more influence than they otherwise think themselves capable of [4].

Organizational science and economics have since long researched these organizational structures [24, 21]. Drawing on disciplines such as sociology and psychology, research in organization theory focuses on how people coordinate their activities in formal organizations. An organizational structure has essentially two objectives [9]: First, it
Roles and dependencies

Relationships between and within organizations are developed for the exchange of goods, resources, information and so on. Williamson argues that the transaction costs are determinant for the organizational model [24]. Transaction costs will rise when the unpredictability and uncertainty of events increases, and/or when transactions require very specific investments, and/or when the risk of opportunistic behavior of partners is high. When transaction costs are high, societies tend to choose a hierarchical model in order to control the transaction process. If transaction costs are low, that is, are straightforward, non-repetitive and require no transaction-specific investments, then the market is the optimal choice. Powell introduces networks as another possibility coordination model [21]. Networks stress the interdependence between different organizational actors and pay a lot of attention to the development and maintenance of (communicative) relationships, and the definition of rules and norms of conduct within the network. At the same time, actors are independent, have their own interests, and can be allied to different networks. That is, transaction costs and interdependencies in organizational relationships determine different models for organizational coordination. The characteristics of the different forms of organization are summarized in table 1.

<table>
<thead>
<tr>
<th>Coordination</th>
<th>Market</th>
<th>Network</th>
<th>Hierarchy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price mechanism</td>
<td>Collaboration</td>
<td>Supervision</td>
<td></td>
</tr>
<tr>
<td>Competition</td>
<td>Mutual interest</td>
<td>Authority</td>
<td></td>
</tr>
<tr>
<td>Mutual benefits</td>
<td>Negotiation of cooperation</td>
<td>Formal-bureaucratic</td>
<td></td>
</tr>
<tr>
<td>None expected</td>
<td>Acceptance</td>
<td>Absolute expected</td>
<td></td>
</tr>
<tr>
<td>Haggling</td>
<td>Reciprocity</td>
<td>Supervision</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Comparison of organizational forms

Furthermore, in human organizations and societies, norms and conventions are usually used to cope with the challenge of social order, as to decide on a course of action when unexpected or undesired events occur. Norms and conventions specify the behavior that society members are expected to conform to and are suitable means for decentralized control. Several researchers have recognized that the design of agent societies can benefit from abstractions analogous to those employed by our robust and relatively successful societies and organizations. There is a growing body of work that touches upon the concepts of norms and institutions in the context of multi-agent systems (cf. [5, 10]).

Central in the way coordination is described is the concept of role. Role theory bridges social psychology, sociology, and anthropology [1], and recently has interested agent researchers. Its central concern has been with patterns of conduct, that is, expectations, identities, and social positions; and with context and social structure. Fox et al. introduce an organizational taxonomy which includes organizations, organizational goals, roles, and authority [12]. Agents can play roles, which potentially give them authority over other agents playing other roles. Empowerment and authority are recognized as critical aspects, since these identify which roles (and hence which agents) are enabled to perform which actions.

3 Coordination in MAS

Multi-agent coordination, defined as managing interdependencies between activities, addresses the special issues arising from the dependency relationships between multiple agents tasks. Task coordination in MAS has concentrated on developing coordination mechanism which facilitates dynamic collaboration between agents, with the goal of satisfying in some specified sense both local and global system objectives. The coordination structure must support the task-solving process using a generic mediation mechanism and should provide communication protocols to link the agents having common interests.

In Distributed Artificial Intelligence (DAI), coordination approaches are often based on contracting. The most famous example of these is the Contract Net Protocol (CNP) [23] for decentralized task allocation. CNP was designed to handle applications with a natural spatial distribution. It assumes a network of loosely coupled asynchronous nodes (agents), each containing a number of distinct knowledge sources. The agents are interconnected so that each agent can communicate with every other agent by sending messages. Agents can either execute tasks or have tasks that need to be executed. CNP provides a simple language to describe contracts for task execution in messages between agents.

By employing standard interaction mechanisms, the agents in the MAS can expect certain behavior. The behavior of each individual is determined to a great extent by the requirements of these interaction patterns. Roles provide both the building blocks of agent social systems and the requirements by which agents interact. Each agent is linked to other agents by the roles it plays by virtue of the applications functional requirements which are based on the expectations that the application has of the agent [19].

Organizational structure in MAS can be defined as that "what persists when agents enter or leave an organization, i.e. the relationships that makes an aggregate of elements a whole" [11]. A social structure may be explicitly implemented in the form of a social artifact existing independently of the implementations of the agents, may be realized as part of the implementations of the agents, or may exist only intangibly, in the form of the policies or organizational rules followed by the agents during interaction [18]. In the same way as organization theory researchers, MAS researchers have proposed several classifications of MAS structures. A good overview is provided in [15]. Much of this work has strong roots on the organizational forms identified in organization theory [8]. Basically the same three paradigms as in Organizational Science have proved to be most popular among MAS developers: hierarchy, market-oriented and team-centric, or network, organizations. Hierarchies are very effective at addressing issues of scale, in particular if the domain can easily be decomposed along some dimension. Market models that typically arise in e-business applications allow agents to coordinate activities without ceding authority to other agents. Teams or networks are efficient when working on large-grained tasks which require coordinated capabilities of more that one agent, but require higher communication capabilities.

4 Roles and dependencies

Coordination in MAS, as shown above, is mainly taken care of by using standard interaction mechanisms, task allocation and planning,
Global goals and requirements of users and stakeholders are completely implicit in the way task allocation is implemented, and there is no direct way to validate them. Organizational theory and social economics have devoted a great deal of research to the analysis of the motivations and implications of coordination structures, which can be of value for the improvement of coordination issues in MAS. An ongoing approach to this issue is to be found in attempts to model MAS as agent societies.

The idea of Agent Societies is that interactions occur not just by accident but aim at achieving some desired global goals. Global goals are external to each individual participant (or agent) but can only be reached by the interaction of those participants. The design of agent organizations must capture on the one hand, the structure and requirements of the society owners, and on the other hand, must assume that participating agents must be available that are able and interested in enacting society roles. The OperA Model for agent societies [7] integrates a top-down specification of the society objectives and global structure, with a dynamic fulfillment of roles and interactions by independent participants. That is, the model separates the description of the structure and global behavior of the domain from the specification of the individual entities that populate the domain.

Agents are actors that perform role(s) described by the society design. The agent’s own capabilities and aims determine the specific way an agent enacts its role(s). An OperA model can be thought of as a kind of abstract protocol that governs how member agents should act according to social requirements. In this paper, we will only describe a few elements of the organizational model. In the next sections, we discuss how this model for agent coordination, based on organizational theory, can be used for social and task dependencies between roles.

4.1 Roles

Roles identify the activities and services necessary to achieve social objectives and enable to abstract from the specific individuals that will eventually perform them. From a society design perspective, roles provide the building blocks for agent systems that can perform the role, and from the agent design perspective, roles specify the expectations of the society with respect to the agent’s activity in the society. Roles also define normative behavioral repertoires for agents [20]. That is, a role is the abstract representation of a policy, service or function.

In OperA, roles are described in terms of objectives and sub-objectives (that is, what is an actor of the role expected to achieve) and norms (that is, how is an actor expected to behave). Furthermore, role descriptions also specify the rights associated with the role and the type of enactment of the role, that is, whether it is an institutional role (which behavior is controlled by the society) or an external role.

The specification of objectives and sub-objectives can be more or less restrictive on the actor performance. The more the aspects that are fixed in the specification, the less the freedom an agent enacting the role has to decide on how to achieve the role objectives and interpret its norms. Following the ideas of [16], we call such expressions landmarks. Formally, landmarks are conjunctions of logical expressions that are true in a state. Intuitively, landmarks provide a description of a place or situation, which is enough to identify it but without prescribing any specific process. Several different specific actions can bring about the same state, and therefore, landmarks represent actually families of protocols. The use of landmarks to describe activity, enables the actors to choose the best applicable actions, according to their goals and capabilities. The level of specification of landmarks determines the degree of freedom the actors have about their performance.

Role objectives are thus states of affairs expected to be achieved in the environment. Once a society model is animated, the objectives of a role are expected to be executed by the agent(s) enacting that role, that is, role objectives should become part of the goals of the enacting agent. Intuitively, role objectives enable the ‘link’ between society objectives and agent goals. At this level of abstraction, role objectives do not have a fixed semantics since roles are not performative entities but mere ‘placeholders’ for actors. The actual semantics of objectives depend on the way objectives are treated and assumed by the agent acting the role and on the semantics of agent goals in the agent model.

Definition 1 (Role Objective). A role objective, represented by \(\rho \), is a predicate describing an ideal state (or set of states) for the role. \(P_r \) is the set of objectives of role \(r \).

Roles are identified by their objectives, that is, different roles have different objectives and all roles must have at least one objective. Formally:

1. \(\forall r_1, r_2 : r_1 = r_2 \iff P_{r_1} = P_{r_2} \)
2. \(\forall r : P_r \neq \emptyset \)

A role objective \(\rho \) can be further described by specifying a set of sub-objectives that must hold in order to achieve objective \(\rho \). Sub-objectives give an indication of how an objective is to be achieved, that is, describe the states that are part of any plan that an agent enacting the role can specify to achieve that objective. Sub-objectives abstract from any temporal issues that must be present in a plan, and as such must not be equated with plans. Intuitively, sub-objectives are objectives that contribute to the realization of another objective. That is, if \(\Pi_\rho = \{ \rho_1, \ldots, \rho_n \} \) is a set of sub-objectives for \(\rho \), the realization of all sub-objectives in \(\Pi_\rho \) yields the realization of \(\rho \). Furthermore, for each objective \(\rho \), the trivial set of sub-objectives \(\rho \) is defined.

For example, in a Conference Organization, the objective of the PC-member role is to review papers submitted to the conference, that is, to be in a state in which there are review reports for all the papers assigned to her. Sub-objectives of that objective are (a) to have read the paper, (b) to have written the review report, and, (c) to have sent the report to the organizers. How an actor of the PC-member role is going to achieve this, and indeed if she herself will do it (e.g. she can ask a student to read the paper and make the review report) is not, in this situation, a concern of the society.

4.2 Coordination types

Different application contexts exhibit different needs with respect to coordination, and the choice of a coordination model will have great impact on the design of the agent society. The implications of the coordination type to the architecture and design of agent societies have usually not been considered. In this paper, we distinguish between three coordination types: hierarchies, markets and networks, which result in different frameworks for agent societies.

Global objectives of a society are domain dependent, but the way agents coordinate to achieve those objectives depends on the coordination requirements and socio-cultural characteristics of the society. Societies depend on a facilitation layer that provides the social backbone of the organization [3]. Facilitation activities deal with the functioning of the society itself and are related to the underlying coordination model. On top of this facilitation layer, an operational layer is needed that implements the objectives of the society. Operational
activities are directly related to the objectives and aims of the society. The social coordination model is used to specify the facilitation framework for an agent society.

The chosen coordination model determines the facilitation style of the society. In markets, agents are self-interested (i.e. determine their own goals) and value their freedom of association and own judgement above security and trust issues. Openness is thus a feature of markets. Facilitation in markets is, in the most extreme case, limited to identification and matchmaking activities, but usually also includes the specification of some trusted third party, such as a bank. Interaction in markets occurs through communication and negotiation. Network organizations are built around general patterns of interaction or contracts. Relationships are dependent on clear communication patterns and social norms. Agents in a network society are still self-interested but are willing to trade some of their freedom to obtain secure relations and trust. Therefore, agents need to enter a social contract with the network society in which they commit themselves to act within and according to the norms and rules of the society. The society is responsible to make its rules and norms known to potential members. Coordination is achieved by mutual interest, possibly using trusted third parties, and according to well-defined rules and sanctions. Finally, in a hierarchy, interaction lines are well defined and the facilitation level assumes the function of global control of the society and coordination of interaction with the outside world. In a hierarchy, agents are cooperative, not motivated by self interest and all contribute to a common global goal. Coordination is achieved through command and control lines.

The coordination model determines interaction patterns and functionality of the facilitation layer of the society, that is, the interaction primitives and agent roles necessary to implement the facilitation layer that are specific to each type of society (market, network or hierarchy). Moreover, coordination models provide a framework to express interaction between the activities of agents and the behavior of the system [2].

4.3 Dependencies between roles

The notion of role is closely related to those of cooperation and coordination. The way tasks, or objectives, are allocated to roles determines the dependencies between them. These dependencies describe how agents enacting the roles should interact and contribute to the realization of the objectives of each other. That is, an objective of a role can be delegated to, or requested from, other roles. The dependency relation between roles \(r_1 \) and \(r_2 \) for objective \(\rho \) of \(r_1 \), represented by \(r_1 \geq_\rho r_2 \), indicates that objective \(\rho \) can be passed to \(r_2 \), that is, that \(r_2 \) can realize objective \(\rho \) for \(r_1 \).

Definition 2 (Role dependency) A dependency relation \(r_1 \geq_\rho r_2 \) describes the fact that role \(r_1 \) depends on role \(r_2 \) to realize (sub)objective \(\rho \). The relation \(\geq_\rho \in R \times R \) is reflexive and transitive. That is, for all \(r_1, r_2, r_3 \in R \),

1. \(r_1 \geq_\rho r_1 \) (reflexivity)
2. \(r_1 \geq_\rho r_2 \) and \(r_2 \geq_\rho r_3 \) implies \(r_1 \geq_\rho r_3 \). (transitivity)

In OperA, roles are organized as a partially ordered set, represented as \(R = (R, \geq) \) that reflects role dependencies. A dependency graph represents the dependency relations between roles. Nodes in a dependency graph are roles in the agent society. Arcs are labelled with the objectives of the parent role for which realization the parent role depends on the child role. There can be more than one arc between two nodes, representing the fact that the parent role depends on the child role for more than one of its objectives. The root of the graph is the society itself, represented as a super-role, and contains the global objectives of the society, which are then decomposed into role objectives distributed along the role tree. The dependency graph for the Conference Organization is displayed in figure 1. For example, the arc labelled \(\text{paper-reviewed}, r \), between nodes PCchair, C, and PCmember, M, represents the role dependency \(C \geq_\rho M \). Note that this graph does not have to be a tree. It should only be partially ordered (to avoid circular dependencies).

Considering that dependencies require interaction between two actors in order to establish how to pass the objective from one actor to the other, it is necessary to describe how this interaction occurs. In OperA, this is determined by the three coordination types discussed in the previous section: hierarchy, market and network. The way the objective \(\rho \) in a dependency relation \(r_1 \geq_\rho r_2 \) is actually passed between \(r_1 \) and \(r_2 \) depends on the coordination type of the society:

- In hierarchies, the parent role demands the realization of its sub-objectives from its children. In this case, the enactor of a children role can not decide which objectives it will get but must accept whichever objectives are delegated to it by its parent role. Hierarchical dependencies are represented by \(r_1 \geq^H_\rho r_2 \).

- In markets, a parent role can request the performance of objectives by the child role; the child role decides whether it will offer to perform it and the parent role will then decide whether allocation is desired and which instance of the child role will get to realize the objective. In this case, the enactors of a child role can choose which objectives of its parent they will offer to perform, such that it best fits its own private goals. Market dependencies are represented by \(r_1 \geq^M_\rho r_2 \).

- In a network, both situations can happen. That is, an objective can either be delegated by the parent role or offered by the child role, which defines a kind of equivalence relation between related roles in a network. This can depend on prior agreements between the agents, or be negotiated for each specific situation. Network dependencies are represented by \(r_1 \geq^N_\rho r_2 \).

Role dependencies illustrated in figure 1 are therefore interpreted in different ways depending on the coordination type holding in the society. For instance, in the case of an hierarchy, the relation \(C \geq_\rho M \), indicates that agents enacting the role PCchair, C, will delegate the objective \(\text{paper-reviewed}, r \), to an enactor of...
role PCmember, M. In a market dependency relation, enactors of PCmember can bid for objective review-paper to the enactor of PCchair, that is, a PC member can choose which papers they want to review and apply for those to the Program Chair. In a network, a dependency relation represents a request that can be initiated either by the parent or the child roles.

5 Role Dependencies and Coordination

One of the main issues in OperA is the specification of coordination between role enacting agents in a regulated society environment. Therefore, the representation of relationships between roles is one of crucial importance. Role dependencies indicate the relations between roles through which objectives can be passed. In this section, we discuss in more detail what are consequences of the type of coordination mechanism to the interaction between roles, and how they influence the semantics of the communication between agents.

5.1 Relationship Types

In organizational systems, it is usual to organize roles in a hierarchy, or is-a hierarchy. In such hierarchies, child roles inherit the characteristics (attributes, rights, norms) of its parent roles. However, other relationships can hold between roles. Dependency relations in OperA are not inheritance relations, but define the links through which objectives can be delegated to other roles. Coordination of behavior is relatively easy when dependencies are defined hierarchically, in which case when an agent i enacts a role that is superior to the role that agent j enacts, a request from i will result in an obligation for j. In networks and markets, however, coordination requires some more effort. Hierarchical organizations are thus very efficient, in that, task allocation occurs with no need for negotiation, given the power relations between agents. On the other hand, networks are more flexible, in that agents can negotiate task allocation between them so that they can attempt to obtain a most preferred assignment of objectives fitting with their own goals. In general, one can identify three different reasons for an agent j to commit itself to a request from another agent i [6]:

- **Power:** j accepts a request from i because of some domination relationship between i and j. This type of relation is standard in hierarchical societies, but can also be explicitly defined between two specific roles, in other types of societies. Power relations are represented by power(i, j, ϕ), indicating that i has power over j for ϕ.

- **Authorization:** when j has committed itself to i for a certain service, a request from i leads to an obligation when the conditions are met. This relation is established by mutual agreement, e.g. in a (previous) interaction, for a certain time and under certain conditions. Although authorization relations can happen in any type of society, they are typical of networks (e.g. where participants can negotiate different approaches to goal realization in each situation). Authorization relations are represented by auth(i, j, ϕ), meaning that i has the authorization to request j to do ϕ.

- **Charity:** j will answer a request from i without having any explicit relation to i that forces it to do so. An obligation arises when agent j communicates its acceptance of the request.

On the other hand, authorization relations can be created by negotiation between agents; that is, an agent can decide to authorize another agent to request from it a certain action or resource. In the following, we describe the implications of power and authorization relations over the interaction behavior of the agents. For a complete description of the semantics, we refer the reader to [7]. Charity relations do not have a specific operator, since such relations are completely dependent on the ‘personality’ of the agent establishing such relation, and cannot thus be influenced or negotiated.

Definition 3 (Power relation) Given agents i, j and roles r1, r2:
\[\forall i, j, r_1, r_2 : \text{rea}(i, r_1) \land \text{rea}(j, r_2) \land r_1 \succeq_i r_2 \rightarrow \text{power}(i, j, \varphi) \]

The above definition just states that r1 is above r2, the hierarchical dependency relation between roles r1 and r2 gives rise to a power relation power(i, j, ϕ) between agents i and j whenever rea(i, r1) and rea(j, r2). Where the role enacting agent relation, rea(i, r1), means that agent i performs role r1.

The expression power(i, j, ϕ) means informally that i has the power to force j to achieve ϕ. Power relations are reflexive, i.e. each agent has power over itself, and often, but not always, also transitive, that is, if power(i, j, ϕ) and power(j, k, ϕ) then power(i, k, ϕ). Moreover, power to demand ϕ implies power to demand all what can be derived from ϕ. Formally, the following axiom holds for the power relation:

Definition 4 (Properties of power relation) Given expression ϕ and a role i, the following axiom holds:

1. \[\models \forall i : \text{power}(i, i, \varphi) \]
2. \[\models \forall i, j : \text{power}(i, j, \varphi) \land (\varphi \rightarrow \psi) \rightarrow \text{power}(i, j, \psi) \]

Authorization relations describe situations when power can be (temporarily) effective. Informally, an authorization, auth(i, j, ϕ) means that i has the authorization to order j to achieve ϕ. In fact, authorization establishes an agreed power relation of i over j for ϕ. Consequently, authorization relations always hold in the case of a power relation. That is, if an agent i has power with respect to ϕ over agent j, then agent i is also authorized to request j to achieve ϕ. Formally, the following axiom holds for the power relation:

Definition 5 (Authorization relation) Given expression ϕ and agents i and j, the following axiom holds:
\[\models \forall \varphi, i, j : \text{power}(i, j, \varphi) \rightarrow \text{auth}(i, j, \text{request}(i, j, \varphi)) \]

(We will more formally introduce the request speech act in the next section.)

As we saw above, in hierarchical dependencies between roles, the power relation is implicit in the dependency. Unfortunately, in the case of markets and hierarchies one cannot specify ways to define authorization relations in similar ways. Authorization relations can still be defined between roles but this requires a communicative process between those roles in order to establish such authorization and its implications. In the following section we will describe these communication processes.

5.2 Realizing Coordination

It is usual to describe communication between agents fulfilling roles in terms of speech acts [22]. The illocution of a speech act is the
content of the message that the speaker intends to be recognized by the hearer as what the speaker intends to be doing (informing, requesting, agreeing, etc.) Many different illocutions can be defined, however for the purpose of this paper, we assume accept, propose, and request to be basic illocutions that can be uttered by agents fulfilling roles in an agent society. The illocutionary force of a speech act depends on the social relationship between the agents. That is, speech acts have different effects depending on the type of social dependency between the agents. For example, a request to agent x has another force whether it is done by an agent with power over x, than by any other agent.

Definition 6 (Syntax of Communicative Acts) Given a domain language \(L_D \) the set of all communicative acts, \(\text{Comm}_D \), on \(L_D \), is defined as:

- \(\text{ill}(i, j, \varphi) \in \text{Comm}_D \), where \(\text{ill} \in \{ \text{request}, \text{accept} \} \), is the speaker, \(j \) is the hearer and \(\varphi \in L_D \).
- \(\text{propose}(i, j, \varphi, \psi) \in \text{Comm}_D \), where \(i \) is the speaker, \(j \) is the hearer and \(\varphi, \psi \in L_D \).
- \(\text{If} \in \text{Comm}_D \) then also \(\text{ill}(i, j, i), \text{ill}(i, j, \lnot \varphi) \in \text{Comm}_D \).

The request is intuitively used to get another agent to realize a certain state \(\varphi \). The propose is used to offer to realize \(\varphi \) in return for the other agent realizing \(\psi \). This can be seen as a kind of conditional commitment. The accept is used to positively answer a request without authorization (as in the charity relation) or to accept a proposal. The intended effects of communicative acts are described more formally in definition 7 by means of deontic operators, and using the dependency relations between agents. These axioms describe how obligations can for an agent: by means of a request based on a power or authorization relation, or by (conditionally) committing itself through a propose action. We do not formally introduce the dynamic deontic logic used in this semantics, but only mention the intuition behind the basic constructs of the dynamic and deontic operators. In dynamic logic \(\text{[}\varphi\text{]}\alpha \) indicates that the performance of action \(\alpha \) leads to a state in which \(\varphi \) holds. The dynamic deontic uses a conditional obligation operator \(O_{ij}(\varphi|\psi) \) indexed by the debtor and creditor of the obligation. The debtor \(i \) is obliged towards the creditor \(j \) to establish \(\varphi \) under the condition that \(\psi \) holds. We refer the reader to [6] for a more formal semantics of these operators.

Definition 7 (Axioms for communicative acts) The formal semantics of basic speech acts are:

1. \(\models \text{auth}(i, j, \text{request}(i, j, \varphi)) \rightarrow [\text{request}(i, j, \varphi)]O_{ji}\varphi \)
2. \(\models [\text{request}(i, j, \varphi); \text{accept}(j, i, \text{request}(i, j, \varphi))]O_{ij}\varphi \)
3. \(\models \text{propose}(i, j, \varphi, \psi) \rightarrow [\text{propose}(i, j, \varphi, \psi)]O_{ij}(\varphi|\psi) \)
4. \(\models \text{propose}(i, j, \varphi, \psi); \text{accept}(j, i, \text{propose}(i, j, \varphi, \psi)) \rightarrow (O_{ij}\varphi \land \text{auth}(i, j, \text{request}(i, j, \varphi))) \)

The first axiom states that if \(i \) is authorized than its request to \(j \) to achieve \(\varphi \) leads to an obligation of \(j \) to achieve \(\varphi \). The second axiom states that a similar result can be achieved by a request of \(i \) followed by an accept of \(j \). In this case no authorization is necessary. The propose leads to a conditional obligation for the proposer. In fact, this formalization of the propose is the most simple form to establish a contract between \(i \) and \(j \). It leads possibly to an obligation on one side and a potential obligation (an authorization to create an obligation) on the other side. Through nesting of operators we can incorporate a whole set of conditional authorizations for both sides in \(\psi \).

The last axiom states that if a proposal is accepted than the obligation and authorization becomes reality.

The above axioms can be combined with the definitions of the previous section to reflect that in hierarchical dependencies, power relations define authorization relations and therefore imply the realization of the intended state of affairs. That is:

\[r_1 \supset_N r_2 \land \text{rea}(i, r_1) \land \text{rea}(j, r_2) \rightarrow [\text{request}(i, j, \varphi)]O_{ij}\varphi \]

This explains the efficiency of hierarchical organizations on getting things done. In networks and market organizations authorization is not automatically granted between different roles and must be established by a (more or less) complex communicative process. This process can be described by a sequence of proposals and counterproposals between the interested parties in order to determine the conditions of authorization. Such proposal acts can be seen as a kind of conditional commitment, in which each party says "I'll commit to achieve X for you (or commit to do X) provided that you give me authorization to request you to achieve Y (or you commit to do Y upon request)".

Different market mechanisms have been designed in order to describe how a proposal process should run. A well known standard is the Contract Network Protocol that basically says that an agent should put forward a call for proposals (request for X) which can be answered by any other agent. By accepting one of these proposals, the requesting agent is establishing an obligation to the proposing agent to fulfill X. The process of achieving role dependencies in market organizations is basically as follows:

\[(r_1 \supset_N r_2 \land \text{rea}(i, r_1) \land \forall j \in G : \text{rea}(j, r_2)) \rightarrow [\text{request}(i, G, \varphi); \text{propose}(j, i, \varphi, \text{true}); \text{accept}(i, j, \text{propose}(j, i, \varphi, \text{true}))]O_{ij}\varphi \]

The above formula contains some liberal notation to avoid complications necessary to correctly express speech acts directed to a group and answers from members of that group. Notice also that the formula above only describes the state of affairs necessary to achieve an obligation to realize goal \(\varphi \) and abstracts from price issues. These can be thought to be part of the formula \(\varphi \) which should then be read as \(\varphi \equiv \varphi \land \text{gave}(i, j, \text{price}) \), and ignoring negotiation iterations between the agents enacting roles \(r_1 \) and \(r_2 \).

Whereas hierarchies follow strict power relations and markets usually are guided by well defined interaction standards, as the one exemplified above, network organizations are traditionally fairly 'informal' in the way relations are established between different roles. On the other hand, once a relation between different roles is formed those tend to last for some time and often be intensified as more (successful) goal delegations occur between those roles. Trust and a common desire to realize certain global objectives are the drive of networks, which see different roles as equals in power to establish relations. In practice, interactions in a network function in terms of exchange of favors, or promises to exchange favors. That is, agent A agrees to do X for agent B, expecting to be able at some time to request B to do something else for A. Proposal negotiations are often more complex than in markets because both parties must agree on the needs of each side. Formally, this can be seen as:

\[r_1 \supset_N r_2 \land \text{rea}(i, r_1) \land \text{rea}(j, r_2) \rightarrow [\text{request}(i, j, \varphi); \text{propose}(j, i, \varphi, \text{true}); \text{auth}(i, j, \text{request}(j, i, \varphi))]O_{ji}\varphi \]

The crux in the above formula is of course the part:

\[\text{auth}(i, j, \text{request}(j, i, \varphi)) \]

This authorization has to be established by agent \(i \). So, it needs at least another communication step here. This can be a simple accept by agent \(i \). However, the establishment of this authorization might also involve a more intricate negotiation between \(i \) and \(j \).

To illustrate the effect of communication between roles in different organization types, we will use the example of the dependency
for the objective paper review, r, between agent c enacting the role of Program Chair, C, and agent m enacting the role of PC member, M. Different social dependencies give rise to different attitudes concerning the communication:

- In a hierarchical relation, \(C \geq_H M \), the power relation \(power(c, m, r) \) holds. Therefore, after \(request(c, m, r) \) the obligation \(O_{m,c,r} \) holds.
- In a market relation, \(C \geq_M M \), after \(request(c, m, r) \) an explicit proposal from m to do r and its acceptance by c is necessary in order to have the obligation. That is, the following (minimal) dialog must occur:

 \[
 c : \, request(c, M, r) \\
 m : \, propose(m, c, r, true) \\
 c : \, accept(c, m, r) \\
 \therefore \, O_{m,c,r}
 \]

- In a network relation, \(C \geq_N M \), not only m has to accept the request, but also c has to agree to a counter request from m (in a conference setting, this would typically be a request to extend the review deadline, e). This can be represented by the following dialog:

 \[
 c : \, request(c, M, r) \\
 m : \, propose(m, c, r, e) \\
 c : \, accept(c, m, propose(m, c, r, e)) \\
 \therefore \, O_{m,c,r} \land \, auth(m, c, request(m, c, e))
 \]

The main difference between the market and network situations is the amount of deliberation needed to reach the obligation. Whereas in a market relation, the program chair agent just has to evaluate the proposals on the exact paper review request it had made, in a network situation, the program chair agent will also need that capability to evaluate the new proposal, and possibly enter a negotiation on the deadline extension parameter as well.

5.3 Implications of Coordination

In the previous section, we have introduced the differences in task delegation that result from different types of coordination in organizations. From a coordination perspective hierarchical relations are most efficient in achieving the delegation of tasks. They need only one message to achieve the delegation. It seems that the network type is the least efficient to achieve the delegation of a task, basically, because it allows for some more negotiation on counter-activities. However, as remarked before the final agreement usually encompasses more than one interaction. In the example above it could e.g. result in authorization for the PC chair to ask the PC member to review papers on his favorite topics for the next 3 years, while not giving him more than 3 papers each time and at least 5 weeks for reviewing. As a consequence of this agreement the PC chair only needs to send a request in the next 2 years (just like if there would be a power relation) to achieve the obligation to review a paper. This means that the costs of the current coordination effort should be spread over 3 years to compare with the other mechanisms. Most likely the average coordination costs per year will then be lower than that of the market mechanism that requires the explicit propose and accept part every time.

Note that in the above we only considered the coordination costs (in terms of the number of messages that have to be send after each other (parallel messages to or from a group count for one)). However, from an organizational perspective we are, of course, mainly interested in getting the actual task done. So, we should also take a look at the costs of performing the task once it is delegated to the agent that should actually perform it. In our formalism (as in reality) the task delegation, no matter which mechanism is used, results in an obligation. There is therefore no absolute guarantee that the task will indeed be done, as the agent is free to not fulfil its obligations. The requesting agent should be able to evaluate the capabilities and availability of the requested agent in order to maximize the certainty of task achievement. Moreover, mechanisms for controlling the realization of tasks are needed. We will not go into the latter aspect here but see [14] for further discussion.

In a hierarchy the requesting agent needs to have all the information available to determine the best possible agent for a task. So, it needs to know the capabilities, efficiency, capacity and current workload of all agents. When task requirements and agent capabilities are fairly stable, then it is quite feasible for the delegating agents to maintain this information. In this case the requesting agent just needs to determine the best agent for the task and a request leads to the obligation to do it. However, if tasks and agents change rapidly, or if the requesting agent does not have the capability to evaluate either the task requirements of the capabilities and availability of the agents, then the obligation that follows the request may stay unfulfilled and the requesting agent is then forced to perform the task itself or negotiate realization with other agents, as in the market or network cases. The decision for a certain coordination type is dependent on the characteristics of the agents and of the environment.

It is exactly for situations where the delegating agent cannot maintain all information about the other agents that market mechanisms are meant for. The proposals of the agents answering a request (implicitly) carry the information that the agent needs to make the best possible choice for delegating the task. If an agent is not capable to perform the task it will not answer with a propose. If it is already very busy it will propose to perform the task later, or slow. The delegating agent only needs to compare the proposals to find the best one every time. Because the resulting obligations only hold for the current transaction, the agents are capable to choose the best option every time, based on the most up-to-date information. So, the overhead in coordination costs might be paid back through more efficient distribution of the tasks.

As before, the networks have an intermediate position between hierarchies and markets. In networks, besides the agreement concerning the initial request, usually further interaction will happen (concerning the realization of the counter request). The interest in maintaining such long-time relation with the requested agent is often one of the reasons for the requesting agent to enter a negotiation on the counter proposal (see the example above). In this way long-time relations between agents are achieved, without the inflexibility of a hierarchy. However, if one foresees that the environment will change rapidly, this longer term relationships may not be very useful. E.g. if the topics of the conference change every year it is no use to make an agreement for a PC member to review papers on a fixed topic for several years (because he might have nothing to do next year). The network mechanism is especially suited for situations where agents might not always be available (the system is not (completely) closed or agents have multiple tasks for different organizations) while the environment is relatively stable.

In the previous paragraphs we analyzed the properties of hierarchical, market and network relations. Often organizations as a whole are said to be of one of these three types. Although often the relation-
ships within an organization tend to be of the same kind it is worth observing that we did not assume that all relations within an organization are of the same kind. One could e.g. have hierarchical relations between the general chair role and the PC chair role and local organizer role, while the relation between the PC chair role and the PC member role is of a market type. In this way one can optimally combine the coordination mechanisms for optimal efficiency and utility of the organization.

6 Conclusion

In this paper we have argued that organizational structures are important for MAS. In line with other current research we think that these structures need to exist outside the individual agents in order to ensure the achievement of objectives of the organization that rise above the individual agent level. By having explicit organizational structures we also ensure the stability of the organization over a longer period of time.

We have shown that the organizational structure consists of several inter-related elements. We have concentrated mostly on the role dependencies that arise from the dependencies between the objectives of those roles. These dependencies seem to indicate the basic needs of coordination between the roles. Moreover we have shown that the basic coordination types from organizational theory (market, hierarchy and network) are also very useful for MAS design. Starting from the dependencies between roles that follow from their objectives, these coordination types determine how the interaction between the dependent roles is shaped. The coordination type of the organization also influences the type of facilitation roles that are needed in that organization, such as a matchmaker for a market and a gate keeper for a network organization.

In the last section we made a start on determining how some characteristics of the coordination types and the environment determine the best structure to be used for a MAS in a particular environment. Although we base our theory on the formal theory underlying the Opera model, we will use simulations to check for the organizational characteristics that will benefit the organization best in a certain environment.

REFERENCES