GADTs
AFP Summer School
Alejandro Serrano
Today’s lecture

Generalized algebraic data types (GADTs)
A datatype

```haskell
data Tree a = Leaf
  | Node (Tree a) a (Tree a)
```

This definition introduces:
A datatype

data Tree a = Leaf
 | Node (Tree a) a (Tree a)

This definition introduces:

- a new datatype Tree of kind * -> *.
A datatype

```haskell
data Tree a = Leaf
            | Node (Tree a) a (Tree a)
```

This definition introduces:

- a new datatype `Tree` of kind `* -> *`.
- two constructor functions

```haskell
Leaf :: Tree a
Node :: Tree a -> a -> Tree a -> Tree a
```
A datatype

```haskell
data Tree a = Leaf
             | Node (Tree a) a (Tree a)
```

This definition introduces:

- a new datatype `Tree` of kind `* -> *`.
- two constructor functions

 | Leaf :: Tree a
 | Node :: Tree a -> a -> Tree a -> Tree a

- the possibility to use the constructors `Leaf` and `Node` in patterns.
Alternative syntax

Observation
The types of the constructor functions contain sufficient information to describe the datatype.

data Tree :: * -> * where
 Leaf :: Tree a
 Node :: Tree a -> a -> Tree a -> Tree a

Question
What are the restrictions regarding the types of the constructors?
Constructors of an algebraic datatype T must:

- target the type T,
- result in a simple type of kind *, i.e., $T \ a_1 \ldots \ a_n$ where a_1, \ldots, a_n are distinct type variables.
Another example

data Either :: * -> * -> * where
 Left :: a -> Either a b
 Right :: b -> Either a b

Both constructors produce values of type Either a b.
Does it make sense to lift these restrictions?
Excursion: Expression language

Imagine we’re implementing a small programming language in Haskell:

```haskell
data Expr = LitI Int
          | LitB Bool
          | IsZero Expr
          | Plus Expr Expr
          | If Expr Expr Expr
```
Excursion: Expression language

Alternatively, we could redefine the data type as follows:

```haskell
data Expr :: * where
    LitI    :: Int -> Expr
    LitB    :: Bool -> Expr
    IsZero  :: Expr -> Expr
    Plus    :: Expr -> Expr -> Expr
    If      :: Expr -> Expr -> Expr -> Expr
```
Syntax: concrete vs abstract

Imagined concrete syntax:

```
if isZero (0 + 1) then False else True
```

How is it represented in abstract syntax?
Syntax: concrete vs abstract

Imagined concrete syntax:

```
if isZero (0 + 1) then False else True
```

How is it represented in abstract syntax?

```
If (IsZero (Plus (LitI 0) (LitI 1)))
    (LitB False)
    (LitB True)
```
Evaluation

Try it yourself
Evaluation

Before we write an interpreter, we need to choose the type that it returns.

Our expressions may evaluate to booleans or integers:

```haskell
data Val = VInt Int
       | VBool Bool
```

Defining an interpreter now boils down to defining a function:

```haskell
eval :: Expr a -> Val
```
Evaluation

eval :: Expr a -> Val

\begin{align*}
\text{eval (LitI } n) &= \text{ VInt } n \\
\text{eval (LitB } b) &= \text{ VBool } b \\
\text{eval (IsZero } e) &= \\
&\quad \text{case eval } e \text{ of} \\
&\quad \quad \text{VInt } n \rightarrow \text{ VBool } (n == 0) \\
&\quad \quad _\rightarrow \text{ error "type error"} \\
\text{eval (Plus } e1 \ e2) &= \\
&\quad \text{case (eval } e1, \text{ eval } e2) \text{ of} \\
&\quad \quad \text{VInt } n1, \text{ VInt } n2 \rightarrow \text{ VInt } (n1 + n2) \\
&\quad \quad _\rightarrow \text{ error "type error"}
\end{align*}
Problems with evaluation

- Evaluation code is mixed with code for handling type errors.
- The evaluator uses *tags* (i.e., constructors) to distinguish values – these tags are maintained and checked at run time.
- Run-time type errors can, of course, be prevented by writing a type checker or using phantom types.
Type errors

It is all too easy to write ill-typed expressions such as:

\[
\text{If } (\text{LitI 0}) (\text{LitB False}) (\text{LitI 1})
\]

How can we prevent programmers from writing such terms?
Phantom types

At the moment, *all* expressions have the same type:

```haskell
data Expr = LitI Int 
  | LitB Bool 
  | ...
```

We would like to distinguish between expressions of *different* types.
Phantom types

At the moment, *all* expressions have the same type:

```haskell
data Expr = LitI Int |
          LitB Bool |
          ...        
```

We would like to distinguish between expressions of *different* types.

To do so, we add an additional *type parameter* to our expression data type.
Phantom types

data Expr a = LitI Int
 | LitB Bool
 | IsZero (Expr Int)
 | Plus (Expr Int) (Expr Int)
 | If (Expr Bool) (Expr a) (Expr a)

Note: the type variable a is never actually used in the data type for expressions.

We call such type variables *phantom types*.
Constructing well typed terms

Rather than expose the constructors of our expression language, we can instead provide a \textit{well-typed API} for users to write terms:

\begin{verbatim}
litI :: Int -> Expr Int
litI = LitI

plus :: Expr Int -> Expr Int -> Expr Int
plus = Plus

isZero :: Expr Int -> Expr Bool
isZero = IsZero
\end{verbatim}

This guarantees that users will only ever construct well-typed terms! But what about writing an interpreter...
More problems with evaluation

- Even if we know that we only have type-correct terms, the Haskell compiler does not enforce this.
- We still need to write all the error cases.
Beyond phantom types

What if we encode the type of the term in the Haskell type?

```haskell
data Expr :: * -> * where
    LitI :: Int -> Expr Int
    LitB :: Bool -> Expr Bool
    IsZero :: Expr Int -> Expr Bool
    Plus :: Expr Int -> Expr Int -> Expr Int
    If :: Expr Bool -> Expr a -> Expr a -> Expr a
```

Each expression has an additional type argument, representing the type of values it stores.
GADTs

GADTs lift the restriction that all constructors must produce values of the same type.

- Constructors can have more specific return types.
- Interesting consequences for pattern matching:
 - when case-analyzing an `Expr Int`, it could not be constructed by `Bool` or `IsZero`;
 - when case-analyzing an `Expr Bool`, it could not be constructed by `Int` or `Plus`;
 - when case-analyzing an `Expr a`, once we encounter the constructor `IsZero` in a pattern, we know that we must be dealing with an `Expr Bool`;
 - ...

[Faculty of Science Information and Computing Sciences]
Evaluation revisited

eval :: Expr a -> a

```haskell
eval (LitI n)       = n
eval (LitB b)       = b
eval (IsZero e)     = (eval e) == 0
eval (Plus e1 e2)   = eval e1 + eval e2
eval (If e1 e2 e3)  =
  | eval e1         = eval e2
  | otherwise       = eval e3
```

- No possibility for run-time failure (modulo undefined); no *tags* required on our values.
- Pattern matching on a GADT requires a type signature. Why?
Limitation: type signatures are required

```haskell
data X :: * -> * where
  C :: Int -> X Int
  D :: X a
  E :: Bool -> X Bool

f (C n) = [n]  -- (1)
f D = []        -- (2)
f (E n) = [n]  -- (3)
```

What is the type of \(f \), with/without (3)? What is the (probable) desired type?

\[
f :: X a \rightarrow \mathbb{Z}
\]
Limitation: type signatures are required

```haskell
data X :: * -> * where
  C :: Int -> X Int
  D :: X a
  E :: Bool -> X Bool

f (C n) = [n] -- (1)
f D = [] -- (2)
f (E n) = [n] -- (3)
```

What is the type of \(f \), with/without (3)? What is the (probable) desired type?

```haskell
f :: X a -> [Int] -- (1) only
f :: X b -> [c] -- (2) only
f :: X a -> [Int] -- (1) + (2)
```
Extending our language

Let us extend the expression types with pair construction and projection:

```haskell
data Expr :: * -> * where
  ...
  Pair  :: Expr a -> Expr b -> Expr (a, b)
  Fst   :: Expr (a,b) -> Expr a
  Snd   :: Expr (a,b) -> Expr b
```

For Fst and Snd, the type of the non-projected component is ‘hidden’ – that is, it is not visible from the type of the compound expression.
Evaluation again

\[
\text{eval} :: \text{Expr} \ a \rightarrow a
\]
\[
\text{eval} \ldots
\]

\[
\text{eval} \ (\text{Pair} \ x \ y) = (\text{eval} \ x, \text{eval} \ y)
\]
\[
\text{eval} \ (\text{Fst} \ p) = \text{fst} \ (\text{eval} \ p)
\]
\[
\text{eval} \ (\text{Snd} \ p) = \text{snd} \ (\text{eval} \ p)
\]
GADTs have become one of the more popular Haskell extensions.

The ‘classic’ example for motivating GADTs is interpreters for expression languages, such as the one we have seen here.

However, these richer data types offer many other applications.

In particular, they let us *program* with types in interesting new ways.
Prelude.head: empty list

> myComplicatedFunction 42 "inputFile.csv"
*** Exception: Prelude.head: empty list

Can we use the type system to rule out such exceptions before a program is run?
> myComplicatedFunction 42 "inputFile.csv"
*** Exception: Prelude.head: empty list

Can we use the *type system* to rule out such exceptions before a program is run?

To do so, we’ll introduce a new list-like datatype that records the *length* of the list in its *type*.
Natural numbers and vectors

Natural numbers can be encoded as types – no constructors are required.

```haskell
data Zero
data Succ a
```

Vectors are lists with a fixed number of elements:

```haskell
data Vec :: * -> * -> * where
  Nil :: Vec a Zero
  Cons :: a -> Vec a n -> Vec a (Succ n)
```
Type-safe head and tail

\[
\text{head} :: \text{Vec } a (\text{Succ } n) \rightarrow a \\
\text{head} \left(\text{Cons } x \ x s\right) = x
\]

\[
\text{tail} :: \text{Vec } a (\text{Succ } n) \rightarrow \text{Vec } a n \\
\text{tail} \left(\text{Cons } x \ x s\right) = x s
\]

Question

Why is there no case for Nil is required?

[Faculty of Science Information and Computing Sciences]
Type-safe head and tail

head :: Vec a (Succ n) -> a
head (Cons x xs) = x

tail :: Vec a (Succ n) -> Vec a n
tail (Cons x xs) = xs

Question
Why is there no case for Nil is required?
Actually, a case for Nil results in a type error.
More functions on vectors

map :: (a -> b) -> Vec a n -> Vec b n
map f Nil = Nil
map f (Cons x xs) = Cons (f x) (map f xs)

zipWith :: (a -> b -> c) -> Vec a n -> Vec b n -> Vec c n
zipWith op Nil Nil = Nil
zipWith op (Cons x xs) (Cons y ys) = Cons (op x y) (zipWith op xs ys)

We can require that the two vectors have the same length!
This lets us rule out bogus cases.
Yet more functions on vectors

\[
\text{snoc} \, :: \, \text{Vec} \, a \, n \rightarrow a \rightarrow \text{Vec} \, a \, (\text{Succ} \, n)
\]
\[
\text{snoc} \, \text{Nil} \, y = \text{Cons} \, y \, \text{Nil}
\]
\[
\text{snoc} \, (\text{Cons} \, x \, xs) \, y = \text{Cons} \, x \, (\text{snoc} \, xs \, y)
\]

\[
\text{reverse} \, :: \, \text{Vec} \, a \, n \rightarrow \text{Vec} \, a \, n
\]
\[
\text{reverse} \, \text{Nil} = \text{Nil}
\]
\[
\text{reverse} \, (\text{Cons} \, x \, xs) = \text{snoc} \, xs \, x
\]

What about appending two vectors, analogous to the (++) operation on lists?
Problematic functions

▶ What is the type of our append function?

```
vappend :: Vec a m -> Vec a n -> Vec a ???
```
Problematic functions

▶ What is the type of our append function?

\[
\text{vappend} :: \text{Vec } a \text{ m } \rightarrow \text{Vec } a \text{ n } \rightarrow \text{Vec } a \ ???
\]

How can we add two types, n and m?
Problematic functions

▶ What is the type of our append function?

\[\text{vappend} :: \text{Vec} \ a \ m \rightarrow \text{Vec} \ a \ n \rightarrow \text{Vec} \ a \ ??? \]

How can we add two types, \(n \) and \(m \)?

▶ Suppose we want to convert from lists to vectors:

\[\text{fromList} :: [a] \rightarrow \text{Vec} \ a \ n \]

Where does the type variable \(n \) come from? What possible values can it have?
Writing vector append

There are multiple options to solve that problem:

▶ construct explicit evidence,
▶ use a type family (more on that in the next lecture).
Explicit evidence

Given two ‘types’ \(n \) and \(m \), what is their sum?

We can define a GADT describing the \textit{graph} of addition:

\[
\text{data Sum} :: \ast \to \ast \to \ast \to \ast \to \ast \text{ where}
\]
\[
\text{SumZero} :: \text{Sum} \ Zero \ n \ n
\]
\[
\text{SumSucc} :: \text{Sum} \ m \ n \ s \to \text{Sum} \ (\text{Succ} \ m) \ n \ (\text{Succ} \ s)
\]
Explicit evidence

Given two ‘types’ \(n \) and \(m \), what is their sum?

We can define a GADT describing the graph of addition:

```haskell
data Sum :: * -> * -> * -> * where
  SumZero :: Sum Zero n n
  SumSucc :: Sum m n s -> Sum (Succ m) n (Succ s)
```

Using this function, we can now define `append` as follows:

```haskell
append :: Sum m n s
        -> Vec a m
        -> Vec a n
        -> Vec a s
append SumZero Nil ys = ys
append (SumSucc p) (Cons x xs) ys = Cons x (append p xs ys)
```
Passing explicit evidence

This approach has one major disadvantage: we must construct the evidence, the values of type $\text{Sum } n \cdot m \cdot p$, by hand every time we wish to call `append`.

We could use a multi-parameter type class with functional dependencies to automate this construction...
Converting between lists and vectors

It is easy enough to convert from a vector to a list:

\[
\text{toList} :: \text{Vec} \ a \ n \rightarrow [a]
\]
\[
\text{toList} \ \text{Nil} = []
\]
\[
\text{toList} \ (\text{Cons} \ x \ xs) = x : \text{toList} \ xs
\]

This simply discards the type information we have carefully constructed.
Converting between lists and vectors

It is easy enough to convert from a vector to a list:

\[
\text{toList} :: \text{Vec } a \ n \rightarrow [a]
\]
\[
\text{toList } \text{Nil} = []
\]
\[
\text{toList } (\text{Cons } x \ \text{xs}) = x : \text{toList } \text{xs}
\]

This simply discards the type information we have carefully constructed.
Converting between lists and vectors

Converting in the other direction, however is not as easy:

```haskell
fromList :: [a] -> Vec a n
fromList [] = Nil
fromList (x:xs) = Cons x (fromList xs)
```

Question
Why doesn’t this definition type check?
Converting between lists and vectors

Converting in the other direction, however is not as easy:

```haskell
fromList :: [a] -> Vec a n
fromList [] = Nil
fromList (x:xs) = Cons x (fromList xs)
```

Question

Why doesn’t this definition type check? The type says that the result must be polymorphic in n, that is, it returns a vector of *any* length, rather than a vector of a specific (unknown) length.
From lists to vectors

We can

- specify the length of the vector being constructed in a separate argument,
- hide the length using an *existential* type.
Suppose we simply pass in a regular natural number, Nat:

\[
\text{fromList :: Nat} \to [a] \to \text{Vec} a n
\]

\[
\text{fromList Zero} \quad \text{[]} = \text{Nil}
\]

\[
\text{fromList (Succ n)} \quad (x:xs) = \text{Cons x (fromList n xs)}
\]

\[
\text{fromList _ _} = \text{error "wrong length!"}
\]
Suppose we simply pass in a regular natural number, Nat:

\[
\text{fromList} :: \text{Nat} \to [a] \to \text{Vec} a n
\]

\[
\text{fromList} \ \text{Zero} \ \text{[]} = \text{Nil}
\]

\[
\text{fromList} \ (\text{Succ} \ n) \ (x:xs) = \text{Cons} \ x \ \text{fromList} \ n \ xs
\]

\[
\text{fromList} \ _ \ _ = \text{error} \ "\text{wrong length!}" \n\]

This still does not solve our problem – there is no connection between the natural number that we are passing and the \text{n} in the return type.
Singletons

We need to reflect type-level natural numbers on the value level.

To do so, we define a (yet another) variation on natural numbers:

```haskell
data SNat :: * -> * where
  SZero :: SNat Zero
  SSucc :: SNat n -> SNat (Succ n)
```

This is a *singleton type* – for any \(n \), the type \(\text{SNat} \ n \) has a single inhabitant (the number \(n \)).
From lists to vectors

data SNat :: * -> * where
 SZero :: SNat Zero
 SSucc n :: SNat n -> SNat (Succ n)

fromList :: SNat n -> [a] -> Vec a n
fromList SZero [] = Nil
fromList (SSucc n) (x:xs) = Cons x (fromList n xs)
fromList _ _ = error "wrong length!"

Question
This function may still fail dynamically. Why?
We can

- specify the length of the vector being constructed in a separate argument,
- hide the length using an *existential* type.

What about the second alternative?
From lists to vectors

We can define a wrapper around vectors, \textit{hiding} their length:

\begin{verbatim}
data VecAnyLen :: * -> * where
 VecAnyLen :: Vec a n -> VecAnyLen a
\end{verbatim}

A value of type \texttt{VecAnyLen \ a} stores a vector of \textit{some} length with values of type \texttt{a}.
From lists to vectors

We can convert any list to a vector of some length as follows:

```haskell
fromList :: [a] -> VecAnyLen a
fromList [] = VecAnyLen Nil
fromList (x:xs) =
    case fromList xs of
      VecAnyLen ys -> VecAnyLen (Cons x ys)
```
From lists to vectors

We can combine the two approaches and include a `SNat` in the packed type:

```haskell
data VecAnyLen :: * -> * where
    VecAnyLen :: SNat n -> Vec a n -> VecAnyLen a
```

Question
How does the conversion function change?
Comparing the length of vectors

We can define a boolean function that checks when two vectors have the same length

```
equalLength :: Vec a m -> Vec b n -> Bool
equalLength Nil Nil = True
equalLength (Cons _ xs) (Cons _ ys) = equalLength xs ys
equalLength _ _ = False
```
Comparing the length of vectors

Suppose I want to use this to check the lengths of my vectors:

```haskell
if equalLength xs ys
    then zipVec xs ys
    else error "Wrong lengths"
```

Question
Will this type check?
Comparing the length of vectors

Suppose I want to use this to check the lengths of my vectors:

```haskell
if equalLength xs ys
  then zipVec xs ys
  else error "Wrong lengths"
```

Question
Will this type check?
No! Just because `equalLength xs ys` returns True, does not guarantee that \(m \) and \(n \) are equal...
How can we enforce that two types are indeed equal?
Equality type

Just as we saw for the Sum type, we can introduce a GADT that represents a ‘proof’ that two types are equal:

```haskell
data Equal :: * -> * -> * where
    Refl :: Equal a a
```
Properties of the equality relation

refl :: Equal a a
sym :: Equal a b -> Equal b a
trans :: Equal a b -> Equal b c -> Equal a c

How are these functions defined?
Properties of the equality relation

refl :: Equal a a
sym :: Equal a b -> Equal b a
trans :: Equal a b -> Equal b c -> Equal a c

How are these functions defined?

refl = Refl
sym Refl = Refl
trans Refl Refl = Refl

What happens if you don’t pattern match on the Refl constructor?
Build an equality proof

Instead of returning a boolean, we can now provide evidence that the length of two vectors is equal:

\[
\text{eqLength :: Vec } a \ m \to \ Vec \ b \ n \to \text{Maybe (Equal } m \ n)\\
\text{eqLength Nil Nil = Just Refl}\\
\text{eqLength (Cons } x \ xs) (\text{Cons } y \ ys) = \\
\quad \text{case eqLength xs ys of}\\
\quad \quad \text{Just Refl} \to \text{Just Refl}\\
\quad \quad \text{Nothing} \to \text{Nothing}\\
\text{eqLength _ _ = Nothing}
\]

You *have to* pattern match on Refl above!
Using equality

test :: Vec a m -> Vec b (Succ n) -> Maybe (a,b)
test xs ys =
 case eqLength xs ys
 Just Refl -> head (zipVec xs ys)
 _ -> Nothing

Question
Why does this type check?
Expressive power of equality

The equality type can be used to encode other GADTs. Recall our expression example using phantom types:

```haskell
data Expr a = LitI Int
            | LitB Bool
            | IsZero (Expr Int)
            | Plus (Expr Int) (Expr Int)
            | If (Expr Bool) (Expr a) (Expr a)
```
Expressive power of equality

We can use equality proofs and phantom types to ‘implement’ GADTs:

```haskell
data Expr a =
    LitI (Equal a Int) Int |
    LitB (Equal a Bool) Bool |
    IsZero (Equal a Bool) (Equal b Int) |
    Plus (Equal a Int) (Expr Int) (Expr Int) |
    If (Expr Bool) (Expr a) (Expr a)
```
Summary

- GADTs can be used to encode advanced properties of types in the type language.
- We end up mirroring expression-level concepts on the type level (e.g. natural numbers).
- GADTs can also represent data that is computationally irrelevant and just guides the type checker (equality proofs, evidence for addition). Such information could ideally be erased, but in Haskell, we can always cheat via
 `undefined :: Equal Int Bool...`
Wouter will introduce functional dependencies and type families as another way to perform computation over types

-- No need to build 'Sum' by hand
append :: Sum m n s => Vec a m -> Vec a n -> Vec a s
-- No need to have a result argument
append :: Vec a m -> Vec a n -> Vec a (Sum m n)