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String method for the study of rare events
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We present an efficient method for computing the transition pathways, free energy barriers, and transition
rates in complex systems with relatively smooth energy landscapes. The method proceeds by evolving strings,
i.e., smooth curves with intrinsic parametrization whose dynamics takes them to the most probable transition
path between two metastable regions in configuration space. Free energy barriers and transition rates can then
be determined by a standard umbrella sampling around the string. Applications to Lennard-Jones cluster
rearrangement and thermally induced switching of a magnetic film are presented.
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The dynamics of complex systems is often driven by r
but important events~for a review see, e.g., Ref. 1!. Well-
known examples include nucleation events during ph
transitions, conformational changes in macromolecules,
chemical reactions. The long time scale associated with th
rare events is a consequence of the disparity between
effective thermal energy and typical energy barrier of
systems. The dynamics proceeds by long waiting peri
around metastable states followed by sudden jumps from
state to another.

Sophisticated numerical techniques have been develo
to find the transition pathways and transition rates betw
metastable states in complex systems for which the me
nism of transition is not known beforehand.2–4 With the ex-
ception of the transition path sampling technique,3 most of
these methods seem to require that the energy landscap
relatively smooth. One typical example of such technique
the nudged elastic band~NEB! method.4 The NEB method
connects the initial and final states by a chain of states.
states move in a force field which is a combination of t
normal component of the potential force and the tangen
component of the spring force connecting the states.
spring force helps to evenly space the states along the ch

In this paper we propose an alternative approach for c
puting transition pathways, free energy barriers, and tra
tion rates. We sample the configuration space with strin
i.e., smooth curves with intrinsic parametrization such as
length or energy-weighted arc length which connect t
metastable states~or regions! A andB. The string satisfies a
differential equation which by construction guarantees tha
evolves to the most probable transition pathway connec
A andB. One can then perform an umbrella sampling of t
equilibrium distribution of the system in the hyperplanes n
mal to the string and thereby determine free energy barr
and transition rates.

Consider the example of a system modeled by

gq̇52¹V~q!1j~ t !, ~1!

whereg is the friction coefficient andj(t) is a white noise
with ^j j (t)jk(0)&52gkBTd jkd(t). The metastable states a
localized around the minima of the potentialV(q). Assuming
V(q) has at least two minimaA and B, we look for the
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minimal energy paths~MEP’s! connecting these states. B
definition, a MEP is a smooth curvew! connectingA andB
which satisfies

~¹V!'~w!!50, ~2!

where (¹V)' is the component of¹V normal to w!. The
MEP’s are the most probable transition pathways for Eq.~1!
since with exponentially high probability it is by these pat
that the system switches back and forth between statesA and
B under the action of a small thermal noise.5 It is interesting
to note that the solutions of Eq.~2! also provide relevant
information about the Langevin equation:

q̇5p, ṗ52¹V~q!2gp1j~ t !. ~3!

Indeed, the metastable regions for Eqs.~1! and~3! coincide,
and the transition pathways for Eqs.~3! can be easily deter
mined from the transition pathways for Eq.~1! because they
traverse the same sequence of critical points. As a result
transition rates for Eqs.~3! for an arbitrary friction coeffi-
cientg can be obtained by considering the high friction ev
lution equation~1!—see Eq.~10! below.

Let w be a string~but not necessarily a MEP! connecting
A and B. A simple method to find the MEP is to evolvew
according to

u'52~¹V!'~w!, ~4!

whereu' denotes the normal velocity ofw, since stationary
solutions of Eq.~4! satisfy Eq.~2!. For numerical purposes i
is convenient to have a parametrized version of Eq.~4!,
keeping in mind, however, that the parametrization can
arbitrarily chosen since both Eqs.~2! and ~4! are intrinsic.
Denote byw(a,t) the instantaneous position of the strin
wherea is some suitable parametrization. Then we can
write Eq. ~4! as

w t52@¹V~w!#'1r t̂ , ~5!

where for convenience we renormalized timet/g→t,
(¹V)'5¹V2(¹V• t̂ ) t̂ , and t̂ is the unit tangent vecto
along w, t̂5wa /uwau. The scalar field r[r (a,t) is a
©2002 The American Physical Society01-1
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Lagrange multiplier uniquely determined by the choice
parametrization. The simplest example is to parametrizw
by arc length normalized so thata50 atA, a51 atB. Then
Eq. ~5! must be supplemented by the constraint

~ uwau!a50 ~6!

which determinesr.6 Other parametrizations can be straigh
forwardly implemented by modifying the constraint~6!. For
instance, a parametrization by energy-weighted arc len
which increases the resolution at the transition states
achieved using the constraint@ f „V(w)…uwau#a50, where
f (z) is some suitable monitor function satisfyingf 8(z),0.
In addition, the end points of the string need not be fixed a
other boundary conditions can be used.

Because of the intrinsic description of the string, it is ve
simple to implement an efficient algorithm which solves E
~5! using a time-splitting scheme. The string is discretiz
into a number of points which move according to the fi
term 2@¹V(w)#' at the right-hand side of Eq.~5!. After a
number of steps depending on the accuracy for the const
~6!, a reparametrization step is applied to reinforce Eq.~6!.
This costsO(N) operations whereN is the number of dis-
cretization points along the string. At the reparametrizat
step it is also convenient to changeN according to the accu
racy requirement for the representation of the string.

The method certainly bears some similarities with t
NEB method since one can think of the introduction of t
spring force in the NEB method as a way of ensuring equ
distance parametrization by a penalty method—the N
method gives an evolution equation which, in the continu
limit, is similar to Eq. ~5! but with r given by r 5kwaa• t̂
wherek is the artificial spring constant. As in other pena
methods, this numerical procedure introduces stiffness
the problem if the penalization parameter, here the ela
constantk, is large and this limits the size of the time ste
By using an intrinsic description, we eliminate this proble
and speed up convergence. Furthermore, we gain the ab
of using other parametrizations in a simple and flexible w
Finally, there is no simple way to change the number
discretization points along the chain in the NEB method.

It is natural to ask how the string method compares to
NEB method in terms of performance. However, an obj
tive comparison does not seem straightforward since th
are several different angles, such as the accuracy depend
on the number of discretization points and rate of conv
gence, which have to be examined. We therefore postp
this discussion to Ref. 8.

As a first example we look at the dynamics of seven
oms interacting via the Lennard-Jones potential on the pla
This example has been studied in detail in Ref. 7. In equi
rium the seven atoms form a hexagon. We are intereste
the process in which the atom at the center migrates to
external position. The MEP’s are not unique for this pro
lem. One example of an MEP obtained via the string meth
is shown in Fig. 1; the critical points along this path coinci
with the ones obtained in Ref. 7 by transition path sampli

The string equation~5! essentially amounts to finding th
MEP’s by the method of steepest descent except that we
05230
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not working with any explicit object function to minimize
We can use advanced numerical techniques for solving n
linear equations9 to accelerate convergence to the MEP. W
have developed a limited memory version of Broyde
method where Eq.~5! is replaced by

w t52G'@¹V~w!#'1r t̂ . ~7!

HereG' is a matrix determined on the fly during the com
putations to approximate the inverse of the Hessian in
perpendicular hyperplane; the approximation is based on
past history ofw and does not require one to actually com
pute the Hessian~for details, see Ref. 8!. In Fig. 2, we com-
pare the convergence history of the steepest descent me
and the Broyden-accelerated method applied to the se
atom cluster problem. The Broyden-accelerated method c
verges much faster.

Once the MEPw!(a) has been determined using th
Broyden-accelerated string method, free energy barriers
transition rates can be computed by standard umbrella s
pling of the equilibrium distribution of the system inS!(a),
the hyperplane normal tow!(a). Consider first the free en
ergy difference along the string defined asF(a)2F(0)
52kBT ln@Z(a)/Z(0)# where

Z~a!5E
S!(a)

e2bV(q)ds ~8!

is the partition function andb51/kBT. Using the identity
*] ln Z/]ada5ln Z(a), we obtain from Eq.~8!

FIG. 1. Top figure: a transition pathway by which the cent
atom migrates to the surface in a seven-atom hexagonal Lenn
Jones cluster in the plane. The pictures show successive config
tions corresponding to local minima of the potential energy alo
the path. Bottom figure: the potential energy along the path in n
ral units. The solid line corresponds to a simulation withN5200
discretization points along the string and the dashed lineN520.
1-2
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F~a!2F~0!5E
0

a

^~ t̂!
•¹V!@~ t̂!

•w!!a82 t̂a
!
•q#&da8.

~9!

Here^•& is the ensemble average with respect to the equ
rium distribution restricted in the hyperplaneS(a) and t! is
the unit tangent vector alongw!. Equation~9! is similar to
the standard thermodynamic integration10 but is better suited
for numerical purposes. In practice, we use ergodicity a
replace the ensemble average in Eq.~9! by a time average
over the solution of an equation similar to Eq.~1! but re-
stricted in the hyperplaneS(a). Following Kramers’ original
argument~see, e.g., Chap. 9 in Ref. 11!, the transition rate
can be expressed in terms of the free energy as

kA→B5
2Almulsu

p~g1Ag214ulsu!
e2bDF, ~10!

whereDF is free energy barrier alongw!,

DF5 max
0<a<1

@F~a!2F~0!#, ~11!

andlm andls are the~inverse square of! characteristic time
scales at the minimum and maximum of the free ene

FIG. 2. The convergence history of the steepest descent me
~a! and a limited memory version of Broyden’s method~b! applied
to the seven-atom cluster problem withN5200 discretization
points. We use max0<a<1u(¹V)'u to measure accuracy.
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along the transition path;lm andls are given byuwau22Faa
evaluated ata50 anda5as , respectively, whereas is the
value at which the maximum in Eq.~11! is attained.12

The transition rates along the MEP obtained earlier for
seven-atom cluster were evaluated by the string method
are summarized in Table I.

The string method can easily be generalized to infin
dimensional dynamical systems by introducing an appro
ate norm in phase space. As an example, we consider
problem of thermally induced switching of a magnetic film
This problem is of great current interest in the magnetic
cording industry.15 ~For an introduction to micromagnetism
see, e.g., Refs. 13,15; thermally induced switching is stud
in Ref. 14!. Landau-Lifshitz theory of micromagnetism pro
vides an energy for a ferromagnetic sampleV which, after
suitable nondimensionalization, reads

E@m#5AE
V

u¹mu2d3x1E
V

f~m!d3x1E
R3

u¹uu2d3x,

~12!

wherem is the magnetization distribution normalized so th
umu51. The three terms represent, respectively, energies
to exchange, anisotropy, and stray field. The potentialu, de-
fined everywhere in space, solvesdiv(2¹u1m)50, where
m is extended as 0 outsideV.

od

TABLE I. The rates for the various subprocesses in the tran
tion shown in Fig. 1 in the seven-atom cluster problem. We
natural units and the same parameters as in Ref. 7~for which, e.g.,
kBT/DEA→B50.033 andg/2Aulsu50.012—low friction limit!. The
rateskA→B , kB→A , andkB→C correspond, respectively, to the rate
for the subprocessesC0

0→C1
4, C1

4→C0
0, andC1

4→C1
3 identified in

Ref. 7. The values labeled ‘‘string’’ were obtained by the noi
string method using Eqs.~9!, ~11!, and ~10!. The values labeled
‘‘exact’’ were obtained using Eqs.~10! and ~13!, by identifying
minima and saddle points along the transition path, computing
corresponding energy barrierDE, and evaluating all the eigenvalue
of the Hessian at the minima and the saddle points from the Hes
itself.

kA→B5kD→C kB→A5kC→D kB→C5kC→B

String 5.023310213 1.42531024 1.21131026

Exact 4.969310213 1.42331024 1.20631026
ion
FIG. 3. ~Color! Two of the paths~a! and~b! followed by the magnetization vectorm during a switching. The pictures show the success
minimum-saddle-•••-saddle-minimum. The out-of-plane component ofm is very small~less than 1022) during the switching and we only
plot its in-plane component with color coding: blue5 right, red 5 left, yellow 5 up, green5 down. For both paths, we usedN580
discretization points along the string.
1-3
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Various switching pathways for Eq.~12! were obtained
using the string method: two examples are shown in Fig

FIG. 4. The magnetic energy along the two paths~a! and ~b!
shown in Fig. 3.
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and the energy along these paths is shown in Fig. 4. Th
paths illustrate two generic mechanisms for switching
magnetic films. Path~a!, which is more favorable in thin
samples, proceeds by domain wall motion, interior rotati
and switching of the edge domains. Path~b!, which is more
favorable for thicker films, proceeds by vortex nucleatio
invasion of the sample, and vortex expulsion.

In conclusion, transition pathways and transition rates
complex systems with a relatively smooth energy landsc
can be determined efficiently by evolving strings instead
points in configuration space. The intrinsic parametrizat
of the string leads to a simple and efficient algorithm for t
numerical solution of its evolution equation and permits o
to sample the configuration space in regions that otherw
would be practically inaccessible by standard Monte Ca
methods. In addition, our method does seem to have
distinct advantage over the NEB method; that is, it can
readily extended to situations when the energy landscap
rough ~see Ref. 16!.

We thank Roberto Car and Bob Kohn for helpful discu
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