
Exercises (WISB134)

February 16, 2016

1 Exercises for Chapter 1

Exercises for Chapter 1 consist of a Mathematica tutorial and accompanying exercises from
Chapter 0 of the book by Lynch.

• Install Mathematica. See the website: https://ict.science.uu.nl/index.php/Mathematica_
%28NL%29.

• Work through the tutorial in Chapter 0 of the book by Lynch. See http://link.

springer.com.proxy.library.uu.nl/content/pdf/10.1007%2F978-0-8176-4586-1_

1.pdf.

• Work exercises 0.2, 0.4–0.7, 0.10 at the end of Chapter 0 (of Lynch).

2 Exercises for Chapter 2

Exercise 2.1

For investments in which one expects a growth factor between κ = 1.01 and κ = 1.2,
economists use the approximation

T =
72

100(κ− 1)
,

where T is the number of years in which the investment doubles, and 100(κ− 1) is the yearly
interest rate. Suppose an economist asks you for which values of T and κ the approximation
is accurate. What would your answer be?

Exercise 2.2

Find the the general solution of:

(a) dy
dx = 1+2y

4−x

(b) dy
dx = − cosx

sin y

(c) dy
dx = −(1 + y2) · lnx

(d) dy
dx = y

x2−3x+2

(e) dy
dx = yx

x2−3x+2
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Exercise 2.3

The lifespan of a lightbulb filament. We consider the filament in an incandescent lightbulb as
a thin, straight cylindrical wire. The wire maintains a high constant temperature due to the
flow of electric current. We further assume that the length ` of the wire is constant. As a
consequence of the high temperature, there is a continual evaporation of material from the
wire. In each time unit the amount of material that evaporates is proportional to the exposed
surface area of the wire. A time t = 0 the wire has thickness d0. The wire breaks when it
becomes thinner than 0.1d0.

(a) Derive a differential equation for the wire thickness d.

(b) Solve this differential equation.

(c) Determine the lifespan of the wire given that its thickness at time t = 0 is 0.1mm and at
time t = 100 is 0.09mm.

Solution. Let d(t) denote the diameter of the wire at time t. The surface area is S(t) = πd(t) · `, the volume is

V (t) = π
(

d(t)
2

)2

· `. We interpret the “amount of material” to mean the volume. Then in a time unit we have

V (t+ ∆t)− V (t) = −λS(t),

for some λ > 0. Expanding the first term in Taylor series gives

V (t+ ∆t) = V (t) + ∆tV ′(t) +
∆2

2!
V ′′(t) + · · ·

Assuming ∆t is small, we neglect the terms that are second order or higher in ∆t. Substituting the second
equation in the first yields

∆tV ′(t) = −λS(t).

In terms of d(t) this gives
π`d(t)d′(t) = −cπ`d(t) ⇒ d′(t) = −c,

for some constant c = λ/∆t > 0. The solution of this ODE is d(t) = d0 − ct. With d0 = 0.1mm and
d(100) = 0.09mm, we find c = 0.0001. The wire breaks when d(t) = 0.01, for which t = 900.

Exercise 2.4

A mothball is a spherical ball of camphor that evaporates quickly. The mass of the mothball
decays due to evaporation, and the amount lost per time unit is proportional to the exposed
surface area of the sphere. The mass G (in grams) is a function of time t (in weeks).

(a) Show that there exists a positive constant c such that:

G′ = −cG2/3.

(b) Suppose the mothball original weighs 10 grams and after ten weeks only 1 gram. After
how many weeks is the ball completely evaporated?
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Solution. Let r(t) be the radius of the sphere at time t. Its volume is V (t) = 4
3
πr(t)3 and surface area

S(t) = 4πr(t)2. We suppose the mass G(t) is proportional to the volume: G(t) = κ 4
3
πr(t)3, for some constant

κ > 0. Consequently, S(t) = µG(t)2/3, for an appropriate λ > 0. The mass lost in unit time is proportional to the
surface area. Let us write this as

G(t+ ∆t)−G(t) = −λS(t),

for some λ > 0. The first term can be expanded in Taylor series to give

G(t+ ∆t) = G(t) + ∆tG′(t) +
∆t2

2!
G′′(t) + · · ·

Assuming ∆t is small, we neglect the second and higher order terms. Inserting the second expression in the first
one gives

∆tG′(t) = −λS(t), G′(t) = −cG(t)2/3

for c = λµ/∆t. To answer (b), solve the differential equation using separation of variables to obtain

G(t) = (−ct+G
1/3
0 )3.

It follows that G = 0 at time t = G
1/3
0 /c. Using G0 = 10 and G(10) = 1, we find c = (101/3 − 1)/10.

Consequently, the mothball evaporates at time t = 104/3/(101/3 − 1), which is approximately t = 18.66 weeks.

Exercise 2.5

Consider a lake with a constant volume V in km3 which contains a certain quantity of chem-
ical waste. Assume the waste is always uniformly distributed in the lake water. At time
t the concentration of waste is give by c(t). A polluted river empties into the lake. The
concentration of waste in this river is k, and it delivers an amount s of polluted water into
the lake per time unit. Another river removes water at the same rate. Derive a differential
equation for c(t) and solve it.
Compute limt→∞ c(t).

Exercise 2.6

(a) Classify the values of t0 and x0 for which the following ODE has a unique solution:

ẋ =
√
x, x(t0) = x0.

(b) What is the first time t > 0 for which the solutions of the following initial value problems
cease to exist?

(i) ẋ = x3, x(0) = 1;

(ii) ẋ = x2 + 2x+ 1, x(0) = −1
2 .

Solution. (a) We suppose real solutions are desired. Let f(x) =
√
x; this function is only defined for x ≥ 0.

Consider an interval x ∈ [a,∞), a > 0. On such an interval f is Lipschitz continuous with Lipschitz constant
L = f ′(a). To see this, check that the graph of f(x) is everywhere bounded above by its tangent lines. The
tangent line through the point (a, f(a)) may be parameterized by y(x) = f(a) + f ′(a)(x− a). Since this line
bounds the graph of f from above, we find for any x > a that f(a) + f ′(a)(x− a)− f(x) ≥ 0, where all terms are
positive. Rearranging gives f(x)− f(a) ≤ f ′(a)(x− a). From this it follows that L = f ′(a) is a Lipschitz
constant. Since f is Lipschitz on such an interval for any a > 0, the ODE has a unique solution for any x0 > 0. If
x0 = 0, the derivative of f is unbounded at x0, and there is no Lipschitz constant. Indeed there is no unique
solution in this case. Since the differential equation is autonomous, the initial time t0 is irrelevant.
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Exercise 2.7

We iterate the function f : x 7→ κx on the whole real line R, (hence allowing also negative
values of x, and also κ may be any real number. How does the recursively defined sequence
xn+1 = f(xn) behave as n → ∞? Answer this question for fixed κ, and as determine how
many ‘different’ cases there are. How important is the choice of x0?

Exercise 2.8

Consider a function f defined on an open interval of R and twice continuously differentiable
there. The Newton process attempts to determine a zero α of f as follows. Choose a number
x0 as an approximation to α. Construct a correction to x0: α = x0 − h. Hence,

0 = f(α) = f(x0 − h) = f(x0)− hf ′(x0) +
1

2
h2f ′′(ξ).

Here we have written the Taylor series for f about x0, where ξ is a number between x0 and
x0−h. If h is small, the h2-term will be much smaller than the other terms, f(x0) and hf ′(x0).
If we neglect the h2-term, then we can compute h: h = f(x0)/f

′(x0). Of course, this is not
completely correct, but x1 := x0−f(x0)/f

′(x0) will probably be a much better approximation
of α than x0. Iterating this approximation process leads to the Newton process:

xn+1 = xn −
f(xn)

f ′(xn)
voor n = 0, 1, 2, . . . .

(a) Show that the recursion in Exercise 2.7 represents the Newton process for solving f(x) :=
x2 −A = 0.

(b) Interpret the Newton process as finding the intersection of the tangent to the graph of f
at (xn, f(xn)) with the x-axis: xn+1 is the intersection.

(c) For hn := xn−α it follows that α = xn−hn and 0 = f(xn)−hnf ′(xn)+ 1
2h

2
nf
′′(ξ). Hence

hn+1 = hn −
f(xn)

f ′(xn)
=

1

2
h2n

f ′′(ξ)

f ′(xn)
.

Check this. Write B := 1
2f
′′(α)/f ′(α). Suppose that xn ≈ α. Check that then

1
2f
′′(ξ)/f ′(xn) ≈ B and conclude that Bhn+1 ≈ (Bhn)2. Explain the ‘super-fast’ conver-

gence of Exercise 2.7.

(d) Consider next the recursion

xn+1 =
1

3

(
2xn +

A

x2n

)
.

Prove that limn→∞ xn = 3
√
A.
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Exercise 2.9

Apply Euler’s method to solve the Lotka-Volterra system

dq

dt
= rq(1− p), dp

dt
= p(q − 1), q0 = p0 =

1

2
, t ∈ [0, 10],

with r = 2 and step sizes τ = 0.1, τ = 0.01, τ = 0.001. Plot the solutions in phase space:
that is, plot the points (qn, pn), n = 0, 1, 2, . . . as a sequence of points in the plane R2. One
can prove using analysis that all solutions (q(t), p(t)) of the Lotka-Volterra system are closed
curves in R2. In other words, there is some T (dependent on the initial condition) for which
q(t+ T ) = q(t) and p(t+ T ) = p(t) for all t. Consequently, any solution remains in bounded
subset of R2. Compare this fact with what you observe for Euler’s method.

Exercise 2.10

Solve the Verhulst model

dp

dt
= p(1− p), p(0) =

1

2
, 0 ≤ t ≤ 5,

with the trapezoidal rule. Derive the quadratic equation for pn+1 as a function of pn.
Which branch (root) of the quadratic equation is appropriate for numerical integration? Re-
peat the computation, this time solving the quadratic equation numerically using Newton’s
method.

3 Exercises for Chapter 3

Exercise 3.1

Consider the function f(x) = A(1− x)x2 with 0 ≤ A ≤ 27/4 on the interval [0, 1].

(a) Show that f maps the interval [0, 1] to itself.

Consider the recursion
x0 ∈ [0, 1], xn+1 = f(xn), n ≥ 0.

(b) For general A determine the fixed points of the recursion and check whether they are
stable or unstable.
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Exercise 3.2

Consider the recursion

xn+1 = f(xn), f(x) = r2x(1− x)(1− rx+ rx2), r = 1 +
√

5.

Use the graphical analysis method to identify (graphically) the steady states of this function
and establish their stability. There are two stable steady states; call them α and β. Associated
to these are sets A and B of initial conditions whose iterates eventually converge to α and β,
respectively. That is

A = {x ∈ [0, 1] |x0 = x⇒ lim
n→∞

xn = α},

and similarly for B. Consider how you might construct the sets A and B. (Hint: f ′(α) =
f ′(β) = 0.)

Exercise 3.3

Consider a recursion xn+1 = f(xn) where f : R −→ R.

(a) Construct an example (d.m.v. formule/grafiek/programma/. . . ) of a function f that has
a fixed point that is attracting, but not stable in the sense of Lyapunov. Hint: what value
will the derivative of f take at the fixed point?

(b) Does such a function exist with the property of (a) if we demand that f be continuous?

(c) Think of a continuous function f with a stable fixed point α such that for a certain
sequence (xn) of iterates that converge to α, it holds that |x2n+1 − α| ≥ 10 |x2n − α|
(n = 0, 1, 2, . . . ).

(d) Does there exist a function with the property of (c) if we demand that f be continuously
differentiable?
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