
Chapter 8

Runge-Kutta Methods

Main concepts: Generalized collocation method, consistency, order conditions

In this chapter we introduce the most important class of one-step methods that are generically
applicable to ODES (1.2). The formulas describing Runge-Kutta methods look the same as those
of the collocation methods of the previous chapter, but are abstracted away from the ideas of
quadrature and collocation. In particular, the “quadrature nodes” need no longer be distinct and
collocation conditions need not hold at each stage.

8.1 The Family of Runge-Kutta Methods

Recall from the previous chapter the definion of a collocation method (7.9)

Fi = f

yn + h
s∑

j=1

aijFj

 , i = 1, . . . , s,

yn+1 = yn + h

s∑
i=1

biFi.

For collocation methods, the coefficients bi and aij are defined by certain integrals of the Lagrange
interpolating polynomials associated with a chosen set of quadrature nodes or abscissae ci, i =
1, . . . , s.

A natural generalization of collocation methods is obtained by allowing the coeffcients ci, bi,
and aij , i = 1, . . . , s to take on arbitrary values, not necessarily related to quadrature rules.
In fact, we no longer assume the ci to be distinct1 The result is the class of Runge-Kutta
methods. The formulas above still hold; however, an alternative form introduces the stage
values Yi which can be viewed as intermediate values of the solution y at time tn + cih and are
defined by Yi = yn + h

∑
j aijFj , so that Fi = f(Yi) holds for each i. We have,

Yi = yn + h
s∑

j=1

aijf(Yj), i = 1, . . . , s, (8.1a)

yn+1 = yn + h
s∑

i=1

bif(Yi). (8.1b)

Here, s is termed the number of stages of the Runge-Kutta method, the bi, i = 1, . . . , s are the
weights, and aij are the internal coefficients.

1In the formulation for autonomous ODEs, the ci do not appear explicitly. However, we will assume the internal
consistency condition ci =

Ps
j=1 aij to hold throughout.

41



42 CHAPTER 8. RUNGE-KUTTA METHODS

It is easy to see that with this definition, Euler’s method and trapezoidal rule are Runge-Kutta
methods. For example Euler’s method can be put into the form (8.1b)-(8.1a) with s = 1, b1 = 1,
a11 = 0. Trapezoidal rule has s = 1, b1 = b2 = 1/2, a11 = a12 = 0, a21 = a22 = 1/2.

Each Runge-Kutta method generates an approximation of the flow map. To see this, note
that from the formula (8.1a) it follows that each Yi has a functional dependence on yn and h,
Yi = Yi(yn, h). Thus the Runge-Kutta method can be viewed as

yn+1 = yn + h
s∑

i=1

bif(Yi(yn, h)),

and the method generates a discrete flow-map approximation

Ψh(y) = y + h
s∑

i=1

bif(Yi(y, h)).

8.1.1 Some Runge-Kutta methods

Let s = 2 and choose c1 = 0 and c2 = 2/3, b1 = 1/4, b2 = 3/4. We need Y1 ≈ y(tn) and
Y2 ≈ Y (tn + 2

3h). The latter can be obtained using an Euler step:

Y1 = yn,

Y2 = yn +
2
3
hf(Y1),

yn+1 = yn + h

(
1
4
f(Y1) +

3
4
f(Y2)

)
. (8.2)

The vectors Y1 and Y2 are called stage vectors. They are intermediate values computed within
each step and discarded at the end of the step. Another example with s = 2 is the popular method
due to Heun:

Y1 = yn,

Y2 = yn + hf(Y1),

yn+1 = yn +
h

2
(f(Y1) + f(Y2)). (8.3)

The most famous Runge-Kutta method has four stages (this method is sometimes referred to
as the Runge-Kutta method):

Y1 = yn,

Y2 = yn +
h

2
f(Y1),

Y3 = yn +
h

2
f(Y2),

Y4 = yn + hf(Y3),

yn+1 = yn + h

(
1
6
f(Y1) +

1
3
f(Y2) +

1
3
f(Y3) +

1
6
f(Y4)

)
. (8.4)

The formulas above are often represented schematically in a Butcher table:

c A

bT
=

c1 a11 · · · a1s

...
...

...
cs as1 · · · ass

b1 · · · bs



8.1. THE FAMILY OF RUNGE-KUTTA METHODS 43

where A = (aij), b = (bi) and c = (ci). For instance, the methods (8.2), (8.3) and (8.4) listed in
this section are represented by

0
2/3 2/3

1/4 3/4
,

0
1/2 1/2

0 1
,

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

It is standard practice to leave the trailing zero elements in the matrix A blank in the Butcher
table.

The previous examples of this subsection are all explicit methods. A method for which the
matrix A = (aij) is strictly lower triangular is explicit. A simple example of an implicit RK
method is the implicit midpoint rule

1/2 1/2
1

, Y1 = yn +
h

2
f(Y1), yn+1 = yn + hf(Y1)

which can also be written in simplified form as (just substitute Y1 = (yn+1 + yn)/2 in the above
wherever it occurs):

yn+1 = yn + hf(
yn+1 + yn

2
) (8.5)

The class of collocation methods from the previous section are a subset of the class of Runge-
Kutta methods.

8.1.2 Local accuracy of Runge-Kutta methods

We will now investigate the accuracy of the methods introduced above in terms of their approxi-
mation of the numerical solution over one timestep.

To do so, we need to work with higher order derivatives of the function f(y) : Rd → Rd. We
will denote by f ′ the Jacobian matrix

f ′ = (
∂fi

∂yj
),

which can be seen as an linear operator: Rd → Rd.
The second derivative

f ′′ = (
∂2fi

∂yj∂yk
)

is a bilinear operator. We denote its contraction by

f ′′(a, b) =
∑
j,k

∂2fi

∂yj∂yk
ajbk, a, b ∈ Rd.

This contraction is symmetric by the equivalence of mixed partial derivatives, so the order of the
arguments a and b is irrelevant. The third derivative is similarly trilinear and symmetric in all
three arguments, denoted f ′′′(·, ·, ·).

In general, we cannot have an exact expression for le(y;h), but we can approximate this by
computing its Taylor series in powers of h. For the continuous dynamics (i.e. the exact solution
of (1.13)) we have the Taylor series expansion

y(t + h) = y(t) + hy′(t) +
1
2
h2y′′(t) +

1
6
h3y′′′(t) +O(h4).

The derivatives can be related directly to the solution itself by using the differential equation

y′(t) = f(y(t))
y′′(t) = f ′(y(t))y′(t)
y′′′(t) = f ′′(y(t))(y′(t), y′(t)) + f ′(y(t))y′′(t)

...



44 CHAPTER 8. RUNGE-KUTTA METHODS

Then we can recursively use the differential equation again to obtain

y′ = f,

y′′ = f ′f,

y′′′ = f ′′(f, f) + f ′f ′f,

...

where we have dropped the arguments of the various expressions. In all cases, y and its derivatives
are assumed to be evaluated at t and f and its derivatives at y.

Alternatively, we can write

Φh(y) = y + hf +
h2

2
f ′f +

h3

6
[f ′′(f, f) + f ′ff ] +O(h4) (8.6)

The same procedure can be carried out for the Runge-Kutta method itself. For example, for
Euler’s method, we have

Ψh(y) = y + hf(y)

(that is it!). This means that the discrete and continuous series match to O(h2) and the local
error expansion can be written

le(y, h) =
h2

2
f ′f +O(h3).

again, we have dropped the argument y of f for notational compactness.
For trapezoidal rule, and other implicit schemes, the derivatives need to be computed by

implicit differentiation. For simplicity, with y fixed, write z = z(h) = Ψh(y). Then z(h) must
satisfy the implicit relation

z = y +
h

2
(f(y) + f(z))

Observe that z(0) = y. Next we differentiate the expression for z,

z′ = dz/dh =
1
2

(f(y) + f(z)) +
h

2
f ′(z)z′, (8.7)

(Note that z does not satisfy the differential equation, so we cannot replace z′ here by f(z)!) For
h = 0, the last term of (8.7) vanishes and we have

z′(0) = f(y).

Differentiate (8.7) once more with respect to h to obtain

z′′ =
1
2
f ′(z)z′ +

1
2
f ′(z)z′ +

h

2
(f ′′(z)(z′, z′) + f ′(z)z′′), (8.8)

for h = 0, the last term of (8.8) drops out and we have

z′′(0) = f ′(z(0))z′(0) = f ′(y)f(y).

Using these expressions, we may write the first few terms of the Taylor series in h of Ψh(y):

Ψh(y) = z(h) = z(0) + hz′(0) +
h2

2
z′′(0) + . . . = y + hf +

h2

2
f ′f + . . . (8.9)

Comparing this with the expansion for the exact solution (8.6) we see that the first few terms are
identical. Thus the local error vanishes to at least O(h3). To get the next term in the local error
expansion, we differentiate (8.8):

z′′′ = f ′′(z)(z′, z′) + f ′(z)z′′ + (1/2) (f ′′(z)(z′, z′) + f ′(z)z′′) +
h

2
(f ′′′(z)(z′, z′, z′) + 2f ′′(z)(z′, z′′) + f ′′(z)(z′, z′′) + f ′(z)z′′′) ,



8.1. THE FAMILY OF RUNGE-KUTTA METHODS 45

which evaluates to
z′′′(0) = (3/2) (f ′′(f, f) + f ′f ′f) ,

which means that the expansions (8.9) and (8.6) do not match in the term of 3rd order: for
trapezoidal rule, we have

le(y, h) = − 1
12

(f ′′(f, f) + f ′f ′f) h3 +O(h4).

8.1.3 Order conditions for Runge-Kutta methods

The methods discussed above were relatively simple in that they could be written without using
the Runge-Kutta formalism. Nonetheless the same procedure can be used to determine order
conditions in the general case; we just need to compute the derivatives of Ψh(y) = z(h). To do
this we write the general RK method in the following form:

z(h) = y + h
s∑

i=1

biFi,

where

Fi = f(Yi), (8.10)

Yi = y + h
s∑

j=1

aijFj . (8.11)

Now the calculations required are straightforward, viewing Fi, Yi, and z as functions of h with y
assumed fixed (i.e. the prime denotes differentiation with respect to h):

z′ =
s∑

i=1

biFi + h
s∑

i=1

biF
′
i .

which immediately tells us that

z′(0) =
s∑

i=1

biFi(0) =
s∑

i=1

bif(Yi(0)) = (
s∑

i=1

bi)f(y).

For the method to have order p = 1, we must have
s∑

i=1

bi = 1. (8.12)

This is the first of what are termed the “order conditions”. Any RK method satisfying (8.12) is
consistent, and by Theorem 6.2.1, convergent independent of the aij . To get the next one, we
compute the second derivative of z:

z′′ =
s∑

i=1

biF
′
i +

s∑
i=1

biF
′
i + h

s∑
i=1

biF
′′
i (8.13)

= 2
s∑

i=1

biF
′
i + h

s∑
i=1

biF
′′
i .

(8.14)

From (8.10)-(8.11) we obtain

F ′
i = f ′(Yi)Y ′

i ,

Y ′
i =

s∑
j=1

aijFj + h
s∑

j=1

aijF
′
j .



46 CHAPTER 8. RUNGE-KUTTA METHODS

At h = 0, we have

Y ′
i (0) =

s∑
j=1

aijFj(0) =
s∑

j=1

aijf(y)

Let ci =
∑s

j=1 aij , so Y ′
i (0) = cif(y). Then

F ′
i (0) = cif

′(y)f(y)

and

z′′(0) = 2(
s∑

i=1

bici)f ′(y)f(y).

For this term to cancel with y′′, we must have

s∑
i=1

bici =
1
2
. (8.15)

For p = 2, we must therefore have both conditions (8.12),(8.15).
To continue this process, we would need to differentiate (8.13). This is a bit tedious. To make

it a little simpler, we will not bother to compute terms which vanish when we evaluate at h = 0:

z′′′ = 3
s∑

i=1

biF
′′
i + h(. . .).

Then
F ′′

i = f ′′(Yi)(Y ′
i , Y ′

i ) + f ′(Yi)Y ′′
i

Y ′′
i = 2

s∑
j=1

aijF
′
j + h(. . .).

Now we evaluate everything at h = 0 and find

z′′′(0) = 3
s∑

i=1

bi(f ′′(Yi(0))(Y ′
i (0), Y ′

i (0)) + f ′(Yi(0))Y ′′
i (0))

Recall from the earlier work that Yi(0) = y, Y ′
i (0) = cif(y), and we also have

Y ′′
i = 2

s∑
j=1

aijF
′
j(0) = 2

s∑
j=1

aijcjf
′(y)f(y)

so finally,

z′′′(0) = 3
s∑

i=1

bi

c2
i f

′′(y)(f(y), f(y)) + 2(
s∑

j=1

aijcj)f ′(y)f ′(y)f(y)


which means that, for the method to have order p = 3, we must have two more conditions satisfied
(in addition to (8.12) and (8.15)):

s∑
i=1

bic
2
i =

1
3
,

s∑
i=1

s∑
j=1

biaijcj =
1
6
.

The number of order conditions explodes with increasing order. For order 4, there are four
additional conditions or 8 in all, there are 17 at order 5, 37 at order 6, 85 at order 7, and 200 at
order 8. The task of enumerating the conditions can be greatly simplified by using techniques from
graph theory (“Butcher trees,” the ingenious invention of one J. C. Butcher from New Zealand who
has pioneered much of the study of Runge-Kutta methods). In order to actually find methods,



8.2. EXERCISES 47

it is not enough to work out the order conditions: we need to identify sets of coefficients, aij

and bi which allow us to exactly satisfy a large system of multivariate polynomials. Butcher also
developed a set of simplifying conditions, which greatly ease the development of higher order
methods.

There exist explicit methods of order p = s for up to four stages (s ≤ 4). It can be shown
that the conditions for order 5 cannot be solved with only 5 stages under the restriction that the
method be explicit. (aij = 0, j ≥ i). Obviously, from the previous chapter, it is clear that an
implicit s-stage method can reach the maximum order p = 2s.

8.2 Exercises

1. Compute the leading terms of the local error expansions for the methods (8.2) and (8.3).

2. Show that the “traditional Runge-Kutta” method (8.4) satisfies all the conditions mentioned
for order 3, and, additionally, the four equations

s∑
i=1

bic
3
i =

1
4
, (8.16)

s∑
i=1

s∑
j=1

biciaijcj =
1
8
, (8.17)

s∑
i=1

s∑
j=1

biaijc
2
j =

1
12

, (8.18)

s∑
i=1

s∑
j=1

s∑
k=1

biaijajkck =
1
24

. (8.19)

which are the order 4 conditions.

3. Determine the order of the two-stage Gauss collocation method from Chapter 7.

4. Choose a Runge-Kutta method of order at least two and demonstrate the order by integrating
the (nonlinear, nonscalar, smooth) initial value problem of your choice over a fixed interval
with successively smaller step sizes until the predicted convergence rate is observed. (In other
words, choose an interval [t0, t0 +T ] and a number of time steps Nk = 2kN0, k = 0, 1, . . . for
some N0 > 0. For each k, choose a time step hk = T/Nk and compute the solution over Nk

time steps. Denote the solution at the end of the interval by ȳNk . Approximate the error in
the kth solution by comparing it with the (k + 1)th, i.e. errk = ‖ȳNk+1 − ȳNk‖. Continue in
this way until you observe the predicted convergence rate.)



48 CHAPTER 8. RUNGE-KUTTA METHODS


	Runge-Kutta Methods 
	The Family of Runge-Kutta Methods
	Some Runge-Kutta methods
	Local accuracy of Runge-Kutta methods
	Order conditions for Runge-Kutta methods 

	Exercises


