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PREFACE TO THE COMMENTARY

As remarked in the preface to the translation,
the commentary has been organized in chapters corres-
ponding to those of the original text. The chapters
are subdivided into titled sections numbered serially
independent of the chapters. The sections treat of
successive portions of the text, references being
made by page and line numbers of the printed Arabic
text. The same pages and lines are indicated along
the margins of the translation, so that the reader
i may have quick access to cognate passages in text,

translation, and commentary. References to the
commentary in the indices are given by section num-
bers in italics, following any page and line refe-
rences to the printed text.
Each entry in the bibliography (beginning on
; page 18l of this volume) commences with an abbrevia-
ted title, the full title following it. In the body
of the commentary, references to the bibliography
cite the short title, in italies.
! Paragraphs enclosed within parentheses and
having the initials D.P. appended have been contributed
! by Professor David Pingree.
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SYMBOLS AND CONVENTIONS

For easy reference, symbols used consistently
in the commentary are displayed below, arranged more
or less alphabetically. Where applicable and convenient
they are the standard modern astronomical symbols.

The medieval trigonometrical functions are, as
is customary, distinguished from their modern counter-
parts by capital initals, thus

Sin x = R sin x,

where R is the radius of the defining circle, usually
R = 60. Where two or more such parameters are present
in the same discussion, one may be shown as a subscript
to avoid ambiguity, thus
Sinp x = p sin x.

As is usual, sexagesimals are transcribed in
ordinary numerals with sexagesimal digits separated
by commas. The semicolon is used as a "sexagesimal
point".

All rules and expressions in the original Arabic
(and in the English translation) are written out in
words. In putting them into modern symbols we have
frequently found it convenient to set up parenthetical
equations within equations, say,

A = (Sin(B=C)).

This usage may appear strange, but it is an accurate
reflection of the text.

rising time in sphera recta of the i-th zodiacal
sign (in Section 103).

a;

az azimuth.

a right ascension.



~" 3 > >t >Q e m o

xvi

oblique ascension for a locality of latitude $.
rising time of the i-th zodiacal sign.
celestial latitude.

bar (vinculum) usually denotes a complement, e.g.
8 = 90° - 8, but it is sometimes used with the
squares of line segments, say AB2. Occasionally,
as in Section 135, the bar denotes a mean value.

half the arc of daylight; however, in Section 71
it denotes length of daylight; as a subscript it
stands for "desired"; in Sections 62 and 63 it is
used for the diameter of a sphere.

solar declination.
the difference operator.

a dot over a variable (as & in Section 84) indi-
cates its derivative with respect to time.

equation of (half) daylight.

inclination of the ecliptic.

terrestrial latitude.

gnomon length; as a subscript, stands for "given".
altitude, the horizon coordinate.

length of daylight in day-minutes.

terrestrial longitude.

celestial longitude.

(as a subicript) noon.

parallag'™

parentheses in the translation indicate material
not in the text but added.for clarity.

the prime sign, used with a decimal integer means
sixtieths, e.g. 150' = 150/60 = 2;30.

the radius of the defining circle for the medieval
trigonometric functions. Usually R = 60.

hour angle.

Sy

vers

radius of the day circle.

shadow length; when used as a subscript it stands
for sun.

noon shadow.
equinoctial noon shadow.
time.

the versed sine, vers x = 1 - cos x, whence
Vers x = R vers x.

rising amplitude; horizon distance from the
east point to the sun's rising point. Some-
times called ortive amplitude,

xvii



THE INTRODUCTION

1. Al-Biruni's Dedication and Invocation (3:1 - 4:11)

The book begins with an extraordinarily long
and involved sentence in which the author states that
he will not undertake a philosophical discussion of
the nature of light. He mentions the intromission versus
emission controversy, already ancient in his day, but
still then being argued. (See, e.g., Ronchi, p.13,
and Lindberg, 2, p.478.) But he does not take sides in
the matter. He will confine himself, he says, to a
negative aspect of light — shadows, and to their
mathematical implications.

Birtini's great contemporary, Ibn al-Haytham,

‘also wrote a treatise on shadows, and a remark in it

(Sabra p.195) implies that there existed a distinct
category of works on this subject. The only additional
example known to us is the book by Ibrahim b. Sinan
mentioned in Section 11 below. BIirtinI and Ibn
al-Haytham seem to have operated in ignorance of

each other.

The Shaykh Musafir, to whom the Shadows is
dedicated, was a leading citizen of NIshdpir in
Khurdsan. His locality was fixed by Professor Thsan
Abbds, who points out that another prominent Nish3piri,
the prolific scholar al-Tha<dlibI (961-1038), dedicated
to Musdfir one of his books, the "Khags al-Khass"
(pp.2, 178, 186, 191). Birini dedicated to the Shaykh
two other works, a commentary on the astronomy of
al-Farghani (Boilot RG 14), and a discussion on an
astrological technique (RG 16). We note that in the
dedicatory passage here our author connects Musdfir
with the determination of the times of the Muslim
ritual prayers, and with astronomical instruments for
finding them. Since some of these times are defined



Page 2 Section 1

in terms of shadows, a good part of the book which
follows is devoted to these topics.

The passage closes by invoking divine blessing
upon the author and his patron. There follows in
4:12 - 835:13 a list of the chapter headings.

2. Al-BIrmi's Preface (s35:14 - s38:12)

Having announced the subject of the treatise,
t@e author next states that the understanding reader
will need to be conversant with cosmology and with
mathematics. The rest of the section refutes the
idea that the material is contrary to religion, showing
that, on the contrary, its cultivation is necessary for
the proper observance of the precepts of Islam.

Of the four poets who receive disparaging
mention in s36:13, one, Ab{ Nuwds, (f.800) is well-
known, indeed he is by some considered the greatest
of the Arab poets. But both his life and his writings
were highly licentious, which is doubtless the reason
for his being mentioned by Birtni. (See Wagner, p.10;
Nicholson, p.203.) ’

. The same can be said of the minor poet Ibn
Hajjaj, who died in 1001 in Baghdad. An anthology of
his poems, although partially expurgated, was regarded
by the police of ?aghdad as too obscene to be read in
;?iag§?sence of minors (Gar, vol.l, p.8l1, suppl. vol.,

“Abd al-Saldm ibn Raghban, known as Dik
al-Jinn, "The Demon's Rooster", was born in Homs in
849, He championed the Syrians against the Arabs.
Perhaps BIrunI held it against him that he was a Shi<a,
as was Ibn Hajjaj (Gar, vol.l, p.85; suppl. vol.
p.137). ’

_ The fourth Abbasid poet, Abu Hukayma, Rashid
b. Ishbdq, is mentioned by Yagut (vol.ll, p.122), who
cites a poem of his composed during the last days of
the Caliph al-Ma'min, hence c.833.

Five ritual prayers per day are incumbent upon
every Muslim. The times during which they may be
prayed are determined by astronomical considerations.
These matters are discussed in great detail in Chapters
25 and 26 of this book.

Section 2 Page 3

Furthermore, the worshipper is enjoined to face
toward Mecca when praying. The determination of this
direction of prayer, the gibla, for an arbitrary point
on the earth's surface is a problem in mathematical
geography which is solved by BirunI in various ways in
the Tahd?d and the Canon, and by many other Muslim
scientists.

Daylight fasting during one month of the year
is also required of Muslims. The calendar is lunar,
and the beginning of each month is defined as the first
evening when the new crescent moon is actually sighted
above the western horizon by some competent observer.
The problem of determining whether or not (assuming
clear weather) the new moon will be visible from a
given place and on a given evening, and if so where,
is a matter of great complexity. It also was worked
over very extensively by the astronomers of medieval
Islam. BirUnI's point is that, although the matter
can be settled canonically only by an actual sighting,
not computations, nevertheless prior calculations can
assist the observer to the extent of saying beforehand
whether or not the sighting ¥s possible, and if it is,
precisely where in the heavens the crescent will appear.
Some of the authors prescribe the use of a sighting
tube mounted like a telescope to indicate a celestial
locality of predetermined horizon coordinates. This
may be the abgdr (from bagara, to see) named in the
text at s38:3. (Cf. Batt3ni, z1j, vol.3, p.137, and
sanjari zij, £. 90v.) The term is unfamiliar to us.

For the subjects mentioned above it is easy to
cast science and mathematics in the role of hand-
maidens to the faith. The rest is rather farfetched.
Almsgiving is indeed one of the five pillars of Islam,
and presumably the almsgiver is in need of arithmetic
to calculate properly his income and the tithe thereof.
Carrying the notion a step farther, he may have no
income unless he engages in commerce, hence the need
for metrology. The rules governing inheritance can be
regarded as a part of Muslim law, and it is true that
there are problems involving bequests in the algebra
of al-Khwarizmi (pp.86-174). Finally, the notion ‘that
the scientist be supported in order that he create
engines to be used in the holy war is a proposition
which has become genuinely dangerous only in modern
times.



CHAPTER I

ON THE PRIMF. MOTION

3. Importance of the Daily Rotation (s38:13 - s41:1)

This short chapter simply points out three
consequences of (in modern terms) the earth's rotation,
(in the medieval view) the turning of the celestial
sphere about the north pole from east to west above
the horizon.

For one thing, this prime motion supplies a
method for determining the cardinal directions at any
point on the earth's surface. To fix the meridian,
s%mply bisect the arcs on the horizon bounded by the
rising point and the setting point of any fixed star
(st49:2).

. Secondly, the motion about the celestial pole
is useful for establishing the positions of localities
on the terrestrial sphere (39:8). This subject is
exhaustively discussed by BIrini in another work, the
Tahdid.

And thirdly, the prime motion is the source of
units of time. Here BiriinI draws an analogy between
space and time, pointing out that uniform motion gives
" the measure of magnitudes in both (s40:7). Although
velocity is in principle unbounded (s40:12), the fast-
_est of the celestial motions is the prime motion.

Indeed the daily rotation is much faster than the
proper motion in the celestial sphere of any of the
planets. In the Aristotelian view these lesser dis-
pla?ements have been communicated successively to the
various celestial objects from the prime motion.

CHAPTER 2
QN LIGHT AND DARKNESS

4, Definitions and Nomenclature (s4l:2 - s45:7)

This chapter discusses the nature of shade and
shadow, the Arabic words used to denote them, and
related optical matters. The author states that any
opaque object intercepts the rectilinear rays of the
sun. If the object is a plane mirror, it will not
itself be perceived, but a reflected image. If the
object's surface is not highly polished it will be
seen, illuminated by the sunlight. In either case
the regions behind it, shielded from the rays, consti~
tute the shadow. A distinction is made between this
and pitch darkness (su42:1),

There follows a discussion of two Arabic words
commonly used, zill and fay', the former being the
word for shadow consistently employed in the book
itself. Various opinions are cited, one to the effect
that the term fay' is restricted to shadows cast in the
afternoon, when thesun is declining and the shadow
lengthening, zill being the forenoon shadow. But
BirtinI then cites from the literature four examples
to the contrary. Two of them, at s42:12 and si2:14,
have zi1l for the afternoon shadow; another, at sil:l,
calls the morning shadow a fay'’. A fourth example
(su4:7) uses zill for both morning and afternoon.

The couplet of al-ShamI (sul:11) has a shadow
attaining its maximum length, then decreasing. But
the shadow cast in the sunlight by a vertical gnomon
on a horizontal plane does the opposite. Its maximum
is at sunrise, whence its length decreases to a minimum
at noon, thereafter increasing. BiIruniI suggests that
the shadow on a meridian-oriented wall and the earth's
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shadow in a lunar eclipse perform as described in the
poem. But he hardly presents these as serious explana-
tions of what the poet had in mind.

Of the individuals mentioned in the text,
Khuwaylid b. Khalid al-QatTl, Abu Dhu‘tayb (43:11)
£1.650, was the best known poet of the Hudhayl, an
Arab tribe related to the Quraysh, the tribe of the
Prophet. The poetry of the several tribes was
collected in separate anthologies. BIrunI may have
obtained the couplet quoted in s42:7 from the Hudhayl
anthology. (See Nicholson, p.xix, GAL, vol.l, p.4l;
suppl. vol.l, p.42.)

The AbU Layld named at s42:8 was evidently one
of the early commentators on pre-Islamic and early
Islamic Arabic poetry. He is mentioned once in the
commentary on Labid's poetry. (Sharh dIwan Labid,
Kuwait, 1962, p.133; supplied by I. Abbas.)

The poet al-Khali®al-Shami (s44:10-17) is
mentioned in Tha%alibi, Yatima (vol.l, p.287) as
being a contemporary of the poet al-Buhturi (f1.860),
and as being in Aleppo as an 0ld man.

Ru'ba (s42:18), d.c. 760, was a merchant who
travelled between Khuras3n and Bagra, but he was of
Arab origin. His poetry was in the ancient rajaz meter
(GAL, vol.l1l, p.60).

Ghaylan b. ©Ugba, known as Dhi al-Rumma (s43:13),
d.c. 730, was the last of the Arab poets to write in
the archaic style of the pre-Islamic bedouin (GAL, vol.l,
p.58).

Al-Fadl b. Qudama al-“jalI, Abd al-Najm
(s43:15) d.c. 750, was another rajaz poet (GAL, vol.l,
p.60).

The DIwdn al-adab (s4l:6) was written by the
Khurdsanl grammarian Ab@i Ibrhim, Ishdq ibn Ibrahim
al-Fardbi, d. 961 (GAL, vol.l, p.128).

5. Shadows in the Hereafter and in the Sky (s45:8 - s51:4)

The author next pursues the question of shadows
into the afterlife. Since there time has no meaning,
there is no need for the sun, which is simultaneously the
best indicator of time and the prime source of shadows.
Thus heaven, presumably, is comfortably shady throughout.
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There remains hell, whose shade is smoke, a torment
added to the fire. We can only conjecture why this
material has been introduced into a scientific work.
The passage is buttressed with quotations from the
Qur'an. Perhaps this literary excursus is to sustain
the note of piety introduced in the preface.

At si7:9 the author moves on to consider
celestial matters which are not articles of faith, the
conical shadows cast by the earth and the moon in the
light of the sun. Here also there is a certain amount
of Qur'anic exegesis brought on by a discussion of why
night is not called a shadow.

AbU Muslim Muhammad b. Bahr al-IsfahanI (s46:19)
was a theologian; he is listed in the Fihrist (p. 137).

Mansur b. Talba was the last ruler of a semi-
independent dynasty founded by an Abbasid governor of
Khurdsan. In the Tahdid (cf. Comm., p.41) BIrinI names
a book on astronomy by Mangir, and cites a passage from
it. We are unable to make anything of the remark (at
s49:14) about the size of terrestrial mountains.

The remarks at s50:6 concerning the relative
sizes and distances of the moon, sun, and earth are
consonant with the accepted opinions of Ptolemy and the
medieval astronomers. In Almagest V, 16 the ratio
between the volumes of the earth and the moon is
39%:1 = U0. That between the volumes of the sun and
the earth is 66443 : 39 =169, also slightly off from
Biriini's 166. The ratio of the earth-sun distance to
the maximum earth-moon distance is 1210 : 64;10=18.9 » 19,

It is curious that BIriinI should mention (s50:17)
a shadow cast by the earth in the moonlight. The earth
being larger than the moon, the vertex of the shadow cone
is indeed between the moon and the earth, but this vertex
is not part of the shadow.

Of interest also is the statement (s51:1, s55:19)
that there were different opinions as to whether or not
the planets and the fixed stars are self-luminous.

6. Refraction and Reflection, al-SarakhsI and Aristotle
(s51:5 ~ s55:18)

In this passage a number of topics are touched
upon briefly and vaguely. The author alludes again (in



Page 8 Section 6

s51:15) to the emission controversy, naming Galen and
Aristotle as protagonists. He next mentions (in s52:1)
optical refraction, the bending of the rectilinear ray
when it passes from one medium into a denser one.
Reverting to the subject of reflection, for a concave
spherical mirror he locates the approximate focus, the
burning point, half-way between the center of the sphere
and its surface (s53:17).

There is a discussion of why objects in shade
are partially lighted (s54:3), which leads to a criticism
of one Ahmad b. al-Tayyib al-SarakhsI. This individual
was born in Khurdsan, c. 835, became a disciple of the
philosopher al-KindI, tutor of the prince al-Mu<tadid,
and a boon companion of the latter when he became caliph.
However, in 899 he was executed by al-Muc¢tadid, probably
for heresy. He wrote voluminously on religion, philo-
sophy, politics, science, geography, history, and astro-
logy, but only fragments of his works are extant. (See
Rosenthal and Moosa.) This being the case, it is
difficult to know what to make of his blackening of
the air (s54:16) at high altitudes. We find nothing of
this sort in Aristotles' De Sensu. Mount Demavand is
indeed a very high peak, clearly visible from Ray (near
modern Tehran), where BIrunI spent some time (DSB,
vol.2, p.148). 1In the Meteorologica 1, 13 (p.37)
Aristotle mentions the Caucasus, its great height, and
the illumination of its peak before sunrise (s55:17).
However there is nothing about the stillness of the air
there, or its blackness, or the ashes of sacrifices.
Perhaps the repeated "he" in our passage is frequently
a reference to al-SarakhsI rather than Aristotle.

The Arabic version of the Meteorologica is by
no means identical with the received Greek text, but
the passage concerning the Caucasus is essentially the
same (Petraitis, p.45). The Arabic version of De Sensu
is not extant (Peters, p.u45).

7. The Freezing of Hot Water (s55:19 - s57:19)

Of several subjects touched on this section, the
greatest interest attaches to that which illustrates
Biruni's readiness to experiment. The notion that hot
water freezes more quickly than cold water is expressed

i
i
I
i
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by Aristotle in the Meteorologica 1, 12 (p.87). Abi
Rayhan demonstrated the contrary by two trials of a
pair of samples each, in the second experiment making
the temperature of the hot water higher than in the
first.

With regard to habitable regions on the terres-
trial globe (s56:11), Aristotle was indeed in error
in claiming (in Meteorologica 11,5) that the tropical
regions are uninhabitable, although he admitted the
south temperate zone to be habitable.

The treatise on burning mentioned in s56:14
is to be added to the long list of BIrtni's lost
works. We find no other mention of it in the literature.



CHAPTER 3

VARIATIONS IN SHADOWS

8. Altitude and Azimuth (s58:3 - s60:19)

The scientific content of this chapter is very
slight. It commences with definitions; these merge
into matters of usage and nomenclature, thence into
fanciful religious and literary allusions.

The two horizon coordinates, altitude and
azimuth, are first defined. It is remarked that when
actual celestial objects move in the sky both coordi-
nates vary simultaneously (s58:11), but that concep-
tually the two are independent. Variation of the one
without the other, and conversely, produces the inter-
secting families of coordinate circles on the celestial
sphere (s58:16). As with us, altitude is normally
measured up from the horizon, the term depression
(inhitat) being reserved for vertical angular distances
below the horizon (s59:8).

Azimuths are horizontal angles measured from
any one of the four cardinal directions. If a person
stands facing the north his right side is to the east
and his left to the west (s59:18). Aristotle's
association of right and left with the cardinal direc-
tions is found in De caelo II, 2. The peculiar
reference to the animal, doubtless stems from the
same passage in Aristotle. By contrast, an eastward-
facing person is implicit in the two Arabic words,
yamin for both south and right(hand), and shamal for
both north and left (s59:19).

It is true that in medieval Islamic astronomy
the term khatt al-istiwa' is generally reserved for
the terrestrial equator (s60:14).
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9. Literawy Allusions -~ Shadows and Prostrations
(s61:1 - 8:19)

As the sun crosses the meridian it attains its
maximum altitude and thereafter declines, whence the
term '"line of declining" (s60:18). The time of decline
is the accepted period for the Muslim noon prayer
(s61:5). This topic is discussed in detail later, in
Chapter 25. At the instant of culmination the sun
stops rising. The notion of stopping seems to have
been extended to the claim that at noon the sun actually
desists from motion, thence to the idea of fasting
(s61:6). Poetic quotations are adduced bv way of
illustration (s61:8). Concerning Dhii al-Rumma, see
Section 4 above. Next BIrini remarks that although
at noon the rate of change of the altitude vanishes,
the sun's azimuth continues to change at this time
(s61:16-s62:1). He also reverts to a difference already
noted (in Section 4) between the meaning of zill and fay'
(s62:4). Then ensues a discussion citing various terms
used for shadows cast in moonlight (s62:9 - 17).

Much is made of the analogy whereby the object
casting a shadow is likened to a worshiper prostrating
himself in abasement (s62:18 - 8:10).

The name of the poet quoted in 7:5 is transcribec
in the GAL (vol.1l, p.240; suppl. vol.l, p.425) as Abd
al-Faraj °All b. al-Husayn b. Hind@d (d. 1019). He lived
in Nishdplr and was primarily a philosopher.

The writer Ahmad b. Muhammad b. Thawaba (7:7,
f1. 200) was of an originally Christian family. The
quotation is from his lampoon of the Abbasid wazir $3<id
b. Makhlad, also a converted Christian (Fihrist, p.143;
Yagit, vol.4, pp.luu-174.)

The AbT al-Fath quoted in 7:10 was an eminent
scholar from Bust (modern Qalca Bist in Afghanistan) who
was for a long time chief secretary in the Ghaznavid
bureaucracy (Bosworth, p.42; Tha©alibi, pp.viii, 10,
134). He is mentioned elsewhere by Biriini (e.g. India,
transl., vol.2, p.270). Abu Rayhan also composed a
poem in praise of al-Busti, translated in Aufs&tze, vol.Z
p.480.

As to the curious legend about the Christian
gibla (direction of prayer) retailed in 7:16 - 8:6, therc
is no mention of a shadow in connection with Mary
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Magdalene's visit to the tomb in the accounts given by
the four Gospels. John 20:14% has, "When she had thus
said, she turned herself back, and beholdeth Jesus
standing,..." All the versions agree that the time
was very early in the morning. Of course the shadow
at dawn extends due west on a morning near the equinox.

Whatever the source of the story, Abl Rayhan
makes use of it to indulge in a little anti-Trinitarian
polemic. The inference seems to be that since the
shadow did not prostrate itself to Jesus, he himself
had a master, i. e.,he is not God. The eastward q1bla
of the Christians is alluded to by Birtni in Tahdid
210:16.

The theme of monotheism is the reason for the
mention of Abraham at 8:6. In Qur'an vi, 74-82 the
patriarch is persuaded of God's oneness by watching the
risings and settings of the sun, moon, and planets.

Abl al-Darda' (8:7) was one of the Companions
of the Prophet during his lifetime (Nicholson, p.225).

The title "The Shadow of God upon the Earth"
was a common honorific of Muslim rulers. It is to this
that BIrini refers in 8:11. Abd Bakr the Veracious
(al-Siddig, 8:16) was the first of the four orthodox
caliphs.

CHAPTFR 4

CURVES DRAWN BY SHADOW ENDS

10. Conics Traced by the Sun's Shadow (9:3 - 10:11)

If the sun is assumed to be fixed in the celes-
tial sphere, then the daily rotation of the latter will
cause it to trace out a circle in the course of a day.
But if the sun's proper motion is taken into considera-
tion, then because of its variation in declination, its
trace will be a slowly rising or falling spiral (9:8).
Neglecting the proper motion, the line joining the sun
to a gnomon end point will sweep out the lateral surface
of a cone of revolution each day. The lower nappe of
the cone is the shadow of the gnomon's end, and the
vertex angle of the cone is §. Any intersection of the
shadow cone with a horizon w1ll be a conic section.

At an equinox, §=90°, §=0°, and the cone
flattens out into a plane. On any such day the trace
of the shadow end point will be a straight line, regard-
less of the value of ¢. In particular it is not neces-
sary, as Ab{ Rayhan claims, that ¢=0° (9:15). He is
right, however, in saying that then the a:is of the cone
is parallel to the horizon.

The conic will be a parabola if the angle between
the cutting plane and the axis of the cone equals the
cone's vertex angle. This requires that 8=¢ , or 8=§.
Since max § = ¢, the least latitude at which this can
occur will be when ¢=€ (cf.10:15). _

The trace will be an ellipse when ¢>8, and this
will happen in any locality having a twenty-four hour
day, the arctic regions (10:8). Whenever ¢<8 the section
is an hyperbola.
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11. A Criticism of Thabit (10:12 - 11:12)

Thabit b. Qurra (d. 901) originated in Harran in
Syria, and was a member of the sect known as the Sabians
centered there (cf. Section 128 below). An intermediary
between the Hellenistic and the Islamic worlds, he not
only made translations from Greek into Arabic, but made
solid original scientific contributions of his own. The
list of his known books is extensive but the one named
in 10:12 is not among them. (see GAL, vol.l, p.217;
suppl. vol.l, p.384).

His grandson Ibrahim b. Sindn (d. 946) was also
a scientist. A book of his, Aya Sofya (Istanbul) MS
4832(15) is about shadows and may be the one mentioned
in 10:14, although the titles are not identical (GaL,
vol.l, p.218; suppl. vol.l, p.381).

The apparent diameter of the sun subtends an
angle of about half a degree. Hence, regardless of the
size of an aperture through which the sun is shining,
the beam will have a conical rather than a cylindrical
shape, as Ab{ Rayh@n argues. Perhaps Thabit disregarded
the fact that all points on the solar disk emit rays in
many directions. In particular, the point on the sun's
limb at A (Figure 1) has a ray passing through the
opposite edge of the hole at D, hence the conical shape.
Or perhaps Thabit thought the vertex angle was sufficient-
ly small to be disregarded.

CHAPTER 5

DISTORTIONS OF SHADOWS

12, shadows with Indistinct Edges (12:3 - 13:7)

It is easily verifiable that shadows cast in,
say bright sunlight, are sharply defined only when the
shadow-casting object is close to the field upon which
the shadow falls. As the distance between the two
increases, the edges of the shadow become blurred and
indistinct. There is no need, however to assume that
this phenomenon is caused by reflections from airborne
dust particles (12:5). It is due to the fact that
most sources of light subtend an appreciable angle
from stations at which shadows are cast.

Consider a thin opaque body with a pair of
intersecting rectilinear edges aBC as shown in Figure
Cl. Assume that it is above the plane of the paper at
a convenient distance, and parallel to it. If we
further assume a point source of light at an infinite
distance above the plane of the paper, the shadow of
the object will have a sharp boundary, congruent with
ABC. Let, however, the point source be replaced by
the sun, a spherical object at a great distance, but
so large that its disk subtends an angle of about a
half a degree. The rays of light passing through any
point, say &, on the shadow-casting object, will make
up a cone with vertex at A, the elements passing through
the periphery of the solar disk. The intersection of
the cone with the plane of the paper will be a circle
with center at A as shown, its radius being proportional
to the distance the object ABC is above the paper. Now
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Figure Cl

the shadow cast by aBc will no longer be sharply defined.
The point on the paper immediately below a, for instance,
will not be completely dark, but it will receive only
half the illumination received by, say, F, because it

is exposed to only half of the solar disk. The point

on the paper below a4, will receive even less than A,

an amount proportional to the part of the disk which
peers, as it were, around AB. It is the area of the
circular segment having center at A7. In like manner,
Az will be more than half illuminated; F will have full
lighting, and D no direct light at all.

Thus the curves of equal illumination on the
paper, so long as they are not in the vicinity of B,
will be families of lines, one parallel to AB and the
other to BC.

The situation is altered in the vicinity of the
corner, B. The curve of half illumination will not
pass through the point on the paper below B, for that
point is illuminated by the sector BGH, which is less
than & semicircle. Thus the curves of equal illumina-
tion will bend smoothly about the cormer, making up a
single family enveloped by DEJK and FLM.
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This is the explanation of the smoothing out of
the shadow cast by an object with serrated edges (13:2).

AbU YGsuf b. Ishdq al-Kindl (d.c. 870), known
as "the philosopher of the Arabs', wrote on numerous
subjects. His work on optics was influential in medie-
val Europe, but we are unable to spot the individual
passages in his writings referred to here (12:10) and
later. (Cf. Lindberg, 2, also GaL, vol.l, P.209;
suppl. vol.l, p.372).

13. Circular Image from a Small Aperture (13:8-17)

Let the sun shine through a minute hole in some
opaque substance onto a plane surface normal to the
central ray. Then, roughly speaking, from each point
on the solar disk one ray only will pass through the
hole, illuminating a corresponding small spot on the
screen. The totality of such dots will make up a lighted
circle, an (inverted) image of the solar disk. This is
the phenomenon of the pinhole camera, evidently unknown
to BIrunI. The argument above says nothing about the
shape of the hole, only that it be small. Without being
able to follow BiriinI's train of thought, we feel that
it utilizes two facts: (1) that the sun is not a point
source, and (2) that the aperture is of appreciable
size. His realization of these is clear from his Figure
1 used in criticizing Tha3bit. Refer now to it, and
regard A4 and B as endpoints of a diameter of the solar
disk. If the aperture DG is a polygon, the light from
A will illuminate a similar polygon on the screen bounded
by K and S. Light from B will define a second polygon
on the screen, IM, similar to kS (and to GD), and
similarly placed. The composite of the two images will
make up a sort of polygon of double the sides of GD.

The same reasoning applies to any one of the infinite
number of diameters of the solar disk, whence it follows
that the illuminated region is circular. The successive
doubling at 13:14 is not needed for the demonstration,
and we do not see how it is supposed to arise. It is
instructive to compare this passage with approaches to
the same problem made by students of optics in medieval
Europe (Lindberg, 1). ’
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14. Distortion of a Gnamon's Shadow (13:18 - 14:5)

We regard Figure 2 as a schematic illustration
of a special case of the type of effect discussed in
Section 12 above. Let THMK be the shadow which would
be cast by a certain gnomon if the sun were a point
source, and if no other shadow intervened. In fact,
however, half of the field AEZD is in shade, namely
ABGD. Then, by virtue of the blurring of edges and
rounding of angles explained above, the angles between
TH and BL, and between kM and GS will be filled in
somewhat as indicated in the figure. Moreover, if the
gnomon is sufficiently narrow, the shadow of its top
will disappear altogether.

15. Images fram Nearby Pinholes (14:6 - 15:5)

Consider a pinhole camera of the ordinary type,
except that it has two small holes instead of the
customary one. Then in sunlight each will produce an
image of the sun. If the apertures are sufficiently
close and the intercepting screen is sufficiently far
from the holes, the two circular images will intersect,
and the part in common between them, AESGOZ on Figure 3
will be twice as brightly illuminated as the remainder
of the images.

Now introduce a long rectangular object between
the sun and the holes, outside the camera, so that its
axis is along the line of centers of holes. Assuming
proper dimensions and distances so that the long object
does not cut off the sunlight from the holes completely,
there will then appear on the screen two joined images
of the object, THMK. In the figure this terminates
inside the circles; in our experiments object and image
continued on beyond. What is striking, however, is
that the shadow between ZE and 0S is invariably
attenuated, and for properly chosen dimensions and
distances it is completely annulled in this region.

AbU Rayhan notes this curious effect, but he
attempts no explanation. We submit that the reasons
for it are somewhat as follows. In the theoretical
case where a single line penetrates each hole for each
point on the solar disk the images would be perfectly
sharp, and the region ZESO would be just as dark as

{
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TZOK and EHMS. But this would imply apertures of zero
diameter, whence no light at all would enter. For an
actual device the holes must have a finite diameter.
This being the case, a point such as Pj,on 0S or ZE,
will not be completely dark, for the images are formed
by finite pencils of light which penetrate partially
into the shadowed region. The same is true of such
points as Py, but the effect is half of that of Pj
because it is affected by light from only one hole,
whereas P; adjoins a region of double illumination.
Hence the shadow between OS and ZE is attenuated.

16. Double Shadows (15:6 - 16:6)

The little that is known about the philosopher
and scientist al-Iranshahri (fl. 870) has been collected
in the Tahdid, Comm., p.5. See also Pines, p.346.

The situation he reported is illustrated in
Figure 4, slightly modified from the corresponding
figure in the text. The man at TG has his shadow cast
on the cliff behind him, the upper extremity of this
shadow being at Z, the point at which the ray from the
sun across the top of his head strikes the mountain.
But, because of the mirror effect of the river, there
is a virtual sun, say S', located along XE produced in
the direction of E, a distance equal to ES. This S*
also casts a shadow of the man, its extremity being K,
above 2.

17. Shadow as a Flow (16:7 - 18:7)

After harking back briefly to the polygons
(16:7 and 13:12) with which he attempted to explain the
circular image produced by a pinhole camera, BIrtni
describes the following simple experiment. The subject
places himself near a wall in bright sunlight so that
the shadow of his face appears in profile on the wall.
Then let him extend one hand, and let the forefinger
slowly approach and touch the nose. When the two are
in proximity the corresponding shadows seem to flow
out to each other and merge before the actual objects
touch (17:3).

What happens is that the blurred shadow edges
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reinforce each other as they merge, producing the
seemingly plastic effect. This apparently reminds the
author of a notion which he attributes to Plato (17:5),
that shadows are liquids which freeze. (We find no
reference resembling this in the Timaeus or in Proclus'
commentary thereon. D.P.). Be that as it may, Birdni
ridicules the idea by citing superstitions and by
referring to his own experiments with freezing (s56:17).

The ‘Abdulldh b. Muhammad al-NashI al-Akbar
mentioned in 17:16 was a well-known poet and theologian
of the Muctazilite persuasion, He lived in Baghdad;
moved to Cairo, and died there, c.905 (Ibn Khallikan,
vol.2, p.57).

18. A Sphere-topped Ghaomon (18:8 - 19:5)

.. The blurring at the edges of shadows cast in
sunlight makes it difficult to observe the shadow of
the e?d point of a gnomon. This is particularly the
case if the gnomon is thin and has a sharp point. This
in turn hampers precision in accurately measuring the
}engths of gnomon shadows, a matter of great practical
importance. To lessen the difficulty BIruni suggests
that a small spherical cbject he mounted at the end of
the gnomon, and by implication that the gnomon height
be reckoned from the base to the center of the sphere,
the shadow lengths likewise. He does not claim that
the idea originated with him. In fact the same thing
was done in antiquity, in particular with an Egyptian
obelisk transported to Rome and utilized as a gnomon by
Augustus (Sayili, p.346; Pliny, bk. 36, 15).

19. Solar Parallax (19:6 - 20:14)

Figure 5, in both the text and the MS, has
suffered considerable distortion at the hands of
successive copyists. The version presented in the
translation has been satisfactorily restored, except
that in the text two distinct points have been marked
with the letter sIn, now transcribed as S and S'.
Since both are referred to in the text, the error may
well go back to BIrtni himself. There seems to be no
need for the point marked ¥, and the only time it is
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used (at 23:5) it is used wrongly. But it is not very
misleading.

The general idea is that celestial positions
are computed as though the observer were at the center
of the earth (see Parallax). Since he is in fact on
the earth's surface, the object's "apparent" position
will be somewhat lower than its "true" altitude. The
difference, «TBE = «KEY on Figure 5, is called parallax.
There will be a corresponding difference in the gnomon's
shadow length, YK.

In the case of the sun, its distance is so
immensely greater than the earth's radius that for many
purposes, certainly measurements taken with gnomon
shadows, the parallax can be neglected. BIrunI says
the ratio between the earth's radius and the sun's
distance is less than (20:3)

1.2, 1.1 50,3

2108 10 1200
which says that ET is about 033 if EB is taken as
1,030 = 60, This is consonant with Ptolemy's calcula-
tion of 1210 earth radii for the earth-sun distance
(Almagest 5, 15).

Note that BS and BD can both be regarded as
sines as stated at 20:5, but the radius of the defining
circle differs, being BT for the first and BE for the
second.

20. Iamar Parallax (20:15 - 22:2)

There was good practical reason for showing
the situation of the moon on the same drawing as the
sun, because the main application of parallax theory
was for eclipse computations where, for a solar eclipse,
the body of the moon interposes between the sun and the
observer. When the moon is at M (in Figure 5) it has
the same true altitude as the sun. But it is only when
it is at ¢, or near it, having the same apparent altitude
as the sun, that an eclipse can take place. At either
position the lunar parallax exceeds that of the sun.
BirunI fully accepts Ptolemy's erroneous lunar model
whereby the moon approaches the earth as close as 33:33
earth-radii (Almagest 5, 17). This is the origin of
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the text's 1/30 = 032 (21:13), which implies that lunar
parallax is indeed appreciable.

21. Al-Kind] on Parallax (22:3 - 23:8)

Noted are two remarks by al-KindI (concerning
whom, see Section 12 above). They are both true, but
of trivial consequence. The first (22:8) uses the fact
that the solar orbit about the earth is eccentric.
Hence, say, when the sun is in apogee, thus farthest
from the earth, its parallax is less than when it is
closest, in perigee. But the sun is at all times so
far away that minor variations in the distance are to
be disregarded. Ab{ Rayhan cannot refrain from pointing
out that if al-Kindl is going to be so fine about it
he should also state that the apogee and perigee them-
selves are in motion.

The second observation (22:19) is that since
the sun has an appreciable apparent diameter its light
will reach farther around the gnomon tip, as it were,
than if it were a point source located at the same
position. Hence its shadow will be shorter.

CHAPTER 6

DEFINITIONS OF THF SHADOW FUNCTIONS

22. Quotations Concerning Shadows (23:11 - 25:11)

This short chapter resembles Chapter 3 in that
it is padded out with largely irrelevant literary
material on shadows.

The author of the long quotation at the begin-
ning, Ab# Zayd Ahmad b. Sahl al-BalkhI (d. 934), a
sometime student of al-KindI, was best known as a
geographer. He was born near Balkh, a great and
ancient city, the site of which is in northern
Afghanistan (6ar, vol.l, p.229; Er, vol.l, p.624).

AbT “Uthm3n “Amr b. Bahr al-Jahiz (f1. 850),
quoted at 24:19, was a famous prose-writer of Bagra
at the head of the Persian Gulf (EI, vol.l, pp.1000-1).

23. Definition of the Cotangent and Tangent Functions
(25:12 - 28:18)

The author now defines two standard varieties
of shadows cast on planes, introducing incidentally
(at 25:19) two technical terms for the gnomon. There
is no loss of generality in calling the plane a horizon,
since any plane whatever is parallel to some plane
tangent to the earth, hence a horizon.

When the gnomon is normal to the horizon the
shadow it casts is called al-zill al-mustawi, the direct
shadow, GE in Figure 6. The same term is used inter-
changeably for the number expressing the length of Gk
in units determined by the length of the gnomon. It
depends upon the altitude, angle E, and in this sense
is the trigonometric function called in English the
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cotangent. Nowadays the parameter, the length of the

gnomon, is invariably taken as unity. As will be seen
below, this was never the case with the medieval func-
tion.

In like fashion, the length BE measured in the
same units is the cosecant function, in Arabic qutr
al-zill (al-mustawi), the hypotenuse of the (direct)
shadow.

24. Definition of the Tangent and Secant Functions
(21:1 - 28:18)

The second kind of shadow is that cast on a
vertical plane by a gnomon perpendicular to it, the
gnomon lying in the vertical plane which contains the
celestial source of light. It is al-zill al-mackus
(the reversed shadow), EG in Figure 7. Thought of as
a number, its length measured in the same units as the
gnomon BG, it also is a function of the altitude, now
angle B, It is the tangent function. The length of
BE in the same units is qutr al-zill al-ma<kus (hypote-
nuse of the reversed shadow) the secant function.

Al-Hallaj, whose statement in 27:9 Birdni
criticizes, was a famous mystic (gufI) who was exe-
cuted for heresy in 922. The 'red sulfur" in the name
of his book was supposed to be a very rare variety of
sulfur, probably mythical, which played a role in
alchemical theory. (See EIne, vol. 3, pp.99-104;

EI, vol.2, p.989.)

The chapter closes with a reminder to the
reader (28:8) of the results obtained at the end of
the preceding chapter, that solar parallax may be
neglected insofar as shadows are concerned, but that
in the case of the moon and other nearby objects it is
considerable.

CHAPTER 7

LENGTHS QF GNOMONS

25. Gnamon Units - Introduction (29:2 - 32:10)

In this chapter also the prosaic subject matter
is interlarded with semi-philosophical and literary
material. The author asserts that the existence of a
shadow in a transparent medium-is to be perceived only
by interposing in it an object upon which the light and
shade may fall. As an example he adduces the entry of
the moon into the earth's shadow to produce a lunar
eclipse (29:9). The resulting circular shadow is used
as evidence for the sphericity of the earth. It is
curious that here (29:15) he gives the relative small-
ness of mountains as a reason for their non-appearance
in the shadow, whereas in 13:2 he has a different
explanation.

Next it is stated that the angle between the
horizontal and the line from the end of the shadow to
the top of the gnomon equals the altitude of the light
source (29:18). When the source is on the horizon the
shadow is infinite; as it rises the shadow decreases
in length, disappearing under the gnomon tip if the
light source reaches the zenith.

This phenomenon of the disappearing noon shadow
provides the occasion for the display of four poetic
excerpts in which the same idea is conveyed by various
figures of speech. In the first (30:13), perhaps the
poet sees the animal and rider as the leg of a sock,
the shadow constituting its foot. In the second
(30:15) the advancing animal treads upon (the shadow
of) its own neck. In the third (at 31:1) the familiar
theme of prostration recurs (cf. Section 9 and s62:18).
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In the fourth (at 31:3) the text is garbled. It has
been restored by Professor Ihsan Abbas, who finds the
correct version in the diwan composed by the Abbasid
poet and caliph, Ibn al-Muctazz.

Concerning Abid al-Najm (30:16), see Section 4
above.

These remarks are based on shadows cast by a
vertical gnomon. BIrfinI next points out (31:7) that the
situation is reversed for the "reversed shadow" defined
in Chapter 6 (hence probably the name). When the
gnomon is horizontal and pointed along the azimuth of
the source, zero altitude of the latter corresponds to
a zero shadow length. As the altitude of the source
increases, the shadow length also increases, becoming
infinite if the source reaches the zenith.

Precise relations between altitudes, zenith
distances, shadows, and the other trigonometric functions
(31:12) are developed in the chapters which follow.
Preliminary to these are definitions of the standard
units into which the gnomon length g is subdivided for
measuring shadow (32:1), the subject of the present
chapter. The units are

1. Sexagesimal parts, g = 60 = 1,0,
used by the Occidentals
and the "modernms".

2. Digits, g =12,
used by the Orientals.
3. Feet, g =17, or 6%

used by the Muslims.

26. The Sixty Part Gnamon (32:11 - 33:8)

It is true that sexagesimal subdivisions were
taken over by Islamic astronomers from Ptolemy and other
Hellenistic scientists, It is also correct that the use
of the shadow functions can simplify many trigonometric
computations. But, of course the sine function was
unknown to Ptolemy, who used a table of chords.

The basic reason for using this unit, however,
is that sexagesimal (rather than decimal) place-value
computation was standard for astronomical work. Then,

e w—
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the length of the gnomon being 60 = 1,0, division by it
involved only, as we would say, moving the sexagesimal
point one (sexagesimal) place to the left, the individual
digits being unchanged. Multiplication by the gnomon
length was carried out by a one place shift in the other
direction, or up (rafc, "elevating", 33:3) in the medie-
val parlance. Division by sixty was called hatt,
depressing.

BIrunI and his great contemporary Abd al-Wafa'
(Section 34) took the intelligent ultimate step of
putting R = 1 (33:6), thus eliminating even the trivial
operations described above and making their trigonometric
functions identical with those used today.

27. The Twelve Digit Gnomon (33:9 - 35:15)

This type of subdivision was indeed used by the
Indians. Their application of it to fix zones of
terrestrial latitude (33:10) is described in Chapter 22
of our text.

The Sanskrit word for a digit (of a gnomon) is
afigula (cf. panca. IV, 48; pt. 1, pp.67-68), which means
also finger, as does digit in Latin and English. A
minute (sixtieth) of a digit would be vyafigula. BirtGni
gives (in 33:13-14) the Sanskrit words transliterated
into Arabic characters. The two renderings of afigula
differ by a letter because standard Arabic has no charac-
ter to render the value of g in the original. His own
transliteration uses a k3f. The second he has obtained
from the Arabic Arkand where the translator apparently
chose to use a jim.

The word arkand is apparently the Arabic trans-
literation of Sanskrit ahargana, meaning the number of
days which have elapsed since epoch. The word was
attached to more than one Sanskrit astronomical document

-after it was translated into Arabic. The one BIrunl

refers to was based on the Khapd, and was translated
in 735 (see al-#HashimiI, comm. Section 4).

The reason given for the twelvefold division is
that both the (hand-)span and the digit (finger breadth)
are units always available, and the larger contains
twelve of the smaller. If the gnomon used by a parti-
cular person equals his own span, it is convenient to
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measure its shadow with both hands.

The variant method BIriinI describes (34:8) was
even more crude. It assumes that the bent middle finger
projects three digits beyond the palm. The latter being
held horizontal, the finger's shadow is measured with
the digits of the other hand. If the shadow length is
S, then 4§ = 125/3 will bethe shadow cast by a twelve
digit gnomon.

It is true that eclipse magnitudes were measured
in digits, twelfths of the diameter (or area) of the
eclipsed disk (Almagest VI,7). However, to claim (in
35:5) that this is because the lunar or solar disk
subtends a hand-span seems a farfetched explanation.

At an arm's length the hand subtends far more than a
half a degree, which is the order of magnitude involved.

At 35:8 is another reference, to the Arkand Zij,
also in connection with eclipse digits, 1 mashah = 4 kaki.
BIrlinI knows the mAshah as a weight: 1 t@lah = 3 gold
dirhems = 12 m3shah, 1 mashah = Y wandi = 16 Fawa.

(1 misa = 4 kakini,but these terms apply only
to weights. Usually it is stated that 1 tulz = 100 pala
= 64,000 mdsa. However, some authorities mention a
smaller tulad (sometimes called a talaka) which is
equal to § or § of a pala. This is close, but not
equivalent to BirGini's t@lah. T cannot explain wandi
from Sanskrit. Jawa (barley corn) is a unit, but
of length. D.P.)

28. The Seven Foot Gnamon (35:16 ~ 37:11)

The rationale for the use of this unit resembles
that for the digit — the observer uses himself as a
gnomon, and steps off the length of his own shadow with
his own feet as a measure. It is assumed that each
individual's height is seven foot-lengths.

The flavor of the quaint anecdote (36:19) about
the bigotted muezzin may be enhanced, for non-Muslim
readers, by some exegesis. The Muslim calendar is
strictly lunar, hence its months move forward with
respect to the solar year, slipping around through all
the seasons in turn. This was insisted on by the
Prophet in order to make it distinct from the calendars
of other faiths. In particular, he strictly forbade

Section 28 Page 29

the intercalation of a month from time to time (as in
the Jewish calendar) which would serve to stabilize the
months with respect to the seasons. The Christian
calendar, on the other hand, is based on the solar year,
so that the same month always falls in the same season.
Now the Muslim times of prayer, as will be seen in
Chapter 25, vary with the seasons. Hence on an instru-
ment for finding the daily times of prayer throughout
the year, a scale graduated with the Christian month
names is useful, and the Muslim months cannot be
substituted for them.

29. The Six-and-a-half Foot Gnamon (37:12 - 38:10)

At a time when the solar altitude is 45° and a
man is facing his shadow, its endpoint will not be the
shadow of the top of his head, but of a point on his
forehead where the sun's ray is tangent to it. The
vertical dropped from this point is supposed to bisect
his foot, so half a foot is to be taken from his seven
foot shadow, counting from the heel, and 7 - 3 = 63.
It is not much of an argument, and Biriini does not
seem to take it very seriously. But it gives him an
excuse for the excursus which follows.

30. Peoples Who Alter their Head-shapes (38:11 - 39:-2)

The Khwarazmian practise of head flattening is
remarked by other sources (Tha<alabl, p.l43), reported-
ly to disfigure children so that they would not be taken
as slaves. The Chinese pilgrim Hsila Tsiang (603-668)
reports the custom at Kucha in Sinkiang province, far
to the east of Khwarazm (Beal, p.89).

(Birunl refers to Hippocrates' On Airs, Waters,
and Places (mepi &epwv D8GTwY TéTWY) 14, wherein are
discussed the peculiarities of the Macrocephali (Long-
head ones, not Wide-headed) who lived near the Sea of
Azov. Hippocrates does say that the length of their
heads was a mark of nobility, but neither "taking pride
in bravery'" nor "and it appears to him an impossibility"
are justified by the Greek. Hippocrates does also state
that long-headedness becomes an inherited characteristic,
but I do not find Galen's criticism in the edition of
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his Greek works. D.P.)

(On the use of a man as gnomon, the earliest
Sanskrit word for the shadow of a gnomon was paurusi
"ch3ya, or man-shadow; see Kautilya, Arthadastra 2, 20,
38; Suryaprajfiapti 9, 22; and éirdﬁlakargivadina, PpP. 54~
55 Mukhopadhyaya. The term was in use, then, from the
fourth century B.C. in India, and the practice may have
existed contemporaneously with the use of the actual
gnomon. D.P,)

31l. The Usages of Various Scientists (39:13 - 40:18)

This passage is useful to the extent that it
supplies tidbits of information about the contents of
a number of documents which no longer exist.,

AblU Ma<shar (39:13), Ja<far b. Muhammad al-
Balkhi (4.886) was the famous astrologer known in the
Latin West' as Albumasar, a man upon whom Abu Rayhin
delighted in pouring out his sarcasm. AbQ Ma<shar's
z1j is not extant (See DsB, vol.l, pp.32-39),

AbU al-“Abb3s, al-Fadl b. Hatim al-Nayrizi
(39:15) wrote extensively in.astronomy, but neither of
his zTjes is extant. He died €.922 (see Suter, p.u5).

Muhammad b. <“Abd al-*AzTz al-H3shimi (39:16,
fl. 930) wrote, among other things, a 2zIj called al-
Kamil which is not extant (see Suter, p.79; Tahdid,
comm., p.125).

Al-Hasan b. al-Sabbah (39:18) was one of three
brothers who were astronomers. His Mukhtaric zIj is
named nowhere else in the literature, to our knowledge
(Suter, p.19; Tahdid, comm., p.82).

By the Batini in (40:2) Birtint probably meant
the adherents of the Isma<Iliya sect, Shi=a Muslims
who hold that the imamate terminates with Isma<il.
They maintain that there is an inner (batin) signifi-
cance which transcends the literal meaning of sacred
writings. (EIne, vol.l1, p.1098).

The treatises of the Tkhwan al-Safa' (40:8)
are early Isma°Ill tracts (Elne, vol.3, p.1071).

In BIr@ni Canon (vol.l, Pp.325, 343) both the
sine and the tangent functions are tabulated with R=1,
thus verifying his statements in 40:18 and 33:6,
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32. Parameters for the Sine Function (40:19 - 41:10)

R =2} = 150! (40:19) is indeed the value used
by Brahmagupta in Khand. 1, 30.

R = 543 = 54530 = 3270' (u1:1) is Brahmagupta's
in the Brahmasphutasiddhanta (Brahmasp. in the biblio-
graphy), which BIrGni calls the Brahmasiddhdnta. The
restoration of the word for four,missing in the text,
seems justified, since in at least one other place
(K & M, p.119) he gives the same peculiar parameter
correctly.

R =57+ 1/5+ 1/10 = 57318 = 3438' (41:2) is
used by Kryabhata in Eryabha;lya 1, 10. Concerning the
mass of material commected with the words Pulisa, Paulus,
and Paulifasiddhanta, see Paulidasidd. It suffices here
to state that BIrGinI's attempt to connect this Pulisa
(or Paulia) with Alexandria was erroneous, as were
later identifications of Pulisa with the astrologer
Paulus Alexandrinus.

The two other Indian astronomers mentioned in
this passage and later are:

Brahmagupta (b.598), son of Jisnugupta, lived
in Rajasthan. The two books named above are his only
extant works (see DSB, vol.2, p.416).

Aryabhata I (b. 476) worked in the city now
called Patna. He also wrote two books, but only the
iryabhagzya is extant (see DSB, vol.1l, p.308).



CHAPTER 8

CHANGES OF UNITS

33. Transformation of Shadow Lengths - The General Rule
(41:12 ~ 42:14)

In the preceding chapter four standard units for
subdividing gnomons are described. They are named below,
together with the number of each contained in the gnomon:

1. (sexagesimal) parts 60
2. digits 12
3. feet 7
4, fractional feet 63

The subject matter of this chapter consists of a
set of rules whereby if a shadow length expressed in one
of these units is given, it may be transformed into its
equivalent in any one of the other units. Let S denote
a shadow length and u the unit, while the subscripts g
and d stand for "given" and "desired' respectively. Then
the relation given verbally at 42:9 may be expressed
symbolically as

Sg /ug = Sd /ud N whence
42: = .
(42:11) 5, sg Y, /ud

That is all there is to it, but the author is
not satisfied with this general approach. The length
may be given in any one of four ways. It may then be
transformed into any one of three other units. Hence
there are 4 x 3 = 12 special cases, and he systematically
gives a rule and a worked example, frequently with
variants, for each of the twelve.

e CORNPY
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34. From Sexagesimal Parts into Other Units (42:15 -
45:1)
For the first of the twelve cases the rule
becomes
(43:12) 5., =5, +(2) =5, +(5) =5 . 0512
: 12 60 60 60 5 2T
where now the numerical subscripts indicate the units

used.
The worked example puts 560 = 10, whereupon

(43:5) 5., = 10 - éé§= 220 - 2 aigits
(43:10) =10 . 31—= 2 digits

Several manuscript versions of zIjes are extant
written by Kishy@r b. Labbin al-JI1T (f1l. 1000 in
Baghdad, see DSB, vol.7, pp.531-533, Survey, pp.125,
156-7). His version of the rule is

(42:15) s +1,0,

a” %0 U ”
where division by 1,0 = 60 is carried out by "depressing"
the result one sexagesimal place (see Section 26 above).
AbU al-Wafa' al-BuzjanI, (fl. 980, see Suter,
p.71, Carra, and the Survey, p.134) was a very able
scientist who, like Kushyar, worked in Baghdad. Since
he took the gnomon length as unity, for him the transfor-
mation is simply

(43:1) ;3% Sl'ud .

For the second case the rule is

= .7
(u4:1) 5, = Sg (-6—0-),
the worked example being
7 .70 _ .1
10 G_O- ﬁ— 1'6- feet.

The third case gives

. = .6% = ._._13 = .
(:9)  Sg1 = S50 85 = 560" 155 ° Se0" To0:0

O|
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(44:9) 560" 36007 °
the worked example resulting in
330!

(44:19) 10 * 36007 © 135 fractional feet.
Note that the sentence at 43:1 is the prime

authority for ascribing to Abl al-Wafa' a zij distinct
from his Almagest.

35. From Digits into Other Units (45:2 - 47:14)

To convert from digits into sexagesimal parts

the rule is
. - 60 _
(45:5) S60 = S12° 13 = 5 Sq, -
For a two digit shadow the conversion is 5s2 = 10
parts.
To convert into feet, use
: = ool 5@ .1 f
(45:15) 5,281, 75 =S, (3 +3-), f
or s £
(u6:4) = (—EZQ + 7+ (0;10), ;
2 ;
or i
(46:11) C = (5,0 5-7)/(5-12) = 5, - (0;35),

the first line being a reversion to the ancient unit 1
fractions. The two digit shadow becomes 2 « 7/12 = lg
1;10 feet.

For the other kind of feet,

: : = . _Si = ..E. [
(46:18) ss.zL S19 15 % S10" By 0
or

: 5 .1 1.5
(47:5) =5, 50+ 7P

The two digit shadow of the example becomes
1+ %-% fractional feet.

At 47:10 the author reverts to the blunder of
Abu Macshar already cited in 39:13. In the explanatory
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text of AbT Macshar's zIj he gives the rule of 46:18.
But in his tables S(45°) = 6% (=g), which betrays the
difference of parameters.

36. Fram Feet into the Other Units (47:15 - 49:6)

The conversion from (sevenfold) feet to parts

is
_ 60
(47:15) Sg0 = 550 -
For the conversion to digits,
_ 12
47:17) 51578, - =,

which is correct, but the author then says
57 Sq

7.—
(47:18) S, ‘g 5

123 « 7+ (0310),

which is wrong. It is the inverse operation, already
given in 46:4. But the next variant is all right:

= 6.5 . L .5 .80
(48:2) S, =25, -5 =520 7) e

_ 1

=5 (0;35) 2

the last expression being, as he says, valid but useless.
Now, starting from fractional feet,

120

(48:14) Seo = SG% (3
. = o (B2
(48:19) 5, = 56% (13) 3

and
= . (3
S, s 3 (13)



CHAPTER 9
ALTITUDE FROM SHADOW, AND CONVERSELY

37. ggezidentity Connecting Cosecant and Sine (49:9 -

The chapter opens by stating the identity equi-
valent to the modern

csc @ = 1/sin 6 .
We translate here as "cosecant" the Arabic qutr al-zill,
literally the "hypotenuse of the (direct) shadow", which
is what the trigonometric cosecant is.
BirtnI gives it as

(49:9) gnomon (=g) / Cscgh = 8in, h /R,

which is easily proved by using Figure 8. On it,

(49:14) EL = g,
HT = SinRh,
ET = CosRh,
LK = Cot_h,
g
and ’ KE = Csc_h.
. g

By using pairs of sides of the similar triangles
HTE and ELK,

(50:1) EL/KE = HT /EH,
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which is equivalent to 49:9 above.

(This rule is given by Brahmagupta in Khand. 3,
13(8), and in Brahmasp. 3, 29; he probably derived it -
as many other things - from the Mah3b. (3,5) of the
first Bh3skara. D.P.)

38. Altitude from Shadow Length (50:3 - 51:8)

Next is a rule whereby, given S = Cot._h , the
altitude h may be determined. First calculatd

(50:4) ’Cotgh + g2 = Cscgh,

then
g-R / Cscgh = Sit}qh,

which is equivalent to 49:9. Now find h by operating
inversely in a sine table. The author tacitly assumes
that no tangent or cotangent table is at hand, although
he himself gives one in Chapter 12.

In applying this rule the value of the numerator
g * R will, of course, depend upon the units being used.
BiriinT displays the possibilities:

For Ptolemy

(50:12) g+R =60 x 60 = 3600.

If the sexagesimal gnomon is used with the Indian
R it will be

g+ R =60 x 23 = 60 x» 150" = 150.

With the seven-foot gnomon and Ptolemy's R it is
(51:2) g R =7 x 60 = 420,

The same gnomon and the Indian R give

g+R=7x2} =171 = 35/2.

With the fractional gnomon and the sexagesimal R,
it is
(51:4) ge+R = 63 x 60 = 390.
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The same gnomon with the Indian R is
(51:5) geR =6} x 24 = 163 = 65/4.

Use of the Indian g for the gnomon with the
sexagesimal R gives

(51:7) g+R =2} x 60 = 150.

Finally, the Indian R for both yields

(51:8) g-R=2} %2} =65=22,

39. The Authors of Various Zijes (51:9-13)

Four of the authors or documents mentioned in
this passage have appeared previously in the text. They
are listed below, each name followed by the number of
the commentary section in which they are identified:

Al-NayrizI, 31
Abu Maceshar, 31
AbT al-Waf3t, 34
Kdshyar, 34

The other six are mentioned for the first time.
They are:

Muhammad b. Ibrahim al-Fazdri (d.c. 770) an
astronomer who worked for the Abbasid dynasty, his writ-
ings exhibiting strong Indian influence. No zij written
by him is extant, but fragments of his work have been
assembled in Fazdri. See also Suter, pp.3-4, and Tahdid,
comm., p.91.

Yacqib b. Tariq (fl. 760) is frequently associated
with al-Fazari, and indeed the remarks made about the
latter apply to him also. See Ya®giib, and Suter, p.4.

Al-KhwarizmI (f1. 820) was the author of the
famous arithmetic, algebra, zIj, and geography, all of
which have survived in one form or another. See
al=Xhwarizmi, biogr., and zIj.

Habash al-Hasib (fl. 840) carried out extensive
astronomical observations and wrote zijes. Two such sets
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of tables are extant, numbers 15 and 16 in the Survey.
See also Habash, biogr.

Al-Battant (d. 929), an able astronomer, was of
Sabian origin. His zIj is extant and has been published
(al-Battani, zIj, see also al-Battani, biogr.).

Al-ZTj al-Shah (51:19) is the Arabic designation
for any one of a series of astronomical canons compiled
at the behest of the Sasanian dynasty of Iran. Written
in Middle Persian, these documents in their original
form have disappeared. Reconstructing their contents,
and the relations between them is a matter of piecing
together the numerous references scattered through the
later literature. (See Shah, also Hashimi and Masha'allah.)

40. Their Application of the Rule (51:14 - 53:5)

All these zIjes use the rule of 50:4 above to
convert from S to Csc h, there being four possibilities
for g2, depending upgﬁ the gnomon units:

g

g2

12 14y

(51:18) 63 2%
7 u9
60 3600

Note that for the Shdh ZIj, g = 12 (51:19).

(In this connection, see also the Brahmasp. 3,
32 and the Khand. 3, 14(10); cf. AryabhatIiya, Ganitapada
14, For the method of 52:3-5 see Mah3b. 3,5. D.P.)

Instead of using 50:5 to obtain h, al-KhwarizmT,
al-NayrizI, Kushyar (in the Jami¢ 21j), and al-Battani
convert the cosecant into a cosine by the relation

(52:4) (Cotgh) . R/Cscgh = Cog, h,

which BIrinI proves by invoking from the similar triangles
of Figure 8 the proportion

(52:6) LK(=S) / KE(= Cscgh) = TE(= COSRh) /EH(=R).

Of those who convert into a sine, for al-FazarT,
al-khwarizmi, Ya“qub, AbT Ma<shar, and the Shih, rule
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50:5 takes the form

(52:18) R+ g/ cchh = lSOO'/Cscgh = 150" « lQ/CSCah,

so that for all these zIjes R = 150' = 23, g = 12.

In the extant version of the Khwarizmi zIj (ed.,
P-169) R = 60 for the sine table, demonstrating a
departure from the original form.

For Habash and al-BattanT it is

(53:2) 720/Cscgh = 60 x 12 /Cscgh,

SO R = 60 and g = 12, which is easily verified for
Battani (zIj, vol.2, pp.56, 60), However, in both of
the extant versions of Habash, R = g = 60,

41. The Inverse — Shadow fram Altitude (53:6 - 55:11)

To obtain a rule for calculating S in terms of h,
use the similar triangles in Figure 8 to write

(53:7) HT(=SinRh) / TE(= COSRh) =EL(=g) / LK(=g = Cotgh).

Solving for the shadow,

(53:9) g-Coih/Sir}eh=S.

(See Mahab. 3, 55 and Brahmasp. 3, 28. D.P.)

The only new information concerning zIjes which
comes out of this passage is that for al-NayrizI R=g=60
(53:15). It is confirmed that for AbU al-Wafi' g=1=60"
(cf.u3:1)

‘Abd al-Jalil al-SijzT was a friend of Biruni's
who wrote extensively in mathematics, astronomy, and
astrology. His book on the astrolabe is extant (Suter
p.80; GAL, vol.l, p.219).

His method reverses the steps presented in
Section 38 above. He uses the proportion given in 50:1
to put

(54:11) g-R/SlnRh = Cscgh,

I
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and then applies the Pythagorean theorem to triangle ELK
in Figure 8 to obtain

(54:15) /Cschh4 g2 =5.

A clause seems to have slipped out of the sen-
tence beginning in 54:17. As restored in the transla-
tion it makes sense. Al-FazdrI and Habash are said to
have used the same rule worked out by al-Sijzi. 1In the
case of the former, expression 54:11 became

(54:18) 1800 /Sirhh = 12 x 150! /si%h ,

corresponding to g = 12, and R = 60. These are the
parameters noted above (in Section 40) for these indi-
viduals.

In both cases the second step, 54:15, would be

(55:1) /Cscggh - 122 = S.

Since for Abii al-Wafa' R = g = 1 we have for
him the completely modern expressions

(55:5) 1/sin b = esc h, and r’cchh-l = cot h.

Another method is obtained by forming from the
familiar triangles of Figure 8 the proportion

(55:9) EK(= Cscgh) /KL (= S) = EH(= R) / ET(= COSRh),

which gives Cscgvh * Cos,h /R = 5.

42. Alternative Methods - The Calculus of Chords
(55:12 ~ 57:1)

Some anonymous works have the rule

(55:12) /(975/31%21)2 - uy2f = s,
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This is explained by noting that the radical is

r/(Gi * 150/S:|'.rsqh)2 - (6%)2 = v/(g.R/SinRh) - g2 ,

which makes it clear that the method is an amalgamation

of expressions 54:11 and 54:15, where g = 63 and R = 150'.

A suitable modification would take care of the
case g = 7 (56:1).

The concluding passage in this chapter is a
faithful description of how Ptolemy in Almagest 2,5
calculated S in terms of h. His sole "trigonometric"
function was a table of the lengths of chords inscribed
in a circle of radius R = 60, the independent variable
being the arc of the chord.

In Figure 8 put EK = 2R = 120. Then EL and LXK
will be chords in the circle with diameter Ex. And
since the arc intercepted by an inscribed angle is twice
the angle, in the units just stated, EL = Crd g2h and
IX = Crdg 2h. Then in units such that the gnomon EL is
gs

(56:13) EL (= g)/Lk(= 5) = Cr-dR2h/CrdR25.
So S =g+Crd 2k / Crd 2h.

Since for all 6, Crd 26 = 2 Sin ©, the last
expression above can be written

S= g2 SlnR5/2 SlnRh =g-CosRh/SlnRh,

which, as Birunl remarks, has appeared before, at 53:9.

The AbG al-Hasan al-AhwdzI (57:1) may be the same
as the Ahmad al-Husayn al-AhwazI al-K3tib credited by
Biriini with a book on the sciences of the Greeks (Chron. ,
tranﬁl. pp.284, 288; India transl., vol.2, p.19; Suter,
p.57).

CHAPTER 10
FROM TANGENT TO ANGLE AND CONVERSELY

43, From the Tangent into Other Functions (57:4 - 58:8)

Now the author works out relations between the
tangent and the other trigonometric functions. From
the similar triangles of Figure 9 he puts down the pro-
portions

(57:6) LK(=S=Tangh) /KE(:Secgh) = HT(:SinRh) / HE(=R),
and
(57:7) HT(=Sin_h) / TE(=Cos h) = x(=s) / LE(=g) = Tangb /9.

The first problem attacked is, given Tanh find
h, again under the tacit assumption that no tangent
tables are at hand. The rule is, calculate

(57:9) /Tanjh + g2 = Secgh 5

an application of the Pythagorean theorem, then put

(57:10) (Tangh)uR/Secgh = Sinh ,

which follows from 57:6 above. Now, presumably, use a
sine table to obtain h.

Kushyar's rule (57:13) is equivalent, since to
depress (see Section 26) the denominator is equivalent
to multiplying the numerator by R = 60.

Conversely, given h to find the tangent, calculate

(57:16) (SinRh) e g/ Cos h = Tangh -
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an application of expression 57:7.

Kushyar's variant (57:18) simply puts g=R = 60
into the rule.

For Abu al-Wafa', since R = g = 1, the same
triangles give

(58:3) HE(=1) /ET(= cos h) = KE(= sec h) /LE(=1) ,
s0 1/cos h = sec h.

Should the cosecant be available (58:7), the
cotangent may be found as described in the preceding
chapter.

44. When to Use the Direct and Reversed Shadows 58:9 -
59:2)

BIrinI suggests that the direct shadow is best
used for observing the winter solstice, while the reversed
shadow is to be preferred for the summer solstice. His
attitude was probably prompted by some such consideration
as the following. For his latitudes (at Ghazna ¢ =~ 333°),
the solar noon altitude at the winter and summer sol-
stices would be about 33° and 8Q° respectively. The first
value is rather small, and the second near a quadrant.
When h is small, cot h (the direct shadow) varies drasti-
cally with small change in the argument, whereas it is
much more stable when h is in the vicinity of 90°., oOn
the other hand, tan h (the reversed shadow) varies ever
more violently as it approaches 90°, hence small changes
in h are more readily detected if it is used for the
summer solstice.

Of the two instruments mentioned by the author
at 58:10, the mukhula is a portable hand-held sundial
with a horizontal gnomon (see Livingston). We have no
information concerning the saut.

=

CHAPTER 11
RELATIONS BETWEEN THE SHADOW FUNCTIONS

45. Identities Relating Cotangent to Tangent (59:6 -
61:2)

The objective of this short chapter is to
demonstrate the identities

and cot @ = tan B, and cot © = 1/tan e,

as we would put them. The discussion and results are
somewhat complicated by BirinI's not putting g, the
gnomon length, equal to unity, in contrast to AbQ
al-Wafg'. In the Canon (vol.1, p.343), presumably
written after the Shadows, Birinl in fact puts g = 1.
As usual, the discussion is geometric.

To prove the first identity, note that in
Figure 10,

(59:9) LK = Cot AH = Tan BH .
g g
or Cot h = Tan h ,
g g

which is the first relation.
BiIruni's form of the second is

(59:12) (Cotgh)/g = 9/(Tangh).

To prove this, note that

(59:17) M = Tangé? ,
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and since AH = BT,

xL-Cotgﬁ"i.

In the right triangle MEK with altitude EL,

KL (=Coth) _ LE(=g)

(60:2) IE(=g) IH(=Tan £) °

the second relation, 59:12. Or

(60:3) 92 = Cot h «Tan h

Alternatively, on the right-hand part of Figure
10, put EZ = EL = g.

Then ZO-Tang'fH‘-LM-Tangﬁ,
and in the right triangle SEO with altitude EZ

SzZ/EZ = EZ/20 ,

which also leads to 60:3.
Hence, in general,

2 _ .2
(61:1) CotRQ = R /TanRQ , and TanR 8 =R /CotRQ .

CHAPTER 12

TABLES AND IDENTITIES

46. Use and Precision of the Tables (61:5 - 62:1)

The table given in this chapter has been left
out of the printed edition. In the translation it has
been transcribed from the MS. Its entries give, to
one fractional sexagesimal place, COE;Q (and Tan, 6)
for each of the four standard gnomons, BIriinI states
that not all such tables have separate arguments for
the two functions. If only one argument appears, then
one uses the identity

Cot ® = Tan B

to obtain the other function.

The table was recalculated with an electronic
computer and the results compared with the text. In
our transeription, numerals inside square brackets are
correct values restoring erroneous entries in the text.
In general, the original entries are precise to the
one fractional sexagesimal digit given. The total
number of errors or illegible places involves just
about a third of the 360 entries, and the great bulk
of these are accumulated scribal miscopyings, not
mistakes in the original computation. Many of the
errors are results of the very easily made slip of
omitting (or inserting) a dot to denote a nin(=50),
the absence of which indicates a y3'(=10).

As medieval Islamic tables go, this one is not
very impressive. For instance, BIruni's tangent table
in the Canon (vol.l, pp.341-5) is calculated to a far
higher degree of precision, four significant sexagesimal
digits instead of the two here.
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47. Character of the Tangent Function (62:2 - 64:7)

This section examines the conditions under
which linear interpolation is useful, with particular
reference to the shadow functions. BIriinT first notes
that if the first differences are constant, then linear
interpolation is completely accurate. The shadow
functions are not like this, and successive differences
increase ever more rapidly as they approach their re-
spective singularities.

For this reason Kiishy3r and others tabulate the
tangent function only up to 45°. Indeed, in the Leiden
copy of Kushyar's Jami¢ ZIj (Cod. 523(1) Warn.) on £.32r
there is a table of Tangp®, calculated to three sexa-
gesimal places, with tabular differences, for 6 = 1°,
29, 3°,..., 45°, However, on the same folio is a table
of Cot,@, to two places, with @ = 1°, 20, 30, ., 900,
On f.34v is another table of Tang,® with the same
format as that on f.32r, but going up to 60°. On f.35r
are tables of Cotj,6 and Cots6 to two places for © = 1°,
2°, 3°,..., 90°.

The author notes that for some functions the
accuracy of linear interpolation may be improved by
adopting a smaller interval for the argument in regions
where the second differences are large (62:18). This
expedient is used by Ptolemy in many tables of the
Almagest.

BIrtnI proceeds to argue that, as we would put
it, if 6, , n = 1,2,3,..., are successive equally-spaced
values of the argument, then

A'Tan en < A Tan gn+l

or the function is concave upwards.
For this he uses Figure 11, establishing in a
straightforward manner that

(63:13) ZB < ZH ,

which is a special case of the theorem for n = 1.
Next he notes that

area of AzH (=ASH) / area of AHT = 2zH /HT ,
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from which it follows that

ZH < HT
the case for n = 2, at which stage he leaves off.

It may have been his reflections on the inade-
quacy of linear interpolation which led BIrinT to the
erroneous second order interpolation scheme in the
Canon (vol.l, p.327; MR, vo1.23(1962), p.583).

48. Reciprocal Relation Between Tangent and Cotangent
(64:8 ~ 65:4)

To obviate the need for using arguments for the
tangent function in excess of 45°, the author says if
it is necessary to multiply a number, say T, by such a
functional value, multiply instead by the tangent of
the complement, i.e.,

(64:10) T+Tan 6 = T/Tan 6 = T/ Cot © .
and likewise for division
(64:11) T/Tan 6 = T+Tan 6 = T «Cot © .

However, this is the case only if g = 1, that
is if AbT al-Wafi's or the modern functions are used.
The rule will not hold for the functions tabulated in
the text. The correct expression, or its equivalent,
has already appeared in 61:1 above.

Apparently BIriinI has led himself astray in the
course of the demonstration which follows, done in the
manner of the Greek geometrical algebra. In it magni-
tudes are represented by lines to admit the possibility
of incommensurables.

Figure 12 shows segments A and B as the tangent
and cotangent of the given arc respectively. G repre-
sents the gnomon, which BIrGnI says can be regarded as
unity. Insofar as choosing a scale for the drawing is
concerned, this is all right. But numerically the
ensuing argument holds only if A Tan © = tan 8, and
B = Cot 6, that is, g = 1 throughout. Segment T is the
number to be multiplied or divided by the given shadow
function.
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Carry out geometrically the division of T by a,

and let the result be the segment E. Now
(64:16) A/G = G/B,

as was proved in 59:12 above.
The author then says

(64:19) A*B = G ,

but this holds only if 6 = 1. Since by construction’
T/A = E, hence

(64:19) A*E = T ,
and

(65:1) B/E = G/T.
So

(65:2) B*T = E*G =E ,

again using the fact that G = 1. That is
T'B =E=7T/2 ,
which is expression 64:11 above.

49. Functions of Two Arcs (65:5 - 69:3)

It is now shown that the tangents of two arcs
are in inverse proportion to their cotangents. In
Figure 13,

(65:8) KL = Cot AH = Cot 8,,and KC = Cot &2 = Cot 6,
(65:12) MS =Tan AH'= Tan ©,;and MO = Tan iZ = Tan 0, .
(66:1) LK/CK = MO/MS ,

o -

r Cot Ql/Cot 92 Tan 92/Tan el .

Consider now Figure 14, in which €S has been
drawn parallel to EO. It is stated that
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sc Sin(SEM = HEA = 0 Sin 0,
(67:3) SE ~ Sin ECS (=Sin(SCM = ZEA = Qz)) " Sin 6,

This holds, by the law of sines for plane triangles
applied to the oblique triangle ECS. This theorem was
known to BirlinI, but he does not explicitly invoke it
here.

Next

(67:5) SE/EO = FE/EZ(=EH) ,

by use of the similar triangles SEO and FEZ. In turn,
(67:6) FE/HE = EK/ET ,

from the similar triangles EFK and ETH. Combining these,

sc sE _ Sin &1 Ex
SE EO Sin 92 ET
But

(67:9) SC/OE = MS(=Tan Ol)/MO(=Tan 92) .

from the similar triangles SCM and OEM.

So

(67:10) Tan Gl Sin 91 Cos 92 Sin Q3 Cos 92
Tan 92 Sin 92 Cos Ol Cos 91 Sin 92
Further,

(68:1) SE/EO = FE/EZ = EK/ET ,

whence

(68:3)  Sec ©,/Sec 8, = Cos @,/Cos o .

2
Without proof the author states that

Cot 91 _ Sin 92 Cos Ol
= o R
Cot 92 Sin Gl Cos 92

(68:7)

and
Cos 91 Sin 92
(68:11) = .S-rln_Olb . W .



CHAPTER 13

SHADOW FUNCTIONS ON THE ASTROLABE

50. General Description of the Instrument

Since this chapter, as well as the following,
and Chapter 26, are involved primarily with the astro-
labe, it seems well to sketch here the leading charac-
teristics of this commonest of all ancient and medieval
§stronomica1 instruments. The reader who is interested
in a detailed description may commence with, e.g.,
Hartner. There is an enormous literature on the subject.

meﬁﬁmcmﬁﬂsdafhnchwhrwﬁs
mater, hollowed out on one side to receive a number of
thin plates, one for each of the terrestrial latitudes
for which the astrolabe was to be used. On top of the
plates is a filigree rete, and on the back of the mater
an alidade (from Arabic al-c<adada) with a pair of peep
sights. Alidade, mater, plates, and rete are held
together by a central pin passing through all.

The astrolabe has two functions:

1. It serves as an observational instrument
for taking celestial altitudes. The mater has a ring
}inked to its edges so that when the whole assemblage
1s suspended from the ring the instrument hangs in a
vertical plane: To take the altitude of the sun, say,
rotate the .astrolabe until its plane contains the sun,
then rotate the alidade about the pin until a ray of
the sun shines through both sights. Now read the alti-
tude off the protractor scale engraved along the rim
of the mater.

2. It serves as an analogue computer. FEach
plate bears a pair of orthogonal families of circles
engraved on it. These make up the stereographic map of
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the coordinate curves for the horizon system of a parti-
cular terrestrial latitude, ¢. The center of projection
is the south celestial pole, and the map of the north
celestial pole is the plate center. The rete, in turn,
is the stereographic map of the celestial sphere, includ-
ing the ecliptic circle. The latter has graduations so
that the map of the sun for any given celestial longitude,
X, can be marked upon it. The maps of prominent fixed
stars are indicated by tongues on the rete. This being
the case, rotation of the rete about the plate fixed
underneath reproduces quantitatively the motions in the
sky of these celestial objects in the course of the daily
rotation. For any particular time their horizon coordi-
nates, altitude and azimuth, may be read directly off

the rete.

51. Etymology of Astrolabe (69:6-13)

Hamzd al-Isfahani (fl. 940, see GAL, vol.Sl.
p.221, and EIne, vol.3, p.156) was an historian and
philologist who worked under the patronage of the Biyid
dynasty of central Iran. The book of his referred to by
AbT Rayhan (full title Kitab khasd'is al-muwazina bayn
al-carabiyya w'al-farisiyya) is extant only in fragments,
but apparently had many improbable etymologies in defense
of Persian versus Arabic culture. Here Hamza obtains
astrolabe from Persian sit3ra-ydb, "star-finder" (y3b
from yaftan, "to find"). Of course, Birtnl is right in
obtaining it from Greek &GTPOAaSOS’ (star-taker), invol-
ving &0Tpov , whence also &oTpovopic and &atporoyia .
In fact the Persian, Greek, and English words for star
are all from the same Indo-European root, but the same
does not hold for the last syllable of astrolabe.

52. Astrolabes Among the Indians (69:14 - 70:4)

BiIrtni is also right in stating that (in his
time) the Indians had no knowledge of the astrolabe.

(The first Sanskrit treatise on the astrolabe
was the Yantrardja of Mahendra Siri (composed in 1370),
which has been edited with the commentary of his pupil,
Malayendu Sfiri, and with the Yantrasiromapi of $rivisrama
(1615) by Kpspadafikara Kesavardma Raikva, Nirnayasdgara
Press, Bombay 1936. Mahendra was the pupil of Madana
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Suri, an astronomer of Bhrgupura (the same as Bhrgukaccha,
modern Broach?). He was patronized by FirGiz Shdh (1351-
1388), the monarch who alsc encouraged the algebraist
Nardyana and sponsored the Persian translation of
Vardhamihira's Brhatsaphit3. Mahendra freely admits

his indebtedness to the "Yavanas" (Muslims).

As mentioned above, Indians did not construct
astrolabes of any material before the end of the four-
teenth century; but they did commonly use wood for armil-
lary spheres and the like (cf., e.g., Aryabhatiya, Golidpada
22 and Sliryasiddhanta 13, 3). D.P.)

53. Shadow Graduations on the Rim (70:5 - 73:7)

This section describes the calibrations which
appear on backs of many astrolabes, so arranged that if
the instrument is used for taking an altitude, the length
of the shadow cast at that time by a standard gnomon may
be read directly off the calibrations by reading the number
engraved on the rim at the point where the alidade edge
intersects it.

In order to make the marks, the instrument is
placed with its back upward in such fashion that the line
GL (in Figure 15) may be drawn tangent to the rim at its
bottom point 6. EG = gk may then be taken as the gnomon's
length, and GK is subdivided according to the units chosen
for the gnomon. If digits are chosen, Kk will correspond
to twelve, Y to seven, say, and so on, the subdivisions
extending beyond X in the direction of L. Each of the
points of subdivision is projected onto the quadrant GD
from the center E. Thus ¥ projects onto 2. At Zz a mark
is made and the number 7 written, and so on.

As the shadow gets longer, the distance between
successive marks on the quadrant becomes less. Eventually
the marks approach each other so closely that the numbers
can no longer be written, and the graduations leave off.
The photograph of an #ctual astrolabe with such markings
is Plate 1 in Mayer.

An alternative method is to use the legs EC and
CH of the isosceles right triangle ECH as the gnomon
length, subdivide cw extended, and project the subdivisions
from E onto Gb.
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-The above assumes that the direct shadow (associa-
ted with the cotangent function) is to be marked. If the
reversed shadow (tangent function) is preferred, the pro-
cedure is the same except that the tangent DO is subdivided
and the projected marks will then accumulate in the region
of Gz.

’

The last sentence in the chapter (at 73:7) may be
a reference to two types of alidade. In one (as in Mayer,
Plate IX) the alidade is so mounted that one edge is
always a diameter of the instrument. In the other (as
in Mayer, Plates I and III) the alidade is 8o constructed
that on, say, its lower limb the left hand edge is a
diameter; on the upper half it shifts to the right hand
edge.



CHAPTER 14

THE ASTROLABE LADDER SHADOW

54. layout (73:10 - 76:3) 5

In order to read off directly a shadow length
corresponding to a particular altitude setting of the
alidade, it is possible to graduate two sides of a
square laid out in the interior of the back. This
square, illustrated in Figure 17, is an alternative
to the graduations on the rim described in the preceding
chapter. It has the advantage over rim graduations that
the differences between successive graduations are
constant; the lines do not cluster, as on the rim. The
method of marking is clearly described in the text, and
need not be duplicated here. Note that for 90° > h » 45°
the base of the square is used, hence the direct shadow
(cotangent) is read; whereas for the rest of the quadrant,
45° > h > 0°, the reading is taken from the right hand
side of the square, and the reversed shadow (tangent)
is obtained. This is exactly analogous to the custom,
noted in Section 47, of tabulating the tangent function
only up to u45°,

Should a user wish to obtain a shadow length not
directly marked on the instrument, say Cot h for h > 45°,
he is to make use of the relation 92 = Cot h +« Tan h
derived in 60:3, and further discussed below. Lest he
forget the value of gQ, this is to be inscribed in the
interior of the square, its amount depending on the gnomon
divisions used:

‘digits 122 144
(75:6)  feet 72 49
fractional feet (ﬁ%)Q uzﬁ; = E%g

N (G o R S e
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This "ladder shadow" is a standard feature,
appearing on all astrolabes known to us. TIts ascription
to al-Khwarizmi (see Section 39) is of interest. TIn
al-Khwarizmi's own treatise on the astrolabe the construc-
tion and use of the ladder shadow are described (Frank,
p.10), but with no indication that the author regards
himself as the inventor.

We find AbU al-Qasim al-Ahwall mentioned nowhere
else in the literature.

55. Why "Ladder" Shadow? (76:4 - 77:9)

An obvious explanation for the name is that the
right hand side of the scale, with its pair of long,
parallel members joined by a series of short horizontal
cross hatchings, like rungs, resembles a ladder. But
this apparently did not occur to Abd Rayhan, who goes
through an involved and far-fetched discussion in order
to drag in a ladder or so. He refers to books on algebra
and hisabat al-mutaraha ("conversational computations"?,
an unknown term to us) as having a problem dealing with
a ladder leaning against a wall. Dr. Jacques Sesiano
informs us that in a Paris MS (Bibl. Nat., Lat. 73774,

f. 198r), an anonymous translation from Arabic, just such
a ladder problem is discussed. This is all well enough,
but no shadows are involved. The author therefore shifts
his ground and presents us with a pair of parallel walls
of equal height seen in profile in Figure 18. Solar rays
coming from D, A, and M cast shadows as shown. By using
corresponding sides of the similar triangles ETG and EzB
we have

(77:3) ET/TG = BZ/ZE ,
whence TG = ET « EZ /BZ .

To complete the analogy with the astrolabe, let
the distance between the walls equal their common height,
so ET = EZ, and

E’T2 = TG *BZ .

Now we have shadows but no ladder. Abd Rayhan
easily gets around this by the remark (76:19) that if
the walls are high we need a ladder to measure the shadows
on them.
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56. The Ladder Shadow in the Canon

In Biruni's 2Ij (canon, vol.l, p.337) is a related
discussion. If at some time the shadow cast by a gnomon
(say ET in Figure 18) exceeds the gnomon length (i.e.,

h < 45°), its length may be determined as follows. Set
up a second gnomon, ZH, of length equal to the first, in
the plane determined by the first gnomon and the sun, so
that the distance between the two equals their common
length. Then part of the second gnomon will be shaded
by the first. This shaded part, BH, is called the ladder
shadow (2111 al-sillum). Then the direct shadow is given
by either of the expressions

BH + g
TG = g + g-BH °

or TG=g2/(g—BH).

Proof is immediate by use of similar triangles.

57. A Derivation Repeated (77:10 - 79:13)

The passage commences with a reminder that the
alidade edge used to identify the proper graduation must
be a diameter of the astrolabe back (see Section 53).
There follow specific directions for the use of the
device. If the direct shadow (cotangent) is sought and
the alidade edge falls somewhere along TH (in Figure 19),
simply read the result from the numbered graduations. But
if the alidade edge intersects HZ somewhere (h<45°), the
reading will be the reversed shadow (the tangent); transform
it by the rule

(78:2) Cot h = g2 / Tan h.

if, on the other hand, the tangent is desired,
read it directly from Hz if h<45° , If the alidade edge
enters TH, read the cotangent and transform by using
(78:6) Tan h = g'2 / Cot h.

This has already been proved in Chapter 11. But
Biruni restates that

(78:8) Tan h/g = g/Cot h .
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He now says, working from Figure 19,
(78:9) KZ /TO = (KZ/ZE) + (KZ/ZE) ,

which is true, but which seems unnecessarily complicated.
From this he infers the desired 78:6 and its equivalent

Cot h = gQ/Tan h .

We miss the point of this redundant demonstration.
The author further belabors the issue by putting down the
proportions

(74:1) kz(= Tan h) / 2E(=g) = ET(=g) / TO(= Cot h),
and
(79:4) TN(= Cot h) / TE(=g) = EZ(=g) / ZM(= Tan h).

Suppose (79:6) either shadow function is given
and we wish to find h. If the shadow is less than the
gnamon, rotate the alidade until its edge crosses the
proper ladder shadow scale at the point corresponding
to the given shadow. Then read h off the protractor
scale engraved around the periphery of the back. If
the shadow exceeds the gnomon, transform it into the
other variety by use of 78:6, and proceed as described
previously.

58. Al-8ijzI's Derivation (79:14 - 80:12)

The astrolabe book by Abl Sa<Id has been mentioned
before (in 54:2 and Section 41). We paraphrase below
the passage from it quoted at 79:17.

In Figure 19 the (direct) shadow cast by a gnomon
ES will be SK. In our notation Cotyh = SK. But we seek
Cot, h, hence a change of scale is required, proportional
to the ratio between the two gnomons, 12(= ET = KS) and

BS. 8o Cot, h/Cotpgh = 12 /ES »

= = = ES = ZK
and Cot, b 12(Cot ch = SK 12) / ( )
(80:9) = 144 / 2K .

This, of course is the familiar Cot h = gz/Tank
for the case of the 12-digit gnomon.
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The chapter closes with the remark that the ladder
s?adow graduations may be replaced by graduations on the
rim obtained by central projection of the former. Then
tbere will be no need to have one alidade edge a diameter,
Since both angles and shadows will be read along the rim.
This would be the system described in Chapter 13, except
that the lower half of the graduated quadrant would have
cotangents and the upper half tangents.

CHAPTER 15

SHADOWS ON SLOPES AND SPHERES

59. Altitude fram Shadow and Conversely - Graphical
Determinations (81:3 ~ 83:8)

. The methods desecribed in this section are
independent of the rest of the chapter. They are simply
scale constructions from which the desired quantities
are read off from a protractor or linear scale. If the
direct shadow (cotangent) is given it is laid off to
scale as the base, DE in Figure 20, of a right triangle
whose altitude is the gnomon length. Then angle E is
the corresponding altitude. If a circle of radius R is
drawn with center E, and a perpendicular dropped from
G to DE, GT = Sin h and TE = Cos h.

If the given shadow is the reverced one (the
tangent), then in the same configuration as before, now
Figure 21, with DE the shadow and WD the gnomon, the
desired argument is the angle at W or the arc kM, and
Tan W = DE.

Conversely, given the arc, to construct its
cotangent (direct shadow), lay off the arc on some suit-
able circle, say BG in Figure 22, draw its central angle,
and draw a segment of length equal to the gnomon and
perpendicular to one side. Through the end of this per-
pendicular, draw a line AW parallel to this side, DE.
Extend the second side until it intersects the parallel
at W. From W drop a perpendicular to DE. Then DE = Cot E
is the required shadow. The analogous construction for
the reversed shadow is not given.

Concerning Habash al-Hasib, see Section 39.



Page 62 Section 60

60. Adjusting a Shadow Cast on a Slope (84:1 - 86:3)

If a gnomon is set up on a plane which is not
level, in general the shadow it casts will be inclined
and should be corrected accordingly. The method for
doing so is taken from a book FI'I-‘Ilal by Ya<qlb b.
Tariq (Section 39), a work known to us only from the
three places where BiriinI mentions it in the Shadows.

It seems tacitly assumed that the gnomon is
emplaced vertically, which should not be hard to do by
using a plumb line. A further tacit assumption is that
the observer is able to measure the difference in level
(ET in Figure 2u4) between the end point of the shadow
and the foot of the gnomon. This also should not be
difficult, with the aid of the try-square, or some such
instrument. Then

(84:1y) AH = g 3 BH = AB } ET ,

where if plus and minus signs occur together the upper

symbol refers to the "first" part of Figure 24 (shadow

uphill) and the lower to the "second" (shadow downhill).
Now compute the "mean shadow'

(85:4) EH = BT = /B2 - BEP (=£72).

By similar triangles the "equation"

(85:5) GT = BT * TE /AH .
Finally, the corrected shadow,

(85:8) BG = EH  GT .
Alternatively,

(85:9) BG = BT + AB/AH .

Or, if AE has been measured, the mean shadow may
be calculated as

(85:12) EH = JAE - AR’ ,

and the computation completed as above.

The shadow having been computed, the solar eleva-
tion h can also be calculated, if desired, by the various
methods explained previously.
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61. Inclination of the Shadow (86:4 - 19)

The idea mow is to find the shadow's inclination,
angle EBG, by using the expression

(86:6) EB/BG = Sin(EGB = h) /Sin EBG ,

where evérything is known save the desired angle at B.
But this equation is invalid. Application of the sine
law to triangle EBG would give, e.g.,

. EB/BG = Sin EGB /Sin BEG ,

and, the angle at E once at hand, the angle at B can be
found very readily. The invalid expression cannot be
blamed on a copyist, for the text now has

(86:12)  (Singh) (BG=S) / BE = ET = SingpEGB ,

which is equivalent to the invalid 86:6.

The ET allegedly found is said to be in units
such that Sin 90° = EB (86:15). Hence a change of scale
is accomplished by calculating

(86:16) (SinggEGB)-EB /R = ET

in the units of the gnomon, R being the parameter for

Sin h. But ET was previously treated as known. All told,
the passage is thoroughly unsatisfactory. We have no way
of telling whether it is the work of Yaeq@b, or a contri-
bution by our author, so there is no hope of spotting an
early application of the law of sines, even if it had been
valid.

62. Gnamon an a Sphere — Ibn al-Farrukh3n's Rule (87:1~15)

The individual mentioned in this passage and later
at 108:11, Muhammad b. <Umar b. al-Farrukh3n al-Tabari,
£1.c.780, was one of the group of Abbasid scientists who
worked at Baghdad. His family was from the Caspian provinces
of Iran, and his father, also an astronomer, made trans-
lations from Pahlavi into Arabic. In the Shadows we have
two iragments from Ibn “Umar's non-extant z1j. (See Suter,
p.17).

Biruni distrusts the transmission of the rule, and
does not undertake to analyze it. If, however, we emend
the text (as has been done in the translation) at 87:5 and
87:7 to read "half the diameter" instead of the "the diameter",
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it is not hard to interpret the rule in terms of the
first part of Figure 23. There a gnomon of length g is
depicted, erected at the top of a sphere of diameter 4.
A solar ray at altitude h casts the gnomon's shadow, arc
AD, on the sphere.

The emended rule says, calculate

(87:5) (g+d/2) Sin h/R (=(g+d/2) sin h=BT).

That BT is indeed Ibn al-Farrukhan's "retained quantity"
is easily verifiable from the figure. Next compute

(87:8) (g+d/2) Cosh/R (=(g+d/2) cosh = ET)

and Vtas2)? -7 (= JiD? - BT = pr).
(87:10) BT - DT = BD ,
and

. A s BD - Cosg/yh
(87:11) AD = arc Slnd/?(“'—_"a7?“"“)'

It is implicit in the rule, though not stated,
that we must have R = d/2 for the trigonometric functions
last used. To convert the result from degrees into the
arc length in digits, put
3td
360°

(87:114) AD° (= wd AD° / 360°)

63. Birini's Solution (87:16 - 89:10)

Abu Rayhan first works out his procedure by using
arcs and lines on the figures, and then reformulates it
in general terms without reference to the figures. We
will carry along both arguments simultaneously.

First

(88:6, 88:18) eB=adf2tg=1ry,

where ri is the "first retained", r, the second, and s0
on, and the plus sign applies to thé first part of Figure
23, the minus to the second.

Now since

EB/BH = Sinh /R (= sinh) ,

hence

(88:6, 89:1) R(gt d/2) /Sinh =r,(=(gtd/2) /sinh) = BH .
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Moreover, since

(88:10) BH/EH = R/Cos h,
(the text has Sin BH, an error), hence
(89:1) BH Cos h/R(= BH cos h) = EH = Iy
By similar triangles,
(88:12) FA° = Bu .t
so EH/BH—r3/12=HT=r“.
By the Pythagorean theorem,
(88:14) BB - AT = 517 (= 2 -2,
;| o S
and /E‘D -ET = /(d/2)2-(HE2-H;2—) = DT.
By similar triangles
(88:15) HD/DZ = HB/BE ,
so
(89:6 HD- = . =
A ) EB / BH (DT + 1) l/r2 Dz ,

the result being Cosd/QAD. The phrase "we transform" at
89:7 must imply

R+DZ
R (d/z ) s
or some words may have fallen from the text. The conver-
sion from degrees to digits of arc is as in the section
above.

2D = arc Cos

64. An Alternative Procedure (89:11 - 90:8)

. Instead of calculating the cosine of the desired
arc, its sine may be determined. Again BIrinT has a pair
of parallel arguments, the first based on the figure. As
before we will consolidate the two.

. The "difference between the two previous amounts"
is

(90:1) rg - rﬁ = 51°

calculated in 88;14 above. So ET can be found. Now
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(83:11, 90:3) /(d/2#ET) (d/o-ET) % = /4 (ED°-ET°) = 2DT=DK=(rg) .

This is the "retained root" of 90:4., Now form
(90:4) (Jg+d)a+(ry/2)°~ £/2) x /r = Sin B (=uD).

To prove this, note that it can be written as
) (V)OB-AB'PTDE-T«D) HE / BH = (/xB-BD+ 75°- TD)-HE /BH ,

(89:13) OB-BA = KB-BD ,

for if secants are drawn to a circle from a point, the

product of the two segments formed at the intersections
with the circle is a constant. In the range of points

B, D, T, K, the midpoint of DK is T, hence

(89:17) KB-BD + TD° = TB2,

a standard identity of the ancient "gnomonic algebra'.
e

Birlinl also puts down the valid expression

(89:15) KD+DB + DB = KB-BD ,

but does not seem to use it. Substituting in equation (1)
the right-hand side of 89:17 for the left-hand side gives
for (1),

(2) (/ﬁQ—TD)'HE/BH = (TB-TD)-HE /BH = DB*HE / BH ,
and since
(89:19) DB/DM = BH/HE ,

equation (2) equals DM = Sin @G as claimed in 90:b4.

We regard all of this as a mathematical exercise
of no practical import. A gnomon on top of a sphere would
have to be quite small, else the end of the shadow would
escape the sphere completely while the sun was still high
in the sky. And no matter how small the gnomon, this
escape of the shadow would always occur before sunset. It
would be more practical to set up a segment of a hollow
sphere with the gnomon inside its top, flush with the top
of the segment. Actual sundials exist having a hollow
hemispherical surface with the gnomon point at the center

.
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of the sphere. But then there is no need for computa-
tion — the celestial sphere maps onto the inner spher-
ical surface with no changes of arc lengths.



CHAPTER 16

DETERMINATION OF THE NOON SHADOW

65. The Prablem in General Terms (90:11 - 92:8)

The chapter commences with a straightforward
presentation of how to calculate the solar altitude at
culmination. As can be seen from Figure C2,

5 "X"'
i
north
$ pole
h, ?t
harizon
g
5
Figure C2
hn =¢ + 6 .
BiIrtni's three cases are
(1) § < ¢ (91:7),
which implies that hn < 90° ,
If
€2) 5> ¢ (91:8),

[
|
E
I
|
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which implies ¢ < e, i.e., the locality is in the tropics,
the culmination will be north of the zenith, and

(91:9) hn = 180° - ($+8)

measured from the north.
The intermediate case is

(3) §=¢ (91:10)
for which
(91:11) h = $+ ¢ = 90°

and the sun culminates in the zenith.
At the equinoctial points

(91:12) §=0 and & = é.

The tropical zone is characterized as the region
"having two shadows", since part of the year S, will be
south and the rest of the time north.

Although BIrGini says nothing about it in this
passage, the transformation from noon altitude to noon

shadow is immediate and will be needed later on. It is

) S, =g cot h = Cotg(¢ + 8).

Note that since 8 depends on e, the latter is an
implicit parameter of hn and Sn'

66. The First Indian Scheme (92:9 - 17)

Of the approximate Indian rules, the first cited

can be expressed as
(B, -L) (60-L)
(92:15) S = T ,
n L

in digits, where the number B is the "base" in "day-
minutes", and L is the length of the particular day in
the same units. B depends on the latitude of the locality,
hence the subscript in the expression above. Presumably
astark (?) is a transliterated Indian word, but we find
no Sanskrit word from which it may have come.

A day-minute is a sixtieth part of a day, so 60
day-minutes = 24 hours = 360 time-degrees, the last unit

.being time measured in degrees of daily rotation.
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The text indicates later (in 92:19) some reason
for comnecting B with the maximum length of daylight,
hence we set about calculating the latter as a function
of ¢. The "equation of (half) the daylight", arc EC(=e)
in Figure u4, is half the difference between the actual
length of daylight and twelve hours (or thirty day-
minutes, or 180 time-degrees). By solving the spherical
right triangle ECF in the same figure, it can be shown
that

e = arc sin (tan$ tan¢) .

So
max e = arc sin (tan ¢ tan ¢) ,

since max § = ¢ .
Hence
max L = 30 + 2 max e.

Displayed below are the results of calculating
this quantity for the two latitudes named by Birtni in
this passage:

¢ 30° 320
€ (Sind) | (Lahore)
23,5° 34.9 35.3

2y° 35.0 | 35.4

B ] 36 ] 38 41
The juxtaposition of the related B's justifies

our author's remark that they are max L's, or "perhaps a
minute more".

67. Examination of the Rule

We are now in a position to examine expression
92:15. The length of a civil day being 60 day-minutes,
60-L is the duration of the night, the second factor in
the numerator.

Table 1 displays on its second line the results
of using the rule to calculate sn for the summer solstice
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(max h,), the equinoxes (6=0), and the winter solstice
(min b ). For purposes of comparison the first line
of the same table shows the results of accurate calcu-
lations of S, in digits (g=12), for the same times and
for the latitude indicated. There is a reasonable
correspondence between the accurate values and those
given by the rule, the latter being consistently below
the former.

Table 1. Rules for Calculating Noon Shadows

Found S, in digits
nte | The Rule Parameterss Remarks U '
text Summer N winter
ot selstice | CQUINAXES |~ gq)qtice
12 cot (3 + 5) y-30, e2q | TR smate | 4, | 69 16.5
-L)(e0- B-36,m-L-35 0.8 | 60 15.4
s | Barbieo-L)
L BxresL=36 oo | 60 | 180
92:18 ‘::.,,]ﬂ (B, L)) |Bmmesl=36 linear oo | 75 | i50
57-26/15 e eagq’| linear mifatly | 535 | 5 60.2
93:8
=T t('57_ 25)/'5 mx§re=24" | linear, still very poor 0.6 3.8 1.0
Abs Agim Y
913 | Tan, @ {‘22 ':": 9230 | pecewise Inaar 14 | 65 | 169
o317 ﬁ%*:i + P2 |mdeti6toe]  pecemise tmear 20 | 69 | 151

We cannot surmise why the unknown inventor of
rule 92:15 chose the form he did. We do note that the
element (60-L)/L becomes unity at the equinoxes, so that
the B in the remaining factor, then (B-30), can be set
so as to yield any desired equinoctial Sp.  This having
been done, the inventor has expended the only degree of
freedom left him.

Since, as will be seen below, there is some
reason for associating the B with a max L of 36, we have
also calculated S, for these parameters. The results
appear in line 3 of the table. This has the summer
solsticial sun passing through the zenith (since S, = 0)
in the latitude of Sind. Any actual observer should
realize that this contradicts the facts.

68. Al-5ijzI's Report (92:18 - 93:3)

Abu Sa*id has appeared previously; for back-
ground on him, see Section 41 above. The rule he passes
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on is

(93:1) s, = (B¢-L)(5/4) = (36-L)5/4 .

The results given by it appear in line 4 of the
table. Comparison of them with the first line gives the
impression that the rule is a fair linear approximation
to a piece of the curve implied by the first line,

Here 36 is categorically said to be the max L.
The corresponding min L=24%, and 36/24 = 3/2. This ratio
of maximum to minimum daylight was a standard ancient
Babylonian approximation. TIts use among the Indians is
otherwise attested, and is an undoubted instance of a i
borrowed parameter (see Pingree, 1, p.u).

69. A Rule in Terms of Declinations (93:4-10)

This is also linear, but the independent variable
is 6. Expressed symbolically it is

(93:8) s, = 57 - 26/15,

since the text prescribes addition when the declination bk

is southerly. The results, shown in line 5 of the table,
are so absurd that an attempt has been made to emend the
text to say "add the doubled elongation to fifty-seven,
and then divide by fifteen", i.e.,

Sn = (57 - 26)/15.

The results are much better, but hardly impressive.

70. From the Zij of AbG ¢Asim (93:11-16)

Save_for this mention, we have no information at
all about Abu “Asim <Is&m. Because of his connection
with the East Iranian Barmecid family, powerful under the
“Abb3sids, he also may well have come from Khurdsain.

His rule may be expressed as

1346, 630
(93:13) S = Tan12¢ —{
n 256, 6<0.

Comparison of the results it gives, shown in line
7, with the accurate computations makes it clear that the
two constant coefficients were so chosen as to insure
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that this piecewise linear function would give good
results at the end points as well as in the middle of
the range.

71. A Rule Involving Time-Degrees (93:17 - 94:2)
The last approximate scheme puts

. _ 216-d 180-d
(93:17) s = 53 75| 5

the absolute value signs being clearly implied by the
verbal formulation. Here the argument, d, is again
length of daylight, but now measured in time-degrees.

This function is also piecewise linear, and its
results, tabulated in line 8 of the table, are seen to
be almost as good as those of the rule just before.

The motivation behind the rule can be grasped
if we recall that

6 time-degrees = 1 day-minute
whence 216 time-degrees = 36 day-minutes,

the same ancient Babylonian max L used before. The
first term is suppressed at the summer solstice, when
d = max d = 216. The second term is suppressed at the
equinoxes when d takes its mean value of 180. The
constant coefficients, 5% and 18, have been chosen to
give favorable results.

72. The Valid Rule (94:3-12)

The last set of directions, giving the noon
shadow in feet, may be expressed in symbols as

(94:3) s, = Nz22 )2- 2

n Sin h
n

If we put R = 150 and g = 6} it becomes

2 2
s = /{%39—1—93) - (61?2 - ¢flg___ = o
n *P1s0h, sinh,,

2 -
gvesc hn- 1= g cot hn

which is our expression (4) above.

s
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73. Camparison with Indian Methods

Although the clear implication of the text is
?hat all these methods are Indian, none of them appear
in the extant Sanskrit literature. Our schemes, however,
exhibit certain resemblances. In one of the oldest
gnomon-texts, the Arthasidtra, the summer solsticial
shadow is taken as zero, that of the winter solstice
as a gnomon length, twelve, and linear variation is
assumed in between. (See Pingree, 1, p-5). This implies
?hat the equinoctial S, shall be six, a situation found
in lines 2 and 3 of our table. The Sp = 0 at the summer
solstice appears in lines 3 and 4, and a strictly linear
relation in 4, 5, and 6.

In the later Indian works, Khand. 3, 13-4, and
Brahmasp. 3, 49, the method of 94:3 is given, but with-
out the use of the curious "fractional feet" g = 63,

which seems to be associated with Muslim contexts
(See Section 29).

‘
|
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CHAPTFR 17
THE FQUINOCTIAL MERIDIAN SHADOW

74. Definition and Discussion (94:15 - 95:7)

The subject of this short chapter is a special
case of the problem discussed in the previous chapter.
It is S, when § = O. Under these circumstances
expression (4) of that chapter degenerates into

- 94:18 S, = Cot ¢ = Tan
, S o = Cotgd = Tan e,
where 54 is the "equinoctial shadow".
This is trivially equivalent to the rule of

NayrizI (see Section 31) and Ya<qib b. Tariq (see
Section 39).

(95:1) S¢=g-Sin ¢/Cos ¢.

BiranI is right in remarking that al-Battani
(see Section 39) does not use the standard Arabic term
for "sine", jayb (from Sanskrit jya) already well
established in his day. Instead he calls them "half-
chords" (cf. BattanI, zIj, vol.2, p.55; vol.3, p.15),
utilizing the fundamental identity connecting sine and
chord,

sin 8 = %crd 26 .

Yacqub calls the sine function watar mustaqim,
"straight chord", instead of jayb, a term which had
become standard by BiIruni's time. The archaic usage
recurs at 127:19 in another rule of Yasqib (see Section
99).

Since S; is a function of ¢ it can be used to
characterize latitudes. In Chapter 22 Indian rules are
given which involve S4s and it is probably this which
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BIrGni has in mind at 95:6. But this is hardly a matter
of delimiting terrestrial zones as with the Greek klimata.

75. Al-Kindi's Parallax Again (95:8 - 96:18)

Here our author alludes again to a remark of
al-KindTY, noted in 22:7 and Section 21, to the effect
that at the two equinoxes the sun is at different dis-
tances from the earth, hence its parallaxes, apparent
altitudes, and noon shadows will all differ at these two
times. Al-KindI correctly gives the Ptolemaic solar
apogee as having a longitude of Gemini 5;30° (almagest
3,4). Hence, since the sun is nearer the apogee at
Aries 0° than at Libra 0°, its distance at the former
time (EX in Figure 26) will exceed its distance at the
latter. And since the head of the gnomon is not in the
equatorial plane, there will be a parallactic difference.

In principle this is correct. But BIrdnI is
also right in stating that the gnomon length is so small
in comparison to the earth-sun distance that the effect
is wholly imperceptible. The number he gives at 96:10
should be 1210 (almagest 5, 15), not 1110 earth-radii.
The slip, whether made by the author or by a scribe,
does not affect the argument. By Biriini's time pre-
cession had carried the apogee quite close to a condition
of symmetry with respect to the equinoxes. In the Canon
(vol.3, p.693) he makes it Gemini 25:10° as of 400
Yazdigird (= 1031 A.D.). If the apogee were midway
between the equinoxes the two distances would be the
same. As in the previous discussion (at 22:14), he
reminds the reader that the great variation in the moon's
distance from the earth as well as its relative nearmess
makes the situation quite different for it.

76. An Erroneous Manichean Rule (97:1 - 98:19)

The sect founded by ManI retained many followers
in Birtni's time, and some of our knowledge about their
beliefs comes from him. The notion reported in this
passage is apparently connected with their idea that the
north pole is the highest, hence the best place, to which
the worshipper should turn in prayer (Chron., transl.,
p.329).
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It is correct that if an individual in the nor-
thern hemisphere travels north the equinoctial shadow,
Sy = Tan ¢, increases. The Manichean rule, however,
went beyond this, implying a linear relation b?tween
Sy and ¢ so that the distance travelled north is alleged
to be 120-As¢ in farsakhs (1 farsakh = 3 miles)., To
demolish this, it suffices to show that the tangent .
function is not linear. This was already done by Birtni
in 63:2 - 64:7 (Section 47). Here he gives another
demonstration, using Figure 25. He shows that equal
increments in ¢ give increasing increments of S,.

Of the two stars, or groups of stars, mentioned
in the rule, the first, the Great Bear, is unequivocally
the nearest to the North Pole. As for the second, the
text says Suhayl al-sufla. Now Suhayl is Canopus (a .
Carinae), a bright star far south of the equator. Various
modifiers are attached to Suhayl, but we have not encoun-
tered sufld (inferior, or under) among them. However,
some sources mention a star under (taht) Suhayl called
Suhayl balgin(?), conjectured to be a Pictoris'(cf.
Kunitzsch, p.106). Perhaps this was the star intended.
In any case, the general idea is clear. The rule uses
stars as far as possible to the north and to the south.



CHAPTER 18

DETERMINING THE MERIDIAN LINE BY TWO EQUAL
AZIMUTHS OR SHADOWS

77. The North-South Line Bisects the Angle of Equal
Shadows (99:3 - 101:11)

In much of what follows, observations are made
and constructions carried out graphically upon a hori-
zontal surface. The precision of the results depends
upon the accuracy with which this plane is laid out,
and the opening remarks of the chapter are directed
toward this end. In Schmidt, p.43 will be found a
description of related ancient levelling techniques.

The elaborate discussion which follows has as
its object to demonstrate that the angle made by two
equal shadows, one cast before noon, the other after,
is bisected by the north-south line. Furthermore, the
time interval between the instants at which the two
shadows are cast is bisected by the local noon. This
is under the assumption that there is no change in
solar declination during the daylight hours. The
consequences of taking the actual variation of declina-
tion into consideration are discussed in the next
chapter.

It is useful to define at this stage the techni-
cal terms introduced in the passage. The day circle,
not referred to explicitly here, is the parallel of
declination traced out by the sun in the course of the
day, THZ in Figure 27. Its radius is p = Cos 6. The
arc of (half) daylight, or the day arc (gaws al-nahar),
d, is half of that portion of the day circle which is
above the horizon. It is a measure of the length of

I
;
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daylight. The day sine (sahm al-nahir), more properly
the "versed sine of daylight" is Vers p; on Figure 27
it is BH. .

The day triangle, HBD in the same figure, is the
right triangle having the day sine as hypotenuse and

an acute angle equal to ¢. The time triangle, TKG' is
similar to the day triangle, but with altitude equal to
S8in h where h is the solar altitude at the time.

Figure 27 once being at hand, considerations of
symmetry would seem to insure the desired conclusions,
that KT = Lz implies 4CEG = <YEG and TH = HZ, without
the elaborate discussion of the text.

78. Dependence of Azimuth upon Altitude (101:12-103:15)

This passage, based on Figure 28, demonstrates
that at a single place and on a given day the azimuth
depends upon the altitude. Let the sun be at 0, the
day circle being LO, and the altitude (which determines
the shadow) or. If the same altitude is to be preserved
the sun must be somewhere on the almucantar 0zK. But
no other point (on the forenoon half of the almucantar)
will do, for on that day the sun must move along LO —
to shift the day circle would be to shift the season.
Hence, since the intersection 0 is unique, the azimuth
BT is also unique, since there can be only one great
circle through O normal to the horizon.

In general, a shift in the locality will entail
a change in both altitude and azimuth. This also is
illustrated on Figure 28, although the drawing is faulty.
It is assumed that the local zenith moves from S to c
along the original meridian. Then the east point on
the new horizon should remain B as before, but the text
has the two horizons intersecting in a distinct point, N.

Be that as it may, BIrini compares the old and
new altitudes, OT and OF respectively. Since OH > OF >

or (103:9) they differ, and the same goes for the azimuths.

79. One Horoscope and Altitude at Two Times (103:16 -
105:4)

The relation between azimuth and altitude appar-
ently suggests to Birtni a somewhat analogous situation
as between altitude and the horoscope. The latter, also
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called the ascendant, is the ecliptic point rising across
the eastern horizon at any particular time, E in Figure
29. TFor a given horoscope and a given locality there
are in general two times at which the sun will have a
particular altitude, although this, the author indicates,
seems improbable at first blush.

To demonstrate it, let z in.the same figure
be on the ecliptic and at a quandrant's distance from
both E and H. The arc 2zS is the peculiarly named "lati-
tude of visible climate" (<ard iqlim al-ru‘ya, 104:6).
Then any pair of ecliptic points such as ¥ and 0, or K
and M, which are symmetrically disposed with respect
to Z, satisfy the requirements set. For Y and O are
at the same altitude, yet the events the two configu-
rations represent must take place at different times,
for if the sun is at O, some time must elapse before
it arrives at Y, travelling slowly along the ecliptic
at about a degree per day. The corresponding solar
azimuths, arcs AC and GF in this case, will be different.
They may both be easterly (like N and B) or one east
and one west (like C and F), or both westerly.

This particular peculiarity seems to have

intrigued AbU Rayhan, for in the Tahdid (comm., p.98)
he gives a numerical example of precisely this phe-
nomenon.

80. The Indian Circle (105:5 - 107:8)

The text now reverts to the main topic, noting
that, as has been established, in principle the meridian
may be found by time measurements, say by splitting the
time from sunrise to sunset and noting the direction
of the shadow at the half-time, noon. This is imprac-
tical for many reasons, the lack of reliability of
clepsydras being among them. Alternatively one may
bisect the angle between equal forenoon and afternoon
shadows. For this the simple device pictured in
Figure 30 was common. Although in Muslim parlance
it was called "Indian", there is no reason for thinking
it originated in India.

A gnomon AB is erected on a level surface, and
on the latter a circle with center 2 and suitable radius
drawn. In the forenoon the observer marks H, the point
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at which the end of the shortening shadow crosses the
circle. In like manner, D is where the shadow end
passes outside the circle in the afternoon. The meri-
dian is then the bisector of angle DAH.

Concerning the Arkand, see Section 27; for
Pulisa, Section 32.

; Vijayanandin (or Vij3dyananda) of Benares

! (fl. 966) the author of the Karanatilaka, is not to be
k confused with the earlier astronomer having the same

E name referred to by Vardhamihira in Pafica., XVII, 62
(see Vijayanandin, biogr.,also Section 108 below).

The "fish-shaped figure" is the narrow, pointed
shape bounded by two circular arcs which results from
the standard construction for bisecting an angle. There
is none in Figure 30, but twe appear in Figure 33.

(The Indian circle was described first in the
i Pauliéasiddhanta (Pafica., IV, 19), then in Mahabhaskariya
E 3,2, and in the Uttarakhanda of the Khapd. D.P.)

8l. Suitable Radii for the Indian Circle (107:9 -109:3)

It was considered well to make the circle
sufficiently large that the longest shadow encountered
| at any season in any of the inhabited portions of the
' globe would still cut its periphery. The longest noon
shadow at any locality occurs at the winter solstice,
. when § = -e. So the condition to be satisfied is (see
i Figure C2, for example) that

the radius > s = Cotg(mln hn) = Cotg(¢ - €).

BirunI correctly reports Ptolemy's ¢ = 63° for
Thule (107:13), see Almagest 2,6, vol.l, p.78). He

says that
min h_ = 27° - ¢ = 3 + 1.1, 33250,
: n TR
y whence

€ = 27° ~ 3;25° = 23;359,

I which is indeed the value he accepts (Tahdid, comm.,
‘ p.53).
Now

(107:16) Cot,,

the accurate value being

3
33250 = 201% = 3,21315 = 12 x 16346,15 2 12 x 16,
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3,203;59,43,

Apparently this is too big to be practical in
more normal latitudes, and BIriinI tries a maximum $=uge,
Then min hy = ¢~e = 42° - 23;350 = 18,250 = 18 + = +%as
in 108:4, ‘and

Cot,, 18;25° = 353%?’ 36318 ~ 3 « 12,
whereas the accurate value is 36;2,18.

He concludes that a circle with a radius of four
gnomon lengths will be ample (108:7).

The author's information about the location of
the Volga Bulgars seems to have come from an ambassador
from these people who presented himself at the court of
Sultan Mahmid (Tahdid, comm., p.8l). If ¢ = 450 = 3
(108:10), min hy = ¢ - e = 450 - 233350 = 21,25°, and
-cot 21325° = 2;32,58 ~ 2}, so a radius three times the
gnomon would be ample.

The reference to Abd Bakr b. al-Farrukhan (see
Section 62) is obscure. The only other time Biriini
mentioned him (at 108:11) was in connection with a
gnomon erected on a sphere , and there was nothing
about gnomon lengths associated with particular local-
ities.

82. Two Techniques for Finding the Meridian (109:4 - 111:12)

The chapter closes with descriptions of two
methods of applying the principles previously expounded.
They can be grasped most easily by use of our Figures 31
and 32, which are drastic adaptations of the extremely
crude diagrams bearing the same numbers in the text.

The first consists essentially of a Heronic diopter

(see Heron, biogr.) mounted so that it is free to rotate
in a horizontal plane and having a plumb line attached
to one end. The sights are used to fix the rising and
setting directions of the sun, AK and AT. Bisection of
the resulting angle gives the meridian.

The reading of the second description, which
commences at 110:1, offers several difficulties, but
Figure 32 offers a reasonable interpretation. The use
of balances in related operations is attested (see, e.g.,
Schmidt, p.68). We assume the tongue to be horizontal
and normal to the balance arm, although this is certainly
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not the case with ordinary balances. Choosing the two
times when the shadow of the tongue bisects the upright
insures equal solar altitudes at the two t%m?s. The
bisector of angle TFO or TAK gives the meridian. Here
the sides of the angle bisected are respectively normal
to the sides in the preceding method, but the bisector
i e in both cases.

e the sgﬁould the solar azimuth be due east (111:11)
when the shadow of the tongue bisects the upright, TA
and CO will be parallel. But then both are along the
meridian.



CHAPTER 19

CORRECTION OF THE INDIAN CIRCLE METHQD

83. Source of the Error - Its Approximate Maximum
(112:3-18)

As BIrunI indicates, the method of the Indian
circle involves measuring two azimuths at which the
sun crosses a particular almucantar, once in the fore-
noon and once in the afternoon. If the almucantar
chosen happens to be in the horizon, then the method
consists simply of bisecting the arc on the horizon
between the rising and setting points on a particular
day.

In general this involves a small error, because
in the course of one day the solar declination varies
slightly, hence the day's path will diverge in a spiral
from the parallel of declination implicit in the Indian
circle technique.

Clearly the error is proportional to the rate
of change of the declination, and this rate is maximum
at the equinoxes and zero at the solstices. For a day
and locality at which a solstice happens to occur at
noon there will be no error at all. For whatever value
the declination may have at the forenoon observation it
will have returned to it by that of the aftermoon.

The fifth of a degree max 6 mentioned at 112:18
is readily explained as follows: At an equinox, for
€ = 23;35°, and for AX = 1°, A\ = 0;24,0° (Battdni,
zIj, vol.2, p.57). But in a civil day the sun does not
travel a degree, but about 0;59,8°, so for this time

AX = 0;24,0 x 0359,8 = 0;23,39°,

At an equinox, sunrise and sunset are half a
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day apart, so for this span
26 = % ~ 0323,39° = 0;11,50° = 0;12° =

oY =

84. Seasonal and Altitude Effects (112:9 - 113:11)

Just after the vernal equinox and just before
the autumnal the change in declination (]as| = |8], see
Figure C3)will still be near its maximum while ?he day-
light length will be rapidly increasing beyond its mean
of twelve hours. Hence in these regions the accumulaged
AS from sunrise to sunset will tend to exceed the 1/5
arrived at in the section above. As the summer sol-
stice approaches the § will eventually decrease Fo the
point where it damps out the effect of dayligh? increase.

Conversely, just before the vernal equinox and
just after the autumnal the length of daylight will be
less than twelve hours, so that in spite of the near
maximum !S] the A6 between sunrise and sunset will be
less than 1/5°.

daylight length

5 X

- /\ ~ 161 = |a8)
'f'/ < N 5

AN . .
o Cls} N ig0° 270 360 A,
T Summer autumnaf winter verna}
v:{x\ox Solstice £quinox Solstice / ‘.4 equinox
S

te——northern half AN ~southern half —
N //
risin ini SRS g |17 -
I halfq +dechnmg half hnqu

Figure C3

!
1

If an almucantar is used which is smaller than.
the horizon, the AS§ will be decreased, other thing§ bglng
equal, because there will be less time for the variation
to occur.
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85. Direction of the Error (113:12 - 114:3)

So long as the solar declination is increasing,
from the summer to the winter solstice, the sun's setting
point will shift to the south of where it would be if AS
were zero. Hence the error in the south point as deter-
mined by the Indian circle will then be to the east. 1In
the other half of the year, from winter to summer solstices,
the declination will be increasing and the error in the
south point will be to the west.

zenith
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The author gives the dimension of the horizontal
ring, fifteen cubits (=8.1 meters), used for his Khwarazm
observations. This enables us to date the reference to
about 995, since he describes the operation there in
detail in the Tahdid(text, p.109; comm., p.49), where
the same dimension is given.

86. Size of the Frror

Preparatory to examining the rule from the non-
extant Pulidasiddhanta, it is useful to set up and solve
the problem involved, an estimate of the correction needed
for an Indian circle meridian determination. The situa-
tion is shown in Figure Cl4, where h is the solar altitude
at which the end of the gnomon shadow crosses the Indian
circle, 6 is the solar declination for the forenoon
observation, and A§ its change between the two observa-
tions. The required correction is either one of the two
arcs on the almucantar of altitude h intercepted between
the pair of nearby day circles which define AS. Note
that A8 is not independent of h; as the latter increases
the time between the two observations decreases, thus
cutting down A6 proportionately.

Precise relations between these quantities are
obtained by means of the analemma (see Section 90) of
Figure C5. If g is the gnomon length and r the radius
of the Indian circle, then

tanh = g/r .

For the analemma, choose the scale in such fashion
that both g < 1 and r < 1. The entire construction then
lies within the unit circle. On it HH', AA', EE', and
DD' are the projections on the meridian plane of the
horizon, the almucantar, the equator, and the two daily
circles respectively. Then the horizontal distance
between the last named, marked "correction' on the ana-
lemma, is also the projection on the meridian plane of
the desired corrective arc, T3, on the Indian circle. To
obtain an expression for it, we recall that AS is small,
of the order of a fifth of a degree or less. Hence there
will be very little error involved in identifying the
chord of A6 with its arc length. Then, treating the
small triangles marked 79, Tp, and T3 (magnified below
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observ:

r, the
radius of the
Indian circle

- correction
correc tion =A5£%%g “4 F e

Figure C5

the main drawing) as plane figures, we have that the

cos §
cos ¢ °

"correction'" = A6
provided that A§ is in radians so that its arc on the
unit circle is A8 itself. The length of the arc T3 is

"correction”" _ A8 cos §
- = =
sin 6 cos ¢ sin 6

B
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where, as seen from Figure C5,

%%g—%~+ g tan ¢
6 = arc cos T

i

sin § + g sin ¢)

arc cos (
r cos ¢

In angular measure the correction arc T3 on the
Indian circle is
AS cos §
r cos ¢ sin 6 ?

which is valid regardless of the units of angular measure
radians, degrees, or otherwise.
However, if degrees are used, then the linear

" fon' = T _\ cos §
correction A (_180) o5 -

87. Special Cases

These results are for the general situation. Two
special cases are of interest:

In sphera recta, ¢ = 0, so the

"correction" = A8 cos §
= arc cos (i:‘—d)
and the angular correction is
AS cos ¢
r sin 6

in any units.
If the horizon is used for the almucantar, h=0=g,
and r = 1, the "correction" is unchanged, but
sin 6)
cos ¢/ °
and the angular correction will be

AS cos §
cos ¢ sin@

6 = arc cos(

For the very special case of sphera recta and horizon

used together, cos © = sin §, so 6 = § and the angular
correction is simply
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A8 cos §

sin & s,

the change in declination between the observations.
The time between observations, the arc shown as
such on Figure C5, is

sin § tan ¢ + g/ cos ¢)

At = 2 arc cos (
cos §

sin 6 sin ¢ + ¢
cos § cos ¢

1]

2 arc cos (

88. Pulisa's Rule (114:4 - 115:10)

Having built up this apparatus, the comment
upon the passage is anticlimatic — essentially we endorse
BirGini's own comments. The rule says Pulisa's correc-
tion is

m d -

(114:6) AG-E'E 0
where m is the minutes of days between the observations,
and d is the radius of the Indian circle in digits.
Since the gnomon length does not enter, use of the
horizon as almucantar is implicit. The fraction m/60,
the sixtieths of a day between the observations divided
by sixty, is simply the fraction of a civil day between
the observations. To multiply this by the change in
declination during that time would make no sense. But
to multiply it by the Aé in an entire day, as BIrtni
suggests, would be to interpolate linearly for the por-
tion of the day involved, a sensible procedure. If
¢ # O the rule should involve it, but it does not;
presumably ¢ is regarded as sufficiently small to be
neglected. There remains the factor d/R. If R is taken
to be the length of the radius in the units used to
measure arcs on the defining circle (such as the R = 3u438'
= 57;18 of the AryabhatIya), then multiplication by d/R
gives a change of scale whereby the small correction
arc A§ is measured in the "digits", whatever they are,
which measure the radius of the Indian circle.

(No rule resembling this has thus far turned
up in the extant Sanskrit literature. D.P.)

CHAPTER 20

DETERMINING THE MERIDIAN BY THREE SHADOWS

89. An Approximate Method by Brahmagupta (115:13 -
116:8)

Instead of obtaining a pair of equal shadows,
the objective now is to find the meridian line by using
any three shadows observed during a single day.

The solution first given is illustrated in
Figure 33, where A, B, and G are the end points of the
three shadows. K is the intersection of the perpendic-
ular bisectors of segments 4B and GB. E being the
foot of the gnomon, K& is alleged to be the desired
meridian.

The construction is at best approximate, for,
as Birtini implies, the shadow end sweeps out a hyper-
bola, the axis of which is the meridian. But in general,
the perpendicular bisectors of chords of a hyperbola do
not intersect on its axis. Brahmagupta gives the method
in Brahmasp. 3,2, and it is found in other Indian works.

90. The Analemma of Diodorus (116:9 - 117:9)

Aside from its intrinsic interest as an elegant
example of very early descriptive geometry, this passage
is useful in that it is the only extant fragment of the
work of Diodorus of Alexandria, a mathematician of the
first century B.C. Until this fragment turned up, about
all that was known about him was that he had written a
book called "Analemma", and that he was a maker of
gnomons (Heath, vol.2, p.287).

The construction is given on Figure 34, where A,
B, and G are the three shadow end points; E is the foot
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of the gnomon, and the radius of the circle is g. Points
Z, H, and T are laid out on the circle so that angles
ZEA, HEB, and TEG are all right angles. Arcs 0z and HO,
which intersect at 0, have centers at A and B, and radii
of Az and BH respectively. Arc CF has center at 0 and
radius equal to TG. Lines CF and AB intersect at L.

Then LG is an east-west line, and hence EK, perpendicular
to it is the meridian through the foot of the gnomon.

91. Proof that the Construction Is Valid (117:10-119:19)

Our Figure 35 bears the letters of the cognate
figure in the text. The drawing itself, however, has been
adapted from one by 0. Neugebauer which shows the situation
in space, as that of the text does not. As in the con-
struction, 4, B, and G mark three positions of the shadow's
end, but now the whole gnomon is shown as EzZ. In the
course of the day the ray from the sun through 2z sweeps
out a right circular cone, portions of both nappes of which
are shown. The axis of the cone is zN. A plane through
G normal to 2ZN cuts the horizon plane in an east-west line,
it being the object of the construction to find a point
other than G on this line, thus determining it.

The plane just referred to cuts the lateral surface
of the cone in a circle, GFC. The line through F and C is
in this plane, hence the line's intersection with the
horizon at L is a suitable point to determine the east-
west line. The objective is to consider the triangle
in Figure 35 as rotated down into the horizon about side
AB. The rotation will not shift the location of G, so
that if ABz can be constructed to proper size in the hori-
zon plane, together with points F and ¢, the location of
L can be discovered. To this end, right triangles zEa,
HEB, and TEG were constructed with one leg equal to g,
and the other the respective distances from E to A, B, and
G. This insures that za, HB, and TG are the respective
distances in space from the gnomon tip z (in Figure 35)
to A, B, and G respectively. Further, since the construc-
tion makes 02 = zA, and OB = HB (= zB in the space drawing),
triangle 0AB in the construction is congruent with zas in
the space drawing, so the rotation has been effected. On
the space drawing the element segments 2G, ZF, and 2C are
all equal, and the construction has insured that on Figure 34

b
i
i
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TG (= 2ZG in space) = OC = OF. Therefore F and C are
properly located on the construction. On it the inter-
section of CF with AB is the desired point L.

Abu Rayhan drops vertical lines ¢S and FM from
C and F and draws ST in the horizon parallel to AB. He
then adduces

(118:8) AC > BF ,

(118:9) AC/CZ = AS /SE > BF /FZ = BM/ ME ,
(118:11) AS /SE = BT /TE > BM /ME ,

so that

(118:13) BT > BM ,

the objective being to insure that mMs must intersect ag.
Furthermore, since F, ¢, 5, and M are coplanar (118:18),
the intersection of MS with 4B is L, the intersection of
FC with AB.

92. The Version by al-Darir

The solution with its attribution to Diodorus was
first described and published as Merid., 1. Upon reading
it, Dr. H. Hermelink kindly pointed out to us that essen-
tially the same problem had been presented by Schoy. The
earlier version is by a certain AbT Sacid al-Darir (the
Blind) al-Jurjani (f1. 850), about whom practically nothing
is known (Suter, p.27). Abu Sa<Id does not associate the
method with any particular person, saying only that it
is from the book "Analemma". His treatment also has two
figures, but the lettering is quite different, and the
order of presentation is reversed. AbQ Sa°id first discusses
the situation in space, making use of a drawing much like
our Figure 35. He then proceeds to a scale construction
in one plane resembling Figure 34. So if either one of the
two treatments is a literal translation of the lost Greek
original, the other cannot be. Both may be free renditions
of Diodorus.



CHAPTER 21

THE MERIDIAN FROM A SINGLE OBSERVATION

93. The Shadow as a Function of Azimuth (120:3 - 121:3)

The rising amplitude (w) is defined as the arc
on the horizon between the east point and the sun's
rising point for that day and latitude. BIrtni does
not say how to calculate it, but it is not difficult
to show that.

w = arc sin (sin § /cos ¢)

Once it has been ascertained, if one observes the
sun's rising azimuth with a horizontal protractor, and
then simply lays off an arc of w in proper direction from
this azimuth, the east-west line will be that from the
center of the protractor to the terminal point of the
arc just constructed. The meridian is, of course, normal
to the east-west line.

B In this method h = 0. A generalization is to
assume a convenient solar azimuth and to calculate the
corresponding h. Again, the author fails to describe how
this is done, but in the Tahdid (see the commentary,
pPp.62-64) he gives and proves a rule for the computation,
Now, a gnomon having been set up at the center of the
horizontal protractor, describe on its plane and with
center at- the foot of the gnomon, a circle of radius
Cotzh. Mark on this circle the point at which the end
of the gnomon's shadow crosses it, either in the fore-
noon or the afterncon. From here on the procedure is
that of the special case above, the assumed azimuth
being treated as was w before.
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94. A Construction for Zero Azimuth (121:4-14)

The author now describes a different special
case, that at the instant when the sun has no azimuth,
that is, its shadow is along the east-west line. This
can happen only during the half of the year when it
rises to the north of the east point, i.e., when 6 > 0.
Let h, be the solar altitude of zero azimuth. The
method at hand is a graphical construction, in the
manner of an analemma, for the length of the shadow
cast at this instant. Whenever the shadow has this
length it will be perpendicular to the meridian.

On the horizontal protractor, arcs BD = ¢
and 26 = § are laid off as shown in Figure 36. # is
the point at which the parallel to aG through z inter-
sects DE. T is marked on AG in such fashion that
ET = EH. From T erect a perpendicular to AG intersect-
ing ED at X. From K a parallel is drawn to AG inter-
secting the protractor at M. Then arc AM is asserted
to be the required ho. In the rectangle MLES the angle
LSE will then be h,. So if OF = g, and OF is drawn
parallel to SL, FE will be the required shadow length,
Cot hge.

g To use this result, draw a circle with center
E and radius FE. A gnomon having been erected at E
normal to the plane of the circle, at the instant when
the end of the gnomon's shadow passes through the
circle, the shadow will be in the east-west line.

95. Proof that the Construction Is Valid (122:1 - 123:10)

Just as was done with the Diodorus construction
in Section 91, the method here is to portray the situa-
tion in space on a separate drawing (here Figure 37),
showing that the elements drawn to scale on the analemma
have the magnitudes required by the space configuration.
On Figure 37 the day and time triangles of Section 77
reappear. Now the time is so chosen that the sun is g
on the prime vertical. We note that the base of the
time triangle is Sin w, and that it is the hypotenuse
of a right triangle having $ as one acute angle. But
in the analemma ET was constructed thus, hence it is
indeed Sin w as marked, Next, Hz = Sin hy is one leg
of a right triangle in which the angle opposite HZ is
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$ and the other leg is Sin w. But this is the manner

in which triangle ETK was constructed in Figure 36, hence

KT = Sin hy and arc MA = ho. Finally, in the same figure,

<LSE = <OFE = hg, 80 FE = Cotgho , the required shadow.
This special situation is also discussed in the

Tahdid (comm., p.55).

96. An Analemma for the General Case (123:11 - 125:11)

All the methods described in this chapter thus
far have been applicable at special times only. Now,
however, a construction is given which can be applied at
any time when the sun casts a finite shadow. With trivial
modifications it appears in two other works of BIruni,
the Tahdid (comm., p.217) and the Canon (vol.l, pPp. 450~
451, see also Merid., 2).

The analemma is shown in Figure 38, where EG has
the direction and length of the shadow at the instant
of the observation. ED = g being perpendicular to EG,
draw zG = R (the radius of the graduated circle) through
D. Through 2z draw HL parallel to EG. Lay off EX = Sp,
the noon shadow, and draw KDL. Drop LM and HT perpendic-
ular to AB, and with center E and radius EM describe a
semicircle. Draw TO tangent to the semicircle at 0. Then
OEC is the required meridian.

As will be seen below, the construction is faulty
in the determination of k. It can be repaired without
much difficulty, but we see no way of restoring the text,
and believe the error goes back to BirunI himself. To
explain the solution we make use of Figure C6.

EG being the shadow and ED the gnomon, the angle
at G = h = AH, whence TH = Sin h, the altitude of the
"time triangle". In the same manner, since EK = Sps
angle EKD is h, not ¢ as Biriini claims at 125:1. Because
of this, MLK-cannot be the time triangle, its acute angles
being ¢ and §. To generate the time triangle in proper
position as shown on Figure C6, draw XY (not on the text
figure) so that ¥8 = §. Then draw LK, not as prescribed
in the text, but so that its distance from HE is Sin 8.

In general it will not pass through the end of the gnomon.
Now MLK will be the time triangle in proper position.
Comparison with Figure C6 demonstrates that its base,
MK, is the sum of Sin w, the sine of the rising amplitude,

S S g

Section 96 Page 97

and ME, the "argument of azimuth" (125:7). Further,

we note from the figure that the angle between the lines
of the shadow and the meridian is the acute angle of a
right triangle in which the adjacent leg is the argument
of azimuth and the hypotenuse is Cos h. But triangle
TOE has been constructed so that it satisfies these
requirements. Hence EOC is the line of the meridian.

shadow

directi P
\\"‘ee fon )L

Figure C6



CHAPTER 22
DAYLIGHT LENGTH AND RISING TIMES

97. The Equation of Dayliaht, Indian Rules (125:14 -
126:19)

As its title indicates, this chapter deals with
the length of daylight as affected by the seasons and
by terrestrial latitude. The material was first studied
by Lesley, but since the appearance of his paper addi-
tional background material has become available.

We will indicate by S¢ the "shadow of Aries"
(126:6), the equinoctial S . By definition (cf. Section
65), n

S¢ = Cotg¢ = Tang¢ = g tan ¢ .
The radius of the day circle, kS in Figure C7, is Cos §,
and we will designate it as such, using no special nota-
tion. Usually the word istiw3' means "terrestrial equator';
here, however, zill al-istiwa' means S¢ and we translate
it as "equatorial shadow".

For the equation of (half the) daylight, in Arabic
ta<dil (nisf) al-nah3r, the symbol e will be used. It is
the amount by which half the arc of daylight exceeds a
quadrant. For the situation shown in Figure C7 e is
negative. 4An equivalent definition is to say that e is
half the amount by which the time from sunrise to sunset
exceeds twelve hours. It may be measured in hours, or h
in "time-degrees" (Arabic azmin) of daily rotation, 360°=2y4
or in analogous units.

Birunl first quotes a rule of Brahmagupta (see
Section 32). It amounts to calculating first

[}

f126:10) Cost = R2- Sini §

B
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Figure C7

and then
(126:12) Slrke = (SmRé-S¢ /l2)-R/CosR6 .

This is equivalent to
R- (SmRG /CosRG) . (Tang¢ /.7

=R-tan 6. tan ¢ ,
or, as we would put it,
sin e = tan § - tan ¢.

As shown in the next section, this is correct.

To obtain e, it is necessary to find the arc
sine of the expression on the right. Indian sine tables
tended to give the argument in minutes. Hence the result
would be in these units, a sixtieth of a three hundred
and sixtieth of a civil day (twenty-four hours). In
Sanskrit each such unit is a prana, a respiration. Larger
units are the vindd7 and the ghatl, defined as follows:

1 vinddI = 6 prinas = 030,1 of a civil day, a "day second".

1 ghatI =60 vinadis= 0;1 of a civil day, a "day minute".
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A variant of Brahmagupta's rule by Vijayanandin
(see Section 79) is

(126:17) Sin e = [(S¢- Sin §) / (Cos §.g9)] + R,

which involves only a shift in the order of the opera-
tions.

(The radius of the small circle of the star
(sun) is known in Sanskrit as the dyujya (day-sine),
and is defined as by BIruny in Pafica. 4, 23;. Aryabhatiya,
Golapada 24; Mahabh3skariya 3, 6; and Brahmasp. 2, 56
and 3, 16. The ratio mentioned by BIrGni — sine of
latitude to cosine of latitude — appears in Sﬁryasjddhénta,
2, 6, but the more usual Indian practice is to employ the
equivalent ratio of the equinoctial shadow to the gnomon
this ratio when multiplied by the sine of the sun's decli-
nation produces the ksitijyd (earth-sine), as is stated
in ﬁrgabhaega, Golapada 26; Mah&bh&skariya 3, 6; znd
Brahmasp, 2, 57. The product of the ksitijyid and R
divided by the dyujyd is the carajya (sine of ascensional
difference) in pranas; see Pafica. U, 26; Mahdbhaskariya
3, 7; and Brahmasp. 2, 57-58 (the whole process bears
some relation to a method of the Pauli$asiddhanta described
in Pafica. 4, 45-47, D.p.)

98. Proof that the Rules Are Valid (127:1-15)

BIrunI illustrates his remarks with Figure 39,
showing a configuration in the plane of the meridian only.
To ease the task of the reader, we have embedded the same
representation in the space drawing of Figure C7. Note,
however, that whereas in Figure 39 the length of daylight,
is shown as exceeding twelve hours, in C7 it is less than
twelve hours.

On either figure

(127:10) Ms /SE(= Sinka) = HZ(= s¢) /2E(= g) ,

by similar triangles. Now MS is the sine of the desired
€, provided the radius of the defining circle is that of
the day circle. In order to change the scale, the author
puts

(127:12) sk(= CosRG) / SM(= SmSKe) = R(= BE) /SinRe 5

Solving expression 127:10 for SM we have
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SM =S¢- SmRé/g 5

Substituting this in expression 127:12 and
solving the latter for SinRe there results
SmRe =R: S¢ . SmRé/ (g - CosRG) N
which is the rule. After introducing modern Frigonom—
etric functions and cancelling parameters, this reduces
to

e = arc sin (tan ¢ tan 6)

as remarked above.

99. A Variant Rule by Yaeqib b. Tarig (127:16 - 129:1)

This passage has the second mention of the book
"On Causes" by Ya«qlb (see Sections 39, 60, and 102),
here with a quotation. The rule is

(127:18) Cos 8 = 3438 - Vers 6§,
and then
(127:19) Sin e = (Sin 6'S$ / g)- 3438 / Cos 6.

The truth of the first expression above is imme-
diate if we recall that in the ﬁrgabha;iga R = 3438' =
57318, and the identity vers 6 = 1 - cos 6. By the same
token the second expression is the same as tre rule of
Brahmagupta, equation 126:12 in Section 95 above, except
for the change of the parameter R.

The Sanskrit units are also the same as in that
section. However, a synonym for vinadi is introduced,
cagaka (pronounced chashaka) transliterated in the text
as jashaha. A Northwest Indian pronounciation of this
is cakha, where kh is an aspirated gutteral. This is
the text's jakaha (129:1).

Ya<qUb also makes use of technical terms charac-
teristic of the earliest Arabic mathematical writings.
These words ‘dropped cut of standard medieval usage.
Examples are "straight chord" for sine and "reversed
chord" for versed sine. (These are literal translations
of Sanskrit kramajy3 and utkramajya respectively. D.P.)
Another example is Arabic tawg, here translated as
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"hoop'". The same word appears in the Tahdid (comm.,

recension by al-Majriti. Furthermore, this passage
p.147) and in the India (transl., vol.l, p.312).

has led to the identification of the table itself with
one found in a Newminster manuscript written in 1428.
(Cf. Al-Khwarizmi, 237, transl., pp.50-55). Other
tables of ascensional differences have been noted in
the literature (Lesley, p.127; King, 4).

Of course the values of R and g will affect
the values of the function c¢. For KhwarizmI R = 150"
= 2330 and g = 12 . So

R/g=2}3/12 = 5/24 = 5 « 052,30 = 5 « 150" = 1/u¥,

100. A Table of al-Kiwarizmi (129:2-5, 130:10-18)

The equation of daylight function, e, is use-
ful in other ways than the calculation of daylight
lengths. The points of the ecliptic may be mapped
upon the celestial equator in many ways. When the
mapping is along great circle arcs orthogonal to the
equator (¢=0), the resulting function is called right

|

|
ascension (a). When the projecting arcs make a I and this number must be multiplied by the tan §=Siné / Cos §.
constant oblique angle § < 90°, with the equator { BIrinI rightly says at 130:16 that tan 8 is to be divided
the mapping is called an oblique ascension (a¢). E by 4% , but in the next sentence he seems to have for-
Tables of the latter were widely used in mediéval . gotten a factor of five. He should have said "Division
astronomy. If follows from the definitions above : by four and four fifths is the taking of five parts of
that for a given ¢ and a given ecliptic point (1), { a part of twenty-four parts". Likewise the factor five
hence a fixed solar declination (8), the equation of . has been omitted in a preceding passage. The end of the
daylight is the difference between the two varieties . sentence at 129:5 should read, e.g., "...its declination,
of ascensions: 2 multiplied by five times a hundred and fifty seconds".

a¢(k) = a(d) - e, 8(0). ; For the units current in BIrGini's own time
(130:10) R/g=60/12 =75

Recalling from expression 126:12 above that :
R Sings = ] to be multiplied by tan 6.
SinRe = S¢~; ‘Cos g " S‘t’.; tan 6,
X 10l. 2n Alternative Proof of the Rule (129:6 - 130:9)
we note that the first element on the right, Sy, This passage is essentially another demonstra-

d i q q g 4
epends upon ¢, the 1?ca11ty only, whereas the’second tion of expression 126:12 (in Section 95) already proved.
depends upon ¢ only, i.e., the season. Suppose that Now. h th th X ith entiti 30 oo
an individual is in possession of a table of the 2 » Aowever, the author works GEAC CIASREE G0 e
function . face of the sphere rather than inside it.

He first asserts that, in Figure 4o,

(129:12) Sin 6z /Sin GD = Sin EB /Sin BT.

This does not seem obvious, but it can be proved
by invoking the Rule of Four. This theorem states that
in any two right spherical triangles having a pair of
acute angles equal (say 4 = a4'),

c(A) = = tan § (1) ,
g

called the "ascensional difference" (129:2), as well
as a table of right ascensions. He can quickly calcu-
late an oblique ascension for his locality by looking
up the value of c()), multiplying it by S¢ for his
locality, and subtracting algebraically the arc sine
of the result from the proper a(l).

BIrtni here informs us that such a table was [ < and, q 0 s f
in al-Khwarizmi's zij, although it has disappeared ' tan a/sin b = tan a' /sin b
from the extant and published Latin translation of the : where capital letters denote angles, the cognate small

sin a/sin ¢ = sin a' /sin ¢’
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letters designate the sides opposite them, and C = ¢'= 90°
(see the overview). .

Two applications of this rule, to the triangles
AGz and AGD, give

8in G2z /Sin EB = Sin 4G /Sin AB = Sin GD/Sin BT s

from which the above expression follows.
Next it is stated that

(129:13) Sin 26 /Sin GD = g/s¢ 0
Calling zG "the altitude" is a reminder that it is the
equinoctial h,. So the expression says only that
oo . - 9
sin ¢/sin ¢ = cos ¢/sin ¢ = —L_=_9F _ - 9 |

Now, by combining 129:12 and 129:13,

(129:1u4) Sin EB/Sin BT = g/s¢) .

Application of the Rule of Four to triangle DAE
gives

(129:16) Sin BT /Sin BD = Sin AF/Sin (DE = 90°).
These two expressions may be written as
(130:1) S¢/Sin BT = g /Sin BE ,

and
Sin BT /Sin AE = Sin DB /Sin (ED = 90°).

Multiplying these two proportions together gives,
provided g = R,

so/sin (AE = e) = Sin (DB = §) /Sin (BE = 6),
or
(130:4) Sin e = S¢ +Sin 8§ /Cos § ,

the special case of 126:12 when the radius of the defining
circle equals the gnomon length.

102. Yacqib's Rule Using Right Ascensions (131:1 - 132:8)

Now comes another excerpt from the Kitab al-Tlal.
This is a rule for finding the equation of daylight with-
out using declinations. It is stated in terms of the

b
E
I
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specific signs.Aries and Virgo, but the intent is general
Put into symbolic form it says

(131:2) Sin e = S¢-Sin a/sé =5

¢- Sin « /26358 ,

which is equivalent to
Sin e = Tan12¢-8in a/Tanle = R-Sina-tan ¢ /cot e.

In point of fact the text says S., not Sz, but
the latter is correct, as will be seen below, and intended,
for the number at 131:4 is 26358 = Cot 224" = Tan &, not
Tan €. A more precise value is 26;57,%.

BIriini's alleged proof is incomplete. Using
Figure 41 he asserts that
(132:2) Sin AE /Sin AZ = Tan BE /Tan z¢

s
and Sin Az /Sin AM = Tan 2zG / Tan v

)

both of which are valid applications of the Rule of Four
(see Section IOl above) to triangle azG.

Multiplying together the above two expressions
gives ’

(132:4) sin (AE=e) / Sin(AM=e ) = Tan(EB=8) / Tan(LM=t).

Another application of the Rule of Four, now to
triangle OKH yields

(132:6) Tan EB/ Tan (HK=LM=e) = 8in(OE=a) / Sin (0K=30°) .

which BIrin seems to think settles the matter. This is
by no means the case. It is equivalent to the equation

tan § /tan ¢ = sin o ,
or tan § = sin a.tan e .

We employ it to complete the proof, noting that
the first expression marked 132:2 above is, in modern
terms, ‘

sin e = tan 6/tan § .

Now substitute in this the expression just obtained for
tan 6, so that

sin e = sina.tan ¢/tan § = sin « . cot €/ cot ¢

= tan ¢ . sin a /tan E.
This is equivalent to 131:2, Yacqib's rule.
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Note that in this as in other passages the text
says only zill, "shadow", without indicating whether
the tangent or cotangent function is intended. This
must be inferred from the context.

103. Rising Times - Definitions and Notation (132:9 -
133:8)

We will denote by ey, i = 1,2,3,...,12, the
time required for the i-th zodiacal sign to cross the
eastern horizon. This set of functions is what BIrdinT
refers to as the "differences of risings for the heads
of the signs". It is a curious fact that if the sun is
at the end point of any sign, the length of daylight on
that day will be the sum of the rising times for that
locality of the next six signs. For this and other
reasons, rising time lore played a fundamental role in
ancient astronomy.

Let a; be the rising time of the i-th sign in
sphera recta %¢ = 0), and let e; be the equation of
(half) daylight for the end point of the i-th sign.

Put Ae; = e;_y. Then contemplation of a suitable diagram
will convince one that the identity

(1) bo, = a; - fe,

holds for all ¢ and all i's. Symmetries on the sphere
insure that there are only three independent Ae's (depen-
dent upon ¢) and the same number of a's (independent of
$), so that for any locality a complete set of twelve
Aa; can be built from six numbers. The schemes BIrinT
reports on in the second part of this chapter are made
up of approximate values for numbers. In order to have
a solid base for comparison he first calculates by
trigonometric methods an accurate set.

He puts ¢ = 24° (133:1), evidently using the
latitude sometimes assumed for Ujjain, the Greenwich
of ancient India. Hence S, = Tanl22u° = 5321 (133:2),
the entry for this argumen% in his“own table on f, 205b
of the manuscript. A more precise determination is
5320,33,53.

His value leads to

e, = 5318°
(133:3) e, = 9;28°
ey = 113120,

1,

i
o
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in time degrees by use of, say, expression 131:2. He
also uses

a; = 27353°
a, = 29;540°
ag = 32;13°,

These right ascensional differences are not given
explicitly in our text, but they are implicit, and may
be verified, e.g., from al-Battani's zIj (vol.2, p.62)
where € = 23;35°, Birfini's value.

Use of definition (1) above gives successively

Ael = 5;13°
(133:5) de, = 4;15°

bey = 13w,
and

oy = 223400
(133:7) ba, = 25;39°

AGS = 30329° .,

104. Rising Times in the Khandakhadyaka (133:9 - 134:7)

The first Indian scheme given is that of the
Khand., which BirGinI seems to have in the original as
well as in the Arkand translation (cf. Scction 27). He
says
Ael %- (159/16)
(133:11) (se, 5 (65/8))

Aey = % 10/3) .

There is a lacuna in the text, so that the middle
equation is missing, but the first and third are found
in Khand. 3, 1. The units are palas, a synonym for
vinddis, day-seconds (Section 95). BIrGinT transliterates
pbalaas bala, whereas the Arkand has it as fala, there
being in Arabic no character for the sound of p. He notes
that the pala is also a unit of weight of fifteen dirhams.
It is indeed a weight, equal to four or eight tulas.
Compare this information with the units in Section 27.
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See also the India, transl., vol.l, p.165. We are
unfamiliar with the Persian word for degree, sas(?)
given at 134:1,

Substituting Sy = 5;21 from 133:2 and multiply-
ing by 036 to convert om day-seconds into time-degrees
we obtain

Ael = 5319°
(133:15) Ae2 = 4;21°
Ae3 = 1;47°

rounded off to two significant digits.

Now apply expression (1) in the section above,
subtracting these Ae's from the respective right ascen-
sional differences given in the same section to obtain

Ao, = 22;34°

1
(133:16) Aa2 = 25,330
ba, = 30;26° .

In Khand. 3, 4 itself a set of right ascensional
differences is given, in vinadis, in decimals, correctly
reported by Birlini in sexagesimals, then converted into
time-degrees:

a; = 4,38 day-seconds = 273;48°
(134:4) a, = 4,59 " " 293540

a; = 5,23 " " 32;18°

"

105. A Persian Correction (134:8-15)

The rule given here seems to imply that the Khand
arrangements described above were intended for localities
where Sy = 5 digits. The equinoctial shadow is associa-
ted with Ujjain in the Indian literature (Pingree,?2,
p.73). For a different Sy the Aej are to be modified
by putting

AS = S¢ -5,
then calculating

h
: =8 as = 1(HR /Y.
(134:10) c 80 AS [(5) /123 AS
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and adding it to the Aej to be subtracted in turn from
the aj.

It looks as though the inventor of the rule felt
that the linear variation of Ae; with S¢ was insufficient
and should be reinforced.

There is difficulty about the units intended.
BIrtnl attempts to apply the rule to his numerical example.

(134:13) AS = 5321-5 = 0;21 digits,
and
(134:13) c = 038 x 0;21 = 032,48 ,
presumably in hours. Now since
o - 360 time-degrees,
17 = 15 time-degrees = 15,0,0 time-seconds,

the result in time-seconds, the units of the Khand. ,
would be o

032,48 x 15,0,0 = 42,0,
which is impossibly large. In hours it is
032,48 x 15 = 0342,

whereas BIrunI says 030,42 at 134:14. In view of the
paucity of information, it seems fruitless to attempt
further investigation. The rule comes from Persian docu-
ments, probably versions of the Khand.

106. The Shahriy&ran Scheme (134:16 - 135:7)
Found "in some of the books' is the rule

(278 - 1ﬁ5¢)/10

"

Ao

1 16

65
(299-TS¢)/10

10

Ao.3 (323——3—»54))/10 .

We note that the first term inside each parenthesis
makes up the set a; from the Khand. expressed in sexa-
gesimals in 184:4, Further, the second terms are pre-
cisely the Khand. set of Ae; as in 133:11. Finally,
recalling that 1 day-second = 0;6° = 1/10 time-degrees,

(134:16) Ao

2
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enables us to conclude that this is exactly the Khand
rule, except that the results now are given in time>
degrees rather than day-seconds.

If the factor 1/10 is distributed inside the
parentheses the denominators of the fractions become
160, 80, and 30 (135:6). This trivial variant is the
rule of the Shahriydran zIj, a synonym for the Zij
al-Shah (Section 39). This establishes strong depen-
dence of at least one version of the Sassanian royal
canon upon the Khand.

107. Two Versions from the Commentaries (135:8 - 136:4)

This says
te, = s¢ -+ (114/105)
(135:9) te, = s¢ + (13/186)
be, = s¢ . (1/3) ,

which gives for the numerical example

. Bay = 27353° - 5521 « 135,11 = 27;53 5349 = 22;4°
(135:12) Ao, = 29354° - 5;21 x 0;48,45 = 29;54.- 4321 = 25;33°
Bag = 32313° - 5521 « 0320 = 32;13-1;47 = 30;26°,

The sentence beginning at 135:13 we do not under-
stand. The fraction associated with Taurus is 13/16. To
make either the denominator or the numerator 100 and obtain
a Aay = 27;41 would require a change in the other number
also.

However, it is not difficult to restore all the
numbers in the remainder of the paragraph. Switching digits
in 105 to obtain 150, there results Aoy 527353 - 5321(114/150)
= 27353 -14;3,58 2 23;49 as in 135:19.

The term "diameter of heaven" for 114 means nothing
to us.

The second scheme says that, assuming Ae; known,

(136:2) A92 = Ael~(9/ll) and be, = Ae]'(H/ll).

BirtinI accepts the Khand. value Ae; = 5319 from
133:15 so that
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Ael 5319°
(136:4) fe, = 5319 x 0349,6 = 4;21°

Ae3 = 5319 x 03;21,49 = 1;56°

108. Daylight Differences in Two Indian Handbooks
(136:5-13)

Next are the rules found in two karanas, Sans-
krit works resembling zIjes. The first is the Karanasira,
known only from occasional mention by BIrtnI. It was
written by Vate$vara, the son of Bhadatta, in N3garapiira
in 899. (See India, transl., vol.2, p.306; Transits,
transl., p.142; Rai, and Shastri.)

The rule is

Ael = 10.5‘¢ day-sec.
(136:6) Ae2 = 85& day-sec.
te, = 3%5& day-sec.

S, time deg. =5;21°
(e/10)s¢ time deg. = 4;16,48°
3%/ 10)% time deg. =1;u47°

Note that Vatesvara's results are very close to
those of the Khand. (The numbers he gives are those
adopted also by the second Bhiskara in the twelfth cen-
tury (Siddhﬁntaéiromagi, Grahaganita 2,50). D.P.)

The other document is the Karanatilaka, mentioned
in Section 80. Its rule is '

2Ael 205¢
(136:8) 2Ae2 = les&
2Ae3 = 756

All the other sets of numbers are given in terms
of the differences of half the daylight differences;
these are for the whole daylight differences. To make
them compatible they must be halved. Then the only
difference between these and the Karanasara set is for
deys where, as BIrini says, '

(136:13) 72 -3 = L.

The same set of numbers is attested in Birlni's
Arabic translation of the Karanatilaka (Islamic Culture,
vol.18 (1964), p.206) .
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Converting to time-degrees as before

. - (7 _ AYRR 0] =1 °
(136:12) Ae3 = (5-)8¢ day-sec. = (2)(10) x 5321 =13;52,21°,

The Sanskrit word tilaka means "a caste-mark
pasted on the forehead". It can hardly be put into
Arabic as a single word, and was translated as ghurra,
meaning among other things: a blaze upon a horse's
forehead, whiteness of complexion, the best, a choice
part.

(Vijayanandin's numbers are close to those of
the original Paulifasiddhanta, which had 20, 163, and
6 (Pafica., 3, 10-12). D.P.)

It is claimed that the units of the result are
ghatis, in the text transliterated into Arabic characters
as (g,e¥, or perhaps Persian L&ar- This may have been a
misreading of Sanskrit vighati, a day-second, for ghatl
is a day-minute.

In this connection, Mr. Alain Brieux has shown
us the plate of an astrolabe, in the center of which
appears the value of ¢ for which it has been laid out.
Beside this is the maximum length of daylight for this
latitude given as 12;48 hours. Under both is the inscrip-
tion L{,&f in Arabic characters, followed by the Persian
plural termination  and the number 33. That the latter
is day-minutes is easily verified by noting that

12;48h » 2330 hrs./day-min. = 33 day-minutes.

Thus kahari(?), the Muslim version of ghati,, has appeared
in a context independent of Birlini. The astrolabe itself
is the property of the Time Museum, Rockford, Illinois,
and is of late Indian provenance. It will be published
by Brieux and Maddison as "Ecole de Lahore, No.5'".

109. Another Indian Scheme (136:14 - 137:2)

This may be expressed as

de, = (159/160)S¢
(136:16) te, = (7/10)s
bey = (1/3)s¢ s

where the units are time-degrees. Here only the middle

d
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number differs from the Khand., it being
(136:19) Be, = 0342 x 5321 = 334442,

The name of the person who uses this we trans-
literate as Yaltaban the Indian, but the word is not
Sanskrit, and it occurs in no other known context. The
man is said to have worked with chords of the circle.

The same set of numbers has turned up in another
Arabic manuscript (Hashimi, comm., Section 44.1), but
with no indication as to origin.

110. A Linear Zig-Zag Scheme (137:3-12)

An anonymous document prescribes computing the
"base"

. - 1.1,_23
(137:4,10) b=s,(1+3+3) =

1554’= 1;32 x 5321 = 83;12,12°,

Twice the text says "a third and a fifth of a
third", (137:3,8) but our emendation is justified by the
numerical results in the text.

Then

(137:12) Aal = 80° - b = 30° - 8;12,12° = 21;47,u48°,
and

_ 2
(137:5,12) Aaz-Aal+ g—b

and

i

(137:12)  Aa,= Mo+ 2 b = 25;4,41° + 0324 8312,12°=28321,34°, |

3 2 5
This is an example of a doctrine found in the
cuneiform sources. In it

= o - =
Aa; 30 b Aal2
Aa2 = Aal + A = Aall
Aas = Aa2 + A= Aalo
Aa6 = Aal +5A = Aa7 o

where A = 2~b (see Neugebauer, 1, pp.253-255). See the
discussion”in Section 112 below.

21347,48° + 0;24 x 8;12,120=25;4,410,
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111. An Anonymous Persian Rule (137:13 - 138:2)

This says simply

(137:14) Ael =54 L and e = 5%
(137:15) de, = 5&-(2+§ + 3) and ey = =,
(137:17)  fe, = §-3 and e, = -te,

For the numerical example the results will be

Aoy = 27;53° - 5;210 = 22;320
(137:19) Aa2 = 293540~ (5;21°-2;50°) = 27;23°
Aaa = 323139~ (5;21°-3;0°) = 29;52°
Notice that here the Ae's are found by subtrac-
ting various amounts from 5S4, while the Indian rules
multiply by successive fractions.

112. A Babylonian Scheme (138:3-13)

Using the notation of Section 110 above for this
passage also,

(138:4,10) b = 5,- (25/18) = 1;23,208 = 7;25,50.

(138:5,10) A= [60-2(30-b)]/5 = éb = 0324x7;25,50 = 2;58,20.

So that
Aal =30° - b = = 22;34,10°
(138:7,11) Aa2 = Aal + 4 = 22;34,10 + 2358,20 = 25;32,30°
Aa3 = Aaz + A = 25;32,30 + 2;58,20 = 28;30,50°
Aau = Aaa + 4 = 28;30,50 + 2;58,20 = 31;29,10°
Aas = Aau + 4 = 31;29,10 + 2;58,20 = 34:27,30°
Aa6 = Aas + 8 = 34;27,30 + 2358,20 = 37;25,50°

The linear zigzag approximation to rising times,
here and in Section 110, is found in ancient Babylonian
astronomy. Its appearance in an Islamic context,
and with the name Babylon attached, is a curious example
of the survival of "arithmetic" methods after the

o
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development of trigonometry. However, the use of the
equinoctial shadow to fix the rising times is not char-
acteristic of the cuneiform sources, which relied
rather on ¥ and m, maximum and minimum lengths of day-
light respectively.

It can be shown that for such systems

M= 2(Aau + Aa_ + Aae) = 180° + =) b

57,

18
m= 2 Ao + Ao + Ao = 1800 b

3
and

)

where M and m are measured in time degrees (see Neugebauerl’
We can make no plausible conjectures as to what

guided the unknown originators of these rules, beyond the

general realisation that S¢ and M increase together.

For the rule of this section, b = (25/18)-s¢, so
18 25
= o == = B °
M 180° + 5 * 18 S¢ 180° + 5 S¢,
which is a particularly simple transformation. But in
Section 110, b = (23/15) * S¢, which gives

138
= )
M = 180° + = sy

For both rules the resulting Aa's in BIrini's num-
erical example are in the neighborhood of the trigonom-
etrically computed values.



CHAPTER 23

TIME OF DAY BY SHADOWS

113. The Paulidasiddhanta Rule (138:16 - 140:18)

This chapter, like the preceding one, is long and
of great historical interest. The author states that he
will not make use of the sine function, this being a
treatise on shadows (the tangent and cotangent functions).
Roughly speaking, the chapter divides itself into two
parts. Approximate arithmetical rules are described in
the first, accurate trigonometric methods in the second.
The material was first studied by Davidian.

The first rule given is

(139:8) t=6L/(s -5, +12) ,

vhere L is the length of daylight in day-minutes, S is
the shadow in digits at the time of the observation,
and t is the time in day-minutes since sunrise (if in
the forenoon), or until sunset (if in the afternoon).

The rationale is primitive indeed, consisting of
four arithmetic operations defining a function which has
correct values at its middle and end points and which is
continuous in between. t sunrise and sunset § is in-
finite, so ¢t = 0. At noon § = 5§, , the denominator
becomes 12, and t = L / 2; half the daylight has elapsed.

The rule may be from the original Paulifasiddhan-
ta, and is to be found in Pafica. IV,48.

In 139:13 - 140:18 Biriini seeks to explain how the
method was worked out. It is true that to convert to
time-degrees from day-minutes one multiplies by six, and
he thinks that this is the reason for the factor of six
in the numerator. The twelve in the denominator, he
feels, is not from the twelve-digit gnomon, but from
the same six, multiplied by two because of the doubling
of the noon half length of daylight.
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However, in the next section a rule from a dif-
ferent source is given in which the gnomon length ap-
pears explicitly as an addition to the denominator.
Heunce we feel that this is the case here also. If
this is so, then a multiple of six in the numerator
is the only factor there which will force a correct
answer at noon.

The rest of the discussion is plausible enough.
The author presumes that the inventor of the rule hypoth-
esized an inverse relation between shadow length and
time since sunrise. More specifically,

t _ n

(110:10) 7/ G
But, realizing that for some times and places
S, = 0, he chose to operate with shadow differences

rather than shadows themselves to obviate the break-
down of the rule under such circumstances.

114. A Rule of Brahmagupta (140:19 - 141:10)

In Br2hmasp. 12(not 13,) 52 is a verbal statemen®
which is expressible as

(141:1) e= L2,
the inverse of which is
(181:4) s= H2_,,

In the Sanskrit it is clear that the gnomon length
is to be taken as unity, so BIrfini's suspicions about the
translation were well founded.

In order that this expression give a time of 1/2
at noon it is necessary that Sp = 0. That is, it required
that the sun culminate in the zenith, an event which at
many places never occurs, and at localities where it does,
it happens only twice a year. So the rule is quite bad.

Prthlidkasvamin wrote a commentary, partially extant,
to the Brahmasp. at Kuruksetra shortly before 864. (Pin-
gree, 3 and 4).
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115. An Early Abbasid Translation (141:11 - 142:6)

The rule given in this passage may be expressed
as

(141:14) t = (2/5)-(6L)/(S + 12 - Sn) .

Biruni's comment is clear and complete. Observe that
if the rule of 139:8 is multiplied by two fifths the
present expression will result. But since 60 day-
minutes = 24 hours, multiplying minutes of the day
by 2/3 converts them into hours, and these are the
units yielded by this rule. The text's ghiilijat is
a strange transliteration of ghatiki, like ghatf a
word for day-minute. The text says ghulijat nisf
al-nahar, "the ghtilijait of half the day,(or of noon)"
which would seem to imply L/2 rather than L, but this
must be a slip.

The Abbasid dynasty came to power in 749, and
under its patronage ‘the first serious study of science
by Muslims was commenced.

116. Shadow Lore in Arabic Verse (142:7 - 146:4)

The Arabic word Sindhind is a corruption of
Sanskrit siddhanta. The name was attached to a cat-
egory of zijes based ultimately on the Brahmasp.
These were among the earliest scientific treatises
in Arabic, and they continued to be used by some
devotees after the superior Hellenistic tradition
represented by the Almagest had penetrated into
the Islamic world.

It is true that Sanskrit scientific works were
composed in verse, and the doggerel BiriinI passes on
is alleged to be in imitation. However the verse
form used in Sanskrit is not the dloka. Nowadays
the word is popularly used for poetry in general,
and perhaps this was the case also in BirGini's time.
Apparently both passages are from the astronomical
ode of al-Fazari (Section 39), and are the only
extant fragments of this work. He is supposed to
have written also a book called the Great Sindhind
(see FazirI and Yacqib).
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The poesy can be compressed into the formula
(142:12, 143;12) t=72/ (s - s, +12) ,

for the time in unequal hours from sunrise to the obser-
vation, or from the observation to sunset.

An unequal hour (al-sa<at al-mu<awaja, lit. crook-
ed hour, 145:1) or a temporal hour (al-s3e«at al-zamaniya)
is one twelfth of the time from sunrise to sunset. The
unequal hours vary with the season and the geographical
latitude.

At noon S = Sp and the expression above becomes
t = 72/12 = 6. At sunrise and sunset ¢ = 0, so this
rule, like the one at 139:8, returns correct results at
these times of day, but at no other. In fact, except
for the units, they are the same, for the L of 139:8 is
the daylight length, which is twelve unequal hours.
Substitution of twelve for L in the first gives the
second.

Figure 42 is simply a geometric representation of
the calculations involved in using the rule. The tech-
nique is that of the "gnomon" of Greek geometrical al-
gebra (Heath, vol.l, pp. 78, 151, 379). Since the con-
structioh

(145:9) rectangle GH = rectangle MH = 72,
BE = rectangle MH/KH = 72 /(s - Sp + 12) = ¢,

The passage beginning at 146:1 is simply a device
for avoiding a fractional result. If S > 72, then calculate
60 x 72 /S to obtain the time in minutes of unequal hours.
The procedure should have been,if 5 - s + 12 > 72, calcu-
late 60 «x 72/(S - Sy + 12). The presumption is that less
than an hour has elapsed since sunrise.

117. Precision of the Approximate Schemes
Figure C8 exhibits graphically the accuracy of the
arithmetical rule
t= 72/(s - s, +12)

For ¢ = 24° and three cases,6= €,0,and -€,
an analemma was used to determine graphically the denomin-
ator of the fraction above for each of the six unequal
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Figure C8

hours from sunrise to noon. The result of the division,
t, was plotted to the same scale as the hours, so that a
measure of the accuracy of the various cases is the diver-
gence between the straight diagonal shown dotted and the
various curves.

The best fit is exhibited by the summer solsticial
curve, probably because then, for the ¢ chosen, the sun
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culminates very near the zenith. Indeed, for so crude an
arrangement, the results are quite good, being exact at
about 2;30h after sunrise and with a maximum error of
about a quarter of an hour. For both of the other assumed
situations the results are much worse. The calculated re-
sults invariably lead the actual time except at the end
points, and for the winter solstice the maximum error
attains about three quarters of an unequal hour.

118. Time fram Shadow Length Directly (158:10 - 159:7)

This displaced passage in the edition gives two
very primitive timekeeping arrangements of unknown origin.
The first is displayed below in a table such as Birilini
has in the text for the second:

Unequal hours since

sunrise or before sunset| 1| 2 3 4 516
s - Sp - 12 60 | 24 | 12 2;501 0
S - 8p 72 136 (24 {14350 (|12 |0

Both have been plotted in Figure C9, to the same
scale, although no gnomon units are given for the second.
There the unit of time is a muhurta, a fifteenth part of
the time from sunrise to sunset. Since 15 muhlirtas = 12
unequal hours, one such hour is one and a quarter muhir-
tas, as BirinI says (159:7).

(This same scheme appears also in the India (transl.,
vol. 1 p. 339), and in a first or second century Buddhist
text,the Sardllakarnivadana, edited by S. Mukhopadhyaya,
Santiniketan, 1954, reprinted in P.L. Vaidya, Divy3vandana,
Buddhist Sanskrit Texts 20, Darbhanga, 1959. However, in
the Buddhist text the numbers associated with 6 and 7
muhfirtas are 4 and 3 respectively, instead of 3 and 2
as with Birtni. D. P. )

0. Neugebauer has investigated a table giving the
time of day as a function of integer shadow lengths and
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- . 119. The Rule from the HArtGni Zij (159:8-11)

no-} &
g Expressed symbolically, this passage says that the
so 7 time in (unequal) hours from sunrise to the observation,
1 i or from the observation to sunset, is

(159:9) t = arc Sin g, (150-Csc hn/Csch) ,
i which, in terms of modern functions is
b e t = arc sin (sinh/sin b, ),

provided the unit of arc length is the kardajfa. In some
documents, notably the Khand. 1,30, the sine function
was calculated in increments of fifteen degrees and with
b R = 150'. Each of these arcs came to be known in the
i early Islamic astronomy as a kardaja, from Sanskrit kra-
majyd, the taking of sines in order. Now in an hour the
celestial sphere rotates fifteen degrees, hence one kar-
daja.
s E Like previous approximate rules, the expression
returns correct answers at sunrise, noon, and sunset,
5 but unles ¢ = § = 0, at no other time. For t = 0 when
x : h = 0, and at noon h = hy, so t = arc Sinjsp 150 = 90°=6
20 kardajas = 6 hours.
‘y For variant uses of the term kardaja see Hashimi.
104 ° » | Mention of this zIj, the Hartni, has been encoun-
unequal hours . r tered nowhere else in the literature (see the Survey,
1 2z 5 o s E p. 136). If the rule is typical of the rest of the docu-
— — | ° { ment, it is based on Indian or Sasanian techniques.
1 z
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Primitive Shadow Schemes 120. Derivation of the Trigonametric Expression (159:12 -

160:4, 146:4 - 147:15)

The author now kills two birds with one stone by
. using Figure 43 to obtain a precise rule for t, simultaneous-
:he season. This table originated in fifth century B.C 1y showing that the Harini rule is invalid. Our version of
m22?23aingr:p§eaddto A%exandrié, thence up the Nile, into 1 the figure has th§ same lettgrs as ?hat of the text, yut
S ek and Latin treatises, and even as far as | otherwise bears little relation to it. First, by similar

thicpia. Birlini's tables seem to be independent of ‘ triangles
these. (Bee Neugebauer, 2 and 3.) l 3
. (146:6) EY/EC = OE/OF and EC/EK = LH/(HE=OE) .

Multiplying these two proportions together gives
(146:8) EY/EK = LH/OF = HS/OT .

Figure C9
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Hence

(146:12) HS = EY.OT/EK = Cscgbn Ver‘sp d/Cscgh,
where P = Cos & = OD, the radius of the day circle. So
(1u6:1y4) Verspr = OT -~ HS = Verspd - Cscghn VersD d,/Cscgh,
where r is the hour angle. Or
Vers r = Vers d (1 -~ Csc hn/Csc h) = Vers 4 (1- Sin h/Sinhn) .
w%th any suitable parameter. In terms of the modern func-
tions,

t=d-r=4d - arc vers [vers d (1-sin h/ sin h)]

. Tyis expression, or its equivalent, was well known
in Islamic astronomy. See, €.g., Nadir. Birlni derives a
formula fqgivalent to it in the Tahdid (comm., p. 113)

Bl?uﬂi goes on to remark at 147:3 that the author of
tbe Hartni zij acts as though 7o were the radius of the duy
circle, whereas this is only the case at an equinox, when
the déy_circle merges into the celestial equator. Hence
the Haruni rule in general is invalid. '

121. A Rule of Yacgib b. Tariq (147:15 - 148:13)
] The verbal rule of Yacqiib (see Section 39) is
equivalent to putting

(147:16) Sin ¢ = 2800 | 150
Csc A Sin hn

Assuming that R = 150' and g = 12 and transforming into
modern functions, we have

150" sin £, = 1800 . 150" - sin h
2 12 csc h 150" sin hn = S0 sin h
n
or t = arc sin (sin h/sin hn)’

which is the same as the Harinl approximation of Section 119
a@ove. Assuming that the resulting t is in degrees, divi-
sion by fifteen is the equivalent of using kardajas to ob-
tain hours. The right answer is obtained at noon only,
unless ¢ = § = 0. BirGni's remarks are equivalent to ours
but he again refers to Figure 43, ’
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122. The Rule of the Sh&h 2ij (148:13 - 150:8)

This passage presents us with another fragment
from one version of the Sasanian royal canon., First
calculate

(149:1) 1800/8in h(= 12150 / Sinjgoh = 12 /sinh =12 csc h)
= Cscyp h .
Then determine
(149:2) arc Sin [150 - (Vers d - Vers d Csc hp/Csch)] .

If this is compared with expression (146:14)
above, it will be noticed that the part inside the pa-
rentheses is Vers r. Recalling the definition of the
versed sine function, and the fact that here R = 150,
subtraction of Vers r from 150 will give Cos r. But
the rule says find the arc gine. The answer will be F
instead of the desired r. This is the error to which
Birlini objects, and which he discusses at length in
149:7 - 150:8.

Note the close resemblance between this procedure
and the rule of the Khapd.in the section just below,
including the parameter R = 150. The word muhsa, here
translated as 'computed" is unusual and probably a relic
of early Islamic mathematical nomenclature.

123. The Same Rule in the Khapdakhadyaka (150:9 - 152:2)
The passage which prescribes
(150:10) r = (1/6) arc Vers (Vers d - Vers d - Csc hp / Csc h)

is, except for the added clause "what comes out is the
equation'", a faithful rendition of what is in Khand. 3,16(15).
It is the same as the accurate expression derived at 146:4
except for the factor 1/6, to convert from degrees into
day-minutes (Section 66).

The next verse in the original of the Khand. (transl.,
p.76) says, in effect,

t + e = arc Sin (HS + sM) ,

the letters referring to Figure 43. After this verse the
chapter ends. The substance of this is contained in the
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quotation at 151:10. The other passages Birlni quotes

are not in the original Sanskrit, and must be additions
made in the Arabic version he was using. One such has,
in terms of Figure 43:

If TO - HS > R ,
calculate
(150:16) r = arc Sin [(70 - HS) - R] + 90° ,

where 90° = 90 x 60 = 5400°'.

At 151:7 Birlinl gratuitously adds a limiting
special case. He says if To - HS = 0, then t = e.
But then, in fact t = d = e+90°. What he probably
intended was: if (70 - HS) - R = 0, then t = e. Note
that in our version of the figure the day circle is
assumed to be south of the celestial equator,whereas
in Biruni's example it is north.

124. The Two Karapas Again (152:3 - 153:8)

We recall from Section 108 that Vatedvara was
the author of the non-extant Karapasdra. The Sanskrit
means "Epitome of the Zijes", but the Arabic at 153:13
says k3sir, annihilator or breaker.

The rule from it is

(152:3) Vers r = Vers d -« (Csc h - Csc hp) / Csc h,

which is the relation derived in 146:14 except that here
the common factor Vers d has been extracted.

Our text now takes up the inverse problem, given r,
calculate h. From the Karapatilaka is the procedure

(152:8) Versd= R + Sin e ,
then
(152:10) ' Csc h = Vers d - Csc h,/ (Vers d - Vers r),

If this equation is solved for Vers r the result is
152:3, so the rule is a valid inverse. It is indeed given
in BirGini's translation of the Karapatilaka.

Concerning the Arabic translation of the name Kara-
nagdra, see Section 108.

The same rule appears in Khand. 3, 15(13).
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According to BIrini, Brahmagupta adds, presumably
in the Khand., that if r>15 day-minutes (=90°) then use

Vers r = 2R - Vers (180° - r)

in place of Vers r. Apparently the versed sine was
thought of as being defined only for arcs in the first
quadrant, and this is an extension of the definition.

(This rule is given in the Uttarakhanda of the
Xhand. as quoted by Amaraja in Khand. 3,15 (pp. 112-113
Midra). D.P.)

(Several of the &lokas of the commentator Bala-
bhadra (153:1) are quoted by Utpala on the second chap-
ter of the Brhatsamhit3; the formula given here is not
among them. D.P.)

Balabhadra composed a commentary to the Brahmasp.,
probably at Kanyakubja, in the eighth century (Pingree 3
and 4),

His rule is, presumably when r>90°, put

Vers r = R + Sin (r - 90°) ,

which will give the same result.
The Karapasara method of finding h in terms of r
is to calculate

(153:4) Csc h = Vers d Csc Qn/[sin(t-e) + Sin e] ,

Now, referring to Figure 43 and recalling that
there e is negative, t - e = 7, and d - e = 90°. There-
fore Sin(t-e) = Cos r and Sin e = (d-90°) = -Cos d.
Substituting these in the denominator of (153:4) above,

Csc h = Vers d Csc h,/ (Cos r - Cos d)
= Vers d Csc b, /[R - Cos d - (R - Cos r)]
= Vers d Csc h,/ (Vers d - Vers r),

which is the valid expression (152:10). Hence the Kara-
nasara inverse rule is also correct.

(It is given by Brahmagupta in Khand. 3, 16(1u).
D.P.)



CHAPTER 24

APPLICATION QF AZIMUTHS

125. Altitude from Azimuth (153:11 - 154:16)

In the horizon system, the celestial coordinates
are altitude and azimuth. Thus far the author has con-
centrated on the first of the two. He now takes up the
second, remarking that azimuths may play an analogous
role to altitudes. When he says that the one determines
the other he is assuming that the locality (¢) and the
season (A) are known.

This he proceeds to demonstrate, using Figure 4k.
The text has four different figures to illustrate various
situations, but in fact one will suffice. The object is
to calculate h, OH on the figure, in terms of the azimuth,
declination, and local latitude. Now he evinces no reluc-
tance to use the sine function, which in previous chap-
ters he avoided.

BirGni remarks (in 154:5) that, kM having z as its
pole, it is the complement of the angle at z. This may
be seen by noting that if the great circle between M and
Z is drawn (not shown on the figure), spherical angle MzH
is a right angle and arc MK is measured by MzZK. Angle
MZE, Biruni's angle 2z, is the complement of MzK. In other
respects the figure is self-explanatory.

Application of the Rule of Four (Section 101) to
triangles EMK and EDG gives

(154:7) Sin (EM = 3Z) / Sin MK = Sin(ED = 90°) / Sin (DG = ),

S0 MK can be calculated.

By the law of sines applied to the right spherical
triangle ZHE,
(154:9) Cos MK (=sin z) / Sin E = Sin (EH =az) / Sin ZH,

from which 2H can be computed. If § = 0 the altitude would
be ZH, hence it is called the '"mean altitude'.
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Another application of the Rule of Four, this
time to the triangles 2zSA and 20L, gives

(154:11) Sin(2zs = ZH) / Sin(SaA=¢) = Sin 20 / Sin (0L =§)

This gives 20, the "equation of the altitude'", which
added algebraically to the mean altitude is HO = h, the
desired altitude.

126. The Time Since Sunrise, in Terms of the Azimuth
(154:17 - 155:15)

Given the same quantities, ¢, 8§, and the azimuth,
it is possible to calculate t. The demonstration pro-
ceeds as follows.

By the law of sines applied to the right spherical
triangle EHZ, still in Figure LU,

(154:18) Sin (EH=az) / Sin EZ = Sin Zz / Sin (H=90°)

The angle at Z having been determined in the sec-
tion above, the arc EZ can be calculated. Now apply the
Rule of Four to the triangles OZL and OTS to obtain

(155:1) Sin 0z / Sin 2L = Sin (or =8) / Sin (TS = ¢ ).

The arc 0z, the equation of altitude, was deter-
mined at the end of the preceding section. Hence 2L
can be found. The "mean ascension'", arc EL = ZL + EZ
is now known, and algebraic addition to it of the equa-
tion of daylight, e = EC gives t = CL. As usual, Birunl
examines special cases. If az = 0, then EZ = 0, and if
§ =0, 2L = 0. (155:7)

In the Tahdid (comm., p. 115), and by using much
the same methods, he solves the same problem, except
that there he solves for the hour angle rather than the
time from sunrise (or until sunset).

127. Azimuth fram Altitude (155:16 - 158:9)

The author now takes up a problem which can be
regarded as the inverse of that solved in Section 125:
given h,8, and ¢, calculate the azimuth. For this he
uses a new figure, 45. Now he operates on plane tri-
angles inside the sphere; with Figure 4u4 he dealt with
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arcs and angles on the surface of the sphere.

The text's description of the figure is clear and
calls for no remark beyond noting a slight anomaly. Birfini
calls KzM the "day triangle", whereas it is what he usual-
ly designates as the "time triangle" (see Section 77).

As for the demonstration, applying the law of sines
to the plane right triangle Kz,

(157:9) kz (= Sin h) / zM = Sin (&4 =§ ) / Sin (<k=¢) ,

80 ZM can be found. We note incidentally that since
sin §/sin ¢ = cos ¢ / sin ¢ = cot ¢, Birani here has
passed up an opportunity to save himself a division
operation by utilizing a shadow function.

Again, as in Section 93, he assumes that the reader
is capable of computing the rising amplitude, w = BF, in
terms of 6 and ¢, so that Sin w = ML can be regarded as
known. Hence the argument of azimuth,

(157:12) ZL = ZM + ML

can also be obtained. The addition is algebraic, since
as we would put it, either or both of the two components
may be negative.

The text now has, based on the similarity of tri-
angles EZL and EHY,

(157:17) (2 = Cos h)? / 2I2 = (&m = R)2 / A¥2

This is correct, but there is no need whatever to
square everything in sight. There would be some justi-
fication for it if one of the elements in the proportion
were obtained by means of the Pythagorean Theorem, as a
square. This happens just below, but not here. Solution
of this expression gives

(158:1) Sin az = #Y = /ZI2.R%/Cos? h

from which the desired azimuth may be found.

The azimuth of the shadow is, of course, equal but
opposite in direction to the azimuth of the sun (155:16,
158:3).

Birtni now describes how to obtain the azimuth
reckoned from the north (or south) point. It is A = HB;
one need only take the complement of the arc already
found. Perhaps the author has in mind to calculate it
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directly, before BH has been found. He p?escribes
(after we have restored a missing clause in the text)

— 2 _
(158:4) Sin AF = HC = Jlcos? b - 72)-R2/Cos? h =

= ViF2.R2/Cos? h

which follows from the similarity of triangle§ HCE a?d
ZLE. Here there is some excuse for the squarings, since
LE appears already squared. But by all odds the pre-
ferable choice would have been to take the square ?oot
of IE? as soon as it emerges, and then square nothing.

In the Tahdid (comm., p.61) BirGini solves Fhe
same problem. His method is closely related to this,
but he does not assume that w has been calculated.

We remind the reader that the next passage fol-
lowing the subject of these remarks, l§8:10 - 160:4, is
an intrusion in the printed text. It is commented upon
in Sections 118-120.



CHAPTER 25

DEFINITIONS OF THE MUSLIM TIMES OF PRAYER

128. Times Forbidden for Prayer (160:8-19)

It is incumbent upon every Muslim to pray five
times daily; moreover, the proper times for two of these
prayers are defined in terms of shadows. Hence it is
most natural that a treatise on shadows written by a
Muslim should contain a discussion of these matters.

In this chapter our author presents the sources from
which the sometimes conflicting definitions are derived.
In the next chapter he describes instruments for deter-
mining the prayer times.

After discussing the times at which prayer is
especially interdicted, he exhibits in detail the tra-
ditions and Quranic passages from which the prescribed
times have been inferred. The elaborations and variants
advocated by the four orthodox legal schools and the
principal Islamic sects are cited, followed by brief
enumeration of the prayers of other religions. The
chapter closes with a descrlptlon of the technical qual-
ifications for a muezzin, one who calls the faithful
to prayer.

Prayer is prohibited at the instants of sunrise,
noon, and sunset. This rule, like the prohibition of
intercalation in the lunar calendar, was part of the
process of making Islam distinct from competing religions.

Of the three faiths mentioned in this passage, the
Harranians, also known as the Sabians, were adherents of
a pagan sect tolerated by Islam. Centered at Harran on
the upper Euphrates, they worshipped the planetary dieties
(EI, vol. 4, p. 21). Their fixed times of prayer were
sunrise, noon, and sunset (Chren., transl., p. 188).

The orthodox Hindus likewise engage in devotions
thrice during the day, precisely at the juncture (samdhy3,
whence the name of the ceremony) of the three divisions

Section 128 Page 133

of the day: forenoon afterncon, and night. So the three
times are again sunrise, noon and sunset. (see Srina-
vasan, p. 161, and Kane, p. 701).

The Magians, or Zoroastrians were accorded a t?l—
erated status by Islam along with the Jews and the Chris-
tians (EI, vol. 3, p. 97). The Zoroastrian custom of
greeting the sunrise by a fanfare from the roof of the
royal palace survived well into modern times in Muslim

Iran.
The notion of the sun rising between the horns

of Satan is attributed by a tradition to the Prophet
himself (Wiedemann and Frank, p.7).

129. Quotations fram the Authorities (161:1 - 164:13)

In this passage the somewhat vague and occasionally
contradictory traditiops concerning the prayer times are q
reproduced verbatim. The same material, greatly condensed,
is displayed in tabular form on page 135 below. The times
themselves are shown graphically with the line diagram of
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In the report involving the archangel Gabriel and
his praylng with the Prophet at the cubical building in
Mecca which houses the sacred black stone (161:12),the
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shadow's being like a rope is taken to imply its thinness.

Hence the time is noon, the time of minimum shadow, S, .
The requirement that the shadow of a thing sha‘fl
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nisba of the one who transmitted it was al-Laythi, not
al-Zahrani.
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The Humayd b. Thaur al-Hildli quoted in 165:10
was a seventh century poet, one of whose patrons was the
caliph Marwan (EIne, vol. 3, p. 573).

At 166:6 is the first mention of the founders of
two of the four orthodox Muslim legal schools. Ab{
‘Abdallah Muhammad b. Idris al-Shafie<i (d. 820) was
raised in Mecca, studied in Medina under M3lik (see the
next paragraph), and taught in Baghdad and Egypt. His
eclecticism made him a sort of middleman between the
traditionalists and the advocates of independent jurid-
ical rulings. (See EI, vol. 4, p. 252).

Malik ibn Anas (d. 795) was the author of the
earliest extant book on Muslim law. Most of his life
was spent in Medina, and his views tended to be the
consensus of legal opinion in that city. (See EI, vol.
3, p. 205).

131. Final Definitions ~ Nocturnal Prayers (166:10 - 168:1)

Each of the five prayers is now taken up systemati-
cally, commencing with the nocturnal ones. The names of
four additional jurists are cited here.

Abl Hanifa, al-Nu<m3n b. Thibit (d. 767), founded
the third legal school, that of “Iraq. He lived in Kifa,
but eventually died in prison in Baghdad. His task was
to systematize legal theory. (167:3, see EIne, vol. g

. 123).

) P AbG Yisuf, Ya*qub b. Ibrahim al-Ansdri (d. 798)
was a disciple of Abli HanIfa although he was more depen-
dent upon tradition than his master. He also studied
under Malik. (EIne, vol. 1, p. 164).

Another follower of Abu Hanifa and sometime student
of Malik was Muhammad b. al-Hasan al-Shaybani (d. 805).
His own teaching made tradition fundamental. (EI, vol. 4,
P- 271).

The head of the fourth legal school was Ahmad ibn
Hanbal (d. 855) who studied in Baghdad under Abd Yiisuf.

As a traditionalist he opposed the rationalist Mu<tazilite
sect. (EIne, vol. 1, p. 272).

All these individuals agree that the interval for
the first nocturnal :prayer, that of sunset, commences as
soon as the sun's body has disappeared below the horizon.

e
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Al-8hafi<I alone requires that the prayer begin imme-
diately after sunset. The others agree that the time
may be extended throughout the duration of twilight,
there being individual differences concerning the lim-
iting color of the waning sunlight (167:5).

The time during which the nightfall prayer must
be prayed begins with the end of twilight and ends at
dawn (167:12). This is the second nocturnal prayer.

The time for the third and last, al-subh, com-
mences with the true dawn and lasts until sunrise
(167:15, cf. Wiedemann and Frank, p. 768[12]).

132. Final Definitions ~ Daytime Prayers (168:2 - 169:9)

At 168:2 the discussion of the time for the dawn
prayer is abruptly cut off and the new paragraph breaks
in with the presentation of the opinions concerning
the noon prayer already underway. Evidently there
is a hiatus, probably short, in our single manuscript
source.

The matter being considered is the breakdown in
the naive injunction appearing repeatedly in the tradi-
tions (e.g. 161:13) that the time for the noon prayer
expires (and that for the afternoon begins) when the
shadow of an object equals itself (S = g). This is the
time in the afternoon when the declining sun passes
through an altitude of h = 45°, As remarked in 168:3,
there are many latitudes for which this requirement
cannot be fulfilled, at least for part of the year.

To demonstrate this, recall that on any day,
max h occurs at noon. For any latitude, the minimum
noon altitude occurs on the first day of winter, when
the day circle of the sun is the celestial tropic of
Capricorn (on Figure Cll). On that day hp = §-¢,
and the condition above will fail whenever §-e<45°,
or 90°-¢-e<45°, or

1° 1°
¢ > L45° - g = y50 - 235- = 215

This fact had been realised long before Birini's
time, and by AbG Yisuf, Mubammad al-Shaybini, and al-
Shafiei the impractical injunction had been replaced by
@ rule depending implicitly upon both the latitude and
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Figure Cl1l

the season. It is that the time for the noon prayer ends
when the horizontal afternoon shadow of a vertical gnomon
equals the gnomon length plus its noon shadow. Symbolical-
ly

S=Sn+g,
a requirement which can be applied at all latitudes outside
the arctic regions.

Abu Hanifa (according to most traditions) did the
same thing with the primitive rule
S =29,

and put for the end of the noon prayer

S =5, +25 ,

giving a time later each afternoon than that of the ocher
three schools.

F
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At 169:5 the opinion of three jurists is given
to the effect that it is permissible to delay the
afternoon prayer through the twilight. Of these, Malik
has been introduced in Section 130 above. ‘Atd' b. abi
Rabah (d. c. 732) was prominent as a teacher in Mecca
(EIne, vol. 1, p. 730). AbG °Abd al- Rahman Ta‘ds b.
Qays@n al-Hamdani was an authority on tradition (hadith)
and jurisprudence who died in Mecca in 725 (Ibn Khallikan,
vol. 1, p. 642).

133. Miscellany (169:10 - 174:14)

In addition to the compulsory prayers, the Muslim
may carry out extra, optional devotions. The reason for
sometimes forbidding them (in 169:15) is probably to
insure that they will not carry over into the prohibi-
ted times when the sun is on the horizon.

In the tradition quoted at 169:18 the commentator
mistook the word sharag (choking) for sharg (sunrise, or
east), written in the same way. Hence he thought the
remark was restricted to the morning prayer, whereas,
as Abd Rayh@n explains, all the prayers are intended.
The general idea seems to be that within the allowable
time span of a particular prayer the earlier it is
prayed the better. There is no trace in this text of
the practise of dividing each span into five parts in
descending order of desirability. This development
may have taken place after Birtini's time. (Cf. Wiedemann
and Frank, p. 1).

Abu “Ubayd (169:19) al-Q3sim b. Salam (d. 834)
was a grammarian, expert in the Qur'an, and judge, who
lived in “Irdq, Asia Minor, and Arabia (EIne, vol. 1,

p. 157).

‘The Shica (170:17) make up one of the two major
subdivisions of Islam. They do not recognise the first
three orthodox caliphs, holding that the succession
passed from the Prophet directly to his cousin and son-
in-law €Ali ibn abi Talib (172:17). (See EI vol. 4,

p. 350; EIne, vol. 1, p. 38l1).

The Zaydites (171:4) in turn are a subdivision
of the Shi¢a, powerful in the Yemen, who follow Zayd
b. ©Ali, Zayn al- <Abidin (d.c. 740, EI, vol. 4, p.1196).
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AbT “Abdalldh Muhammad b. Karram al-Sijistani (171:14,
d.c. 870) was the founder of a sect, now extinct, which
flourished in Khurd@s@n. The Karramis attempted to fit
elements of Aristotelian philosophy into the tenets of
the Qur'an (EI, vol. 2, p. 773).

Of course it is true that half the difference
in shadow lengths does not correspond to half the dif-
ference in the respective times (171:18).

All agree that the noon prayer is designated
the "first", Each of the prayers includes a fixed
number of rak<as as shown below, a rakca being a pre-
scribed set of genuflections with accompanying recita-
tions.

1., Noon L
2. Afternoon 4
3. Sunset 3
4. Nightfall 4
5. Dawn 2

The numbers are those given in order in the couplet
quoted at 172:10.

There is general disagreement as to which prayer
is to be known as the "middle" one. At least one sup-
porter is named for each of the five except the nightfall
prayer, Biriini's own preference being for the afternoon
(173:18).

Of the individuals named in this passage, Ibn
“Abbas (d.c. 687), the founder of Quranic exegesis, was
the greatest of the first generation of Muslim scholars
(EIne, vol. 1, p. 40).

Qatadda (d. 735) was another learned divine,
resident in Bagra (Nicholson, p. 294).

A certain Abu Bakr b. Mujdhid al-Tamimi (d. 936)
was in his’ time the chief of the Qur'dn readers of Baghdad
(GAL, suppl. vol. 1, p. 320). But his relation, if any,
to the Mujdhid of 172:17 is not established.

Jabir b. <“Abdulldh al-Ansari (173:6) was one of
the Companions of the Prophet. He was a great authority
on the traditions (hadith) (Isticab, vol. 1, p. 219).

“Abdallah b. “Umar (d.c. 750) was a son of the
caliph *Umar II. He served as a provincial governor

Section 133 Page 141

(EIne, vol. 1, p. 53).

Qubaysa b. Dhuwayb (173:13) was another of the
Companions of the Prophet (Isticab, vol. 3, p. 1272).

“Arafat and Muzdalifa (173:2) are the names
of two localities near Mecca where special ceremonies
take place during the annual pilgrimage (EIne, vol. 1,
p. 604; EI, vol. 3, p. 800).

The word qunut (173:3) is a technical term
used in the Qur'an. Its meaning is disputed (EI,
vol. 2, p. 1118).

134. The Prayers of Other Religions (174:15 - 175:11)

Abli Rayhan's information about the Jewish prayer
times may have been garbled in transmission. Maimonides
(pp. 98 - 100), writing somewhat later than Birini,
states that there are two obligatory services of prayer
daily, morning and afternoon, with eighteen benedictions
each. He adds that on days of additional offering there
is a third, an optional evening service which, however,
has been adopted by all Israelites as obligatory. So
the total number is the same as our source reports. But
the distinguishing of a white thread from a black asso-
ciated with the third prayer at 174:19 is an ancient
criterion for the beginning of the dawn prayer. Per-
haps this should have followed immediately after the
mention of dawn. And perhaps mention of the afternoon
prayer as the third has fallen out of the original text.

As for the Christians, Professor A. V&dbus writes
that Biruni's information is based ultimately upon the
Syrian tradition, the so-called Order of the Apostles,
being published by him as a part of the Syriac "Synod-
icon of the West Syrian Tradition, I".

We find no information on the Manichean (see
Section 76) prayers to confirm or supplement the sta-
tements of the text, tabulated on the next page.
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For the initiates For the laymen
No.| Time Genuflections No.| Time
1 | noon 37(two less on 1 | noon
Mondays)
2 | afternoon 21 2 | nightfall
3 |nightfall 25 ‘3 | dawn
4 | a half hour
later 25 4 | sunrise
5 |midnight 30
6 | dawn 50
7 | beginning of
day 26

Concerning the Zoroastrians,see 160:8 and Sec-
tion 128.

135. Qualifications of a Muezzin (175:12 - 180:11)

At each mosque there is an official charged with
the duty of announcing from the minaret the times of
prayer. Each day he must ascertain the instant of the
sun's culmination and the gnomon's shadow length, S,
at that time. Birfini seems to exaggerate the diffi-
culties involved. Of course, in the absence of relia-
ble mechanical clocks the intervention of clouds, as
he reports at Ghazna (176:12), would be frustrating.

There was no need to obtain a daily observation
of S,, however. Many zijes have tables showing h, =
$ + 8§ as a function of the solar true longitude, A.

It would not be difficult to use such material to cal-
culate a table of §,(t) = Cot h,, where the argument

t stands for a calendar date. In order that the table
serve for more than one year the underlying calendar
must be solar (Byzantine = Rumi = Julian), not lunar
(176:4, cf. Section 28). Further, the person who cal-
culates the table must be able to convert from t to

Xs (mean longitude) to A_, that is, he must take into
consideration the variation in solar angular velocity
(176:6). Once in possession of S, the determination
of the shadow length for the afternoon prayer is
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immediate, whether one follows Abl Hanifa or the others.

As for the fixing of noon, the shadow length
being minimum at that time, its rate of change then
vanishes, and the instant is difficult to observe. The
rate of rotation of the shadow does not vanish, and the
best method of finding local apparent noon seems to be
to note when the shadow crosses the previously marked
meridian line, Birtni's second method (177:5). Meridian
determinations have already been discussed, in Chapters
18 through 21.

In the event of cloudy weather there was no es-
cape, except guesswork, from the use of clepsydras or
hour glasses (178:13), however unsatisfactory. Such a
device is described in Wiedemann and Frank, p. 3. Even
so there would remain the problem of converting from
shadow length on a particular day to a corresponding
time, in equal or unequal hours. This in turn entails
a knowledge of daylight lengths, which depend upon t,¢,
and € in addition to the solar complications mentioned
above.,

So the poetic peroration with which Birini ends
the chapter is on the whole justified. The relations
involved are complicated combinations of trigonometric
functions, and a competent muwaggit (timekeeper) would
indeed need a reasonable command of the ancient authors
named in 180:4. Such practitioners did exist in profu-
sion, and their passion for elegant and precise compu-
tations resulted in the <ilm al-migat (science of
timekeeping). Their massive achievements, only now
being systematically explored, are impressive by any
standards. (See King, 1, 2, and 3).

The Idris mentioned at 180:8 appears twice in
the Qur'an and is usually identified with the Biblical
Enoch. Since in legend he is supposed to have made a
trip through the celestial spheres on his way to para-
dise, it is appropriate to invoke his name in a para-
graph stressing the importance of astronomy for religion.
(EIne, vol. 4, p. 350; Bouché-L., p. 606).



CHAPTER 26

DETERMINATION OF THE PRAYER TIMES WITH
INSTRUMENTS

136. Determining the Noon and Afternoon Prayer Times
(180:14 - 183:1)

After repeating the doctrine that the noon prayer
may commence at any time after noon has passed, the text
gives the rule (181:3):

if S, < 8§ it is the forenoon,

but if S2 > Sl it is the afternoon,
where the subscripts indicate the order in which the
two shadow observations are taken,

The author finde this easy tc demolish, noting
that we may in fact have S,=5 if the two times happen
to be spaced symmetrically wi%h respect to noon. Or
S2 <51 may hold and yet the second observation may be
in the afternoon by a time less distant from noon than
was the first observation. What is most serious is the
slow variation in shadow length in the vicinity of
noon (cf. Section 135 above). For these reasons he
recommends abandoning the rule and the use instead of
a meridian line marked on the ground at the foot of
the gnomon (182:3).

For the beginning of the afternoon prayer one
need only wait in the afternoon until the gnomon's
shadow attains the length Sptg, or Spt+2g if the opinion
of Abl Hanifa is preferred.

If it is more convenient to work with solar al-
titudes rather than shadow lengths, the same time will
be obtained by the rule quoted from Habash. Expressed
in symbols it is

——
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(182:13) 90°-arc TanBO(TanGOhn + 120) ,according to Abli Hanik
»={

80°~arc Tang,(Tangyh, + 60),according to others ,
since for Habash g = 60.

137. Prayer Curves on the Astrolabe Plates (183:2 - 184:9)

For a general description of the astrolabe the
reader may consult Section 50 above. To use it for de-
termining the prayer-times it is necessary to have suit-
able curves engraved either on each of the plates inside
the mater or on the back. Here Biruni describes the lay-
out of the former,

It is necessary to have at hand tables of hg, the
solar altitude, for the times in question. The indepen-
dent variable is A_ with domain -90°¢) £90°, with the
parameter ¢ fixed for each plate. Such tables are to be
found, e.g.,in the work of Abii al-Hasan al-Marrakushi
(Sedillot, J.J.).

The curves are drawn on the lower left-hand quad-
rant, below the map of the horizon. It would be more
natural to have them above, but the nocturnal portion
was probably chosen because it is unencumbered by the
net of coordinate curves which cover the diurnal part.

To determine a point on the curve, choose a
value of Ay and look up the corresponding h_. Rotate
the rete (cankabiit, Hartner's "spider") until the point
on the ecliptic circle corresponding to Ag falls upon
the almuncantar corresponding to hg on the plate below.
then make a mark on the plate under the point on the
ecliptic scale corresponding to A_+180°, the sun's "op-
posite point" (183:12). Each such point will fall be-
low the horizon, since the sun has been placed on an
almucantar above it. The set of all such points makes
up the curve in question. (Cf. Wiedemann and Frank,
p.26).

Representations of plates with these curves may
be seen, e.g., in Figures 57-63 of Plates 16-19 in the
back of Sedillot, L.A. An actual astrolabe having them
is the one made by Muhammad b. al-Battiiti, M-35 in the
collection at the Hayden Planetarium, Chicago. But the
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prayer curves appear only on the plates for ¢=36° and
$=36;40°, probably having been added sometime after

the instrument was made, and by a craftsman less skill-
ful than the original maker.

_ On all these the curves are either dotted, as
‘“Biruni suggests (183:17) or having very short cross-
hatchings to distinguish them from the lines of the
unequal hours.

A quick method of approximating the prayer
curves and those of the unequal hours is to plot only
three points on each, and to pass a circle through
each triple of points. The curves of the equal hours
are indeed circular arcs, drawn as though the horizon
had rotated about the plate center. For them no loss
of precision is involved if this technique is used
(184:1-9).

138. Using the Prayer Curves on the Plate (184:10-19)

The curves having been laid out, they may be
applied as follows. For any particular day mark the
corresponding Ay + 180° on the rete. Then the amount
of rotation of the rete required to carry the marked
point from the relevant curve to the horizon (or the
meridian) is a measure of the time between the prayer-
time and sunset (or from noon to the prayer-time).

Conversely, at any time of the afternoon take
the solar altitude, hg. Mark the proper Ag on the
rete and rotate the latter until it falls on the al-
mucantar for hg. Now mark Ag + 1809 and note the
relative positions of the mark and the appropriate
curve. If the mark falls on the curve the time is
the beginning of the prayer span; if the mark is be-
tween the meridian and the curve the time for prayer
has not yet arrived, and so on.

139. Curves of Solar Depression and the Unequal Hours
(185:1 ~ 186:1)

A solar depression of 18° below the horizon is
?aken by our text as marking the beginning of dawn if
in the east and the end of twilight when in the west.
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Other values for the critical depression were also in
use, and some astronomers, including Birtni, used dif-
ferent amounts for the eastern and western horizons.
(Wiedemann and Frank, pp. 13-2u4),

Whatever the value of the parameter, the sun's
crossing marked the beginning of the time for the dawn
prayer and the end of the time for the sunset prayer,
when in the east and west respectively.

To this end Birtuni prescribes the marking of
the almucantar for h = -18° on each plate. Its use is
analogous to that of the other almucantars. Since the
sun is below the horizon at both these times it cannot
be used for direct observation, but the astrolabe can
be employed to calculate mechanically the time, say,
from sunset to the end of twilight as a function of Ag.

The “Umar mentioned at 185:4 was the second
caliph having that name (see Section 129). He reigned
only from 717 to 720, but his saintly character made
his brief rule memorable (Nicholson, p. 204).

This passage simply points out that since the
definitions of the times of prayer and the hours are
essentially different, it is erroneous to identify any
particular prayer-time limit with any particular hour.
This goes also for the similar attempt on the part of
the imadm Ja<far al-$adiq noted at 163:8. :

The rules reported in 185:11 - 186:1 seem to
be, as Abd Rayhan infers, a case of confusing two
meanings of the word asba<. The original denotation
is "finger", like the Latin digit. The same word
means also a unit, a twelfth of a gnomon of arbitrary
length. In 185:11 the statement probably intends
"when the shadow is increased by a fingerbreadth",
i.e., a little bit. The little bit is to make it
certain that noon has actually passed. The thirteen
in 185:13 may mean "twelve digits (the gnomon length)
plus a finger breadth".

140. Prayer Curves on the Astrolabe Back (186:2 — 188:3)

The object of the remarks in 186:2-5 is to insure
that the alidade be so constructed that one of its edges
will be a radius of the astrolabe back. Then when the
instrument is suspended in a vertical plane and an object
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is viewed through the alidade sights the edge of the ali-
dade will cross the protractor scale on the back at the
altitude of the object. Two types of such alidades are
illustrated in Hartner, p. 2550.

Instead of using the plates at the front of the
instrument as described in Section 137 above, it is
possible to lay out curves for the prayer times on one
quadrant of the back. Three such are needed, for the
determination of

(1) noon,

(2) the beginning of the afternoon prayer
time, and

(3) the same, but according to the opinion
of AbT Hanifa.

Two variables are involved in the location of each
point on each curve:

(a) the solar longitude, A, and

(b) the shadow, cast by a gnomon at the time
and locality in question.

It is implicit that this set of curves will be
valid for only one ¢.

For A a scale is laid out as shown in Figure 47
along a horizontal radius. From each graduation of the
scale a quadrant is drawn concentric with E, the center
of the astrolabe back. For the shadows a scale is thought
of as extending from G in the direction of C. To any par-
ticular A there corresponds a unique arc, and three shad-
Ows, say GY, GK, and GL for phenomena (1), (2), and (3)
?espe?tlvely. Draw EY, EK, and EL intersecting the circle
in points M, S, and 0. As A runs through its domain of
values, M, S, and O will trace out the three required
curves.

. Once drawn, the curves are used as follows: Some
time in the afternoon take the solar altitude. This will
set the alidade along a particular radius through E. Now
note which member of the family of circles corresponds to
that particular day. If the circle, the alidade edge,
and the curve through s, say, are all three concurrent
at a single point it is the beginning of the permissible
time for the afternoon prayer. If the altitude is less

Section 140 Page 149

the time has already commenced, and conversely. The sen-
tence at 180:2 is a reminder of the uncertainty surrounding
observations in the vicinity of noon. If the observation
happens to be in the forenoon the rule above does not hold,
for then the altitude is increasing with time.

Photographs of actual astrolabes having these
curves engraved on the back are Plates IV, X, and XIII
in Mayer.

141. Timekeeping with Astrolabes (188:4 - 191:10)

The paragraph 188:4-8 mentions but does not describe
2 quadrant on the astrolabe back used for telling time.
Many astrolabes indeed have one quadrant inscribed with a
characteristic family of six circles tangent to the hori-
zontal at the center of the back. Explanation of their
use, together with a proof of the construction's validity,
may be found in Cittert, p. 4l4. Examples of such astrolabes
are shown in Mayer, Plates XIV and XVII.

The rather primitive device described in the next
passage, 188:9 - 190:3 consists of a scale having unequally
spaced graduations laid out on the alidade as indicated in
Figures 48 and Cl2. Marks §, 0, F, Y, and M are made on
the edge TK at $ such that TS = Tanj, 15°, 70 = Tanjp 30°.
and so on, where the scale is such that the width of the
alidade sight, TH, is taken as twelve digits. The inte-
gers 1 through 5 (for the forenocon hours) and 11 down to
7 (for the afternocn) are inscribed on these five marks
respectively, in pairs as shown in Figure 48.

To meke use of the arrangement, set the alidade
at the ncon solar altitude, hp, for the day in question.
Then suspend the astrolabe as usual when taking an ob-
servation, so that the face is in the vertical plane
passing through the sun. Read the time in unequel houre
by noting where, on the scale described above, the edge
of the shadow of the sight falls. Thus, whenever 6§ = 45°
the scale will read three hours of the forenoon or nine
in the aftermnoon. The results will be accurste at noon,
but in general at no other time. For at noon, 6 = §0°
and the whole alidade will be in shade (cf. 190:1).

But at sunrise, which should read zero on the scale,
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Figure C12

h = 0° and hence § = hp. 8o, only on the rare occasions
when the sun culminates in the zenith (making h,=90°)
does the scale work at both endpoints. There is no
reason for supposing it to be any better in between.
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Instead of laying out the scale graphically, this
may be done numerically with the aid of the table of
Tany6, 6=15°, 30°, 45°, 60°, 75° given in the text at
190:12. Except for the trivial restorations noted in
the critical apparatus, all entries have been calculated
correctly to the one fractional sexagesimal place shown.

We do not find this table in either of the extant
zijes of Habash (Berlin or Istanbul, see 190:12).

The tangent function increases ever more rapidly
as the argument approaches 90°, hence successive grad-
uations on the scale diverge sharply. To damp this
effect the scale may be projected on the diagonal, TL,
as shown in Figure 48. The name sig al-jardda (locust's
thigh, 191:5) is probably from the resemblance between
the resultant triangle on the alidade and the sharply
tapering leg of the grasshopper. The same name is
attached to a different type of sundial in Sedillot, J.J.,
vol. 2, p. 440, plate X.

142. A Semi-cylindrical Alidade and Other Instruments
(191:11 - 192:11)

A variant of the construction described just
above is the rather elegant application of elementary
geometry pictured in Figure C13. It has beenelabora-
ted from Figure 50 in the text. A strip of material
is bent into a half cylinder and mounted on the ali-
dade. Since the scale is now circular it follows that
each length on it is twice the angle 6 formed by the
shadow-edge and the tangent to the upper limb of the
strip. Hence the distances between any pairs of suc-
cessive hour lines are equal. As the drawing indi-
cates, it is used in the same manner as the locust's
leg, and is subject to all its shortcomings.

The astrolabe can be employed as a portable
sundial by putting a folding gnomon on one of its
surfaces and laying out the proper curves on the sur-
face. As Birtinl indicates in 192:7, the traces of the
end point of the gnomon's shadow make up a family of
hyperbolas bounded by the hyperbolas for the solstices.
It was customary to engrave only the solsticial curves



Page 152 ' Section 142

zenith

Figure C13

on the plate, to mark on each pair the points indi-
cating the beginnings of the hours, then to join cor-
responding pairs of points with straight lines. Nu-
merous examples may be seen in, e.g., Sedillot, J.J.,
vol. 2, figures 85-112.
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143. Types of Sundials (192:12 - 194:18)

The types of plane sundial are said to be those
with the plate in the plane of the

1) horizon,

2) meridian,

3) prime vertical,

4) celestial equator.

All four cases can be treated as one if the plate
is regarded as a horizon and the particular ¢ appertaining
to it determined. For 2) the ¢ is taken as zero; for 3) it
is the § of the locality, and for 4) it is 90°,

The fact that the family of conics for 4) becomes
the set of circles having the gnomon base as center is
implied in 193:9.

In 193:15 -~ 194:8 the instruments mentioned in
this concluding section of the chapter are insufficiently
described tc give a complete notion of their appearance,
and we have not encountered their names in otherp contexts.
The ruler with a movable gnomon in some ways resembles
the mukhula described by Livingston. The use of "Byzantine",
i.e., Julian months (as in the instrument destroyed by the
muezzin in 37:7) is simply an application of a solar calen-
dar to identify segments of the ecliptic.

R



CHAPTER 27

THE TANGENT FUNCTION APPLIED TO SPHERICAL ASTRONCMY

144. From Canplete Quadrilateral to Spherical Triangle
(194:11 - 199:4

Since, as the author himself says, he has already
worked over (in Chapter 10) the relation between the shad-
ow functions and the sine, as well as the effect on the
shadow functions of shifting parameters, it is difficult
to fathom his objective in the opening passage of this
chapter. With Figure 51 he regards zD and GB as corres-
ponding sides of circumscribed and inscribed regular poly-
gons. Thus each side of the outer polygon is a doubled
tangent, and of the inner a doubled sine. This greatly
restricts his choice of arcs, and he makes no use of it
in what follows. He notes that

(195:8) BY/YE = TH/TE = DA/AE ,
and that TH = TangaB and AD = TanpAB .

Moreover, the regular polygons he has hypothesized
can only exist if the adjoining arcs are equal., TFor in-
:Ignce, since IG % ﬁa, G cannot be used for the adjacent

es.

Attention is now transferred from the plane to the
sphere, and the material presented is clear and significant.
Figure 52 is used to state Menelaos' theorem, proved in
Almagest 1, 13. In the complete spherical quadrilateral
shown there,

(196:12) Sin EB / Sin AF = (Sin 2D / Sin az)-(Sin GB / 8in DG)

Let AB = BG = AD = EG = 90° Then the angles at E, B,
and D will be right angles, and the angles at 4 and G are
measured by arcs BD and EB respectively. It was shown above,
at 57:7 (Section 43), that
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(196:16) Sin EB / Sin (EA = EB) = TanEB /g,
and Sin pz / Sin (2Aa = DZ) = TangDz /g .

Substitute these expressions in (196:12) to
obtain

(197:1) Tan £B / g= (TangDZ/ g )+ (8inp(6B=90°) / Sin DG).
For g = R this becomes, upon inverting,

(197:6) R / Tan EB = (R / Tan Dz)+(Sin GD / R),

whence

(198:4) Tan pZ / Tan EB = Sin GD / R .,

This we would do by cancelling R from both sides
and rearranging what is left. Birtni is constrained to
justify it by manipulations with compound proportions.

In any event, since EB = <G, he has now proved the re-
lation between the legs and one acute angle which sub-
sists for any right spherical triangle. This he announces
verbally in 198:5. In our notation it is

tan A = tan a / sin b,

where C is the right angle, and small letters denote
sides opposite the angles bearing the letter as a capi-
tal.

In triangle ZDG
(198:9) Tan zD / Sin DG = Tan <G / R
and, employing the other acute angle,
(198:10) Tan DG / Sin DZ = Tan 2Z / R

The author remarks in two places (197:8 and 199:1)
that he has been dealing with the reversed shadow (the
tangent function) rather than the direct shadow (the co-
tangent). The latter can always be introduced by using
the identity tan 6 = 1/cot 8, or tan 6 = cot §, but to do
so in the triangle relation would introduce a quantity
not found in the actual triangle.

We note that the theorem represents a step in the
emergence of trigonometry proper. The subject commenced
with a single function, the chord, and its application to
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relations involving six arcs on a complete spherical
quadrilateral. It evolved in the direction of relations
connecting functions (principally the sine, cosine, and
tangent) of sides and angles of triangles. The theorem
above is just such a relation (see the Overview).

145, Declinations in Terms of Longitudes (199:5 - 200:11)

Now this and other relations are applied to the
standard problems of spherical trigonometry. If in Fig-
ure 52 AzD and AEB are made the ecliptic and equator
respectively, and z is an arbitrary ecliptic point, then
BD = ¢ and EZ = §. This is the "first declination";
if the arc from z is made perpendicular to the ecliptic,
instead of the equator, the resulting arc length is the
medieval "second declination" (199:12).

To calculate the (first) declination in terms of
the longitude (1), use

(199:8) Sin 6§ = Sin zr = Sin 4z Sin BD/R = Sin A Sin € /R
This follows from a tacit application of the Rule
of Four.

To calculate 85, the second declination, consider
Figure 53, where the configuration is that of the preceding
figure, except that the ecliptic and equator have been in-
terchanged, and all four sides of the quadrilateral have
been extended. Also the great circle LOHT, with pole at z,
has been added.

Application of the Rule of Four to triangles anT
and AKM gives .

(199:16) Sin (aw=AE) / Sin HT = Sin (AK=90°) / Sin (kM=¢) .

AH and AE-= )\ are complementary because H is the pole of
circle LGZE, the angles at E and L being right angles.
Hence Sin HT = Cos aE Sin kM / R s

HT = arc Sin (Cos ASin ¢ / R)

Another application of the Rule of Four, this time
to triangles OHK and HLS, yields

(199:18) Sin(OR=HT) / Sin(0K=¢) = Sin(mL=90°) / Sin(Ls=gz=3,) .
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That OH and HT are complementary follows from the fact
that 0 is the pole of DZTM. As for LS and EZ, LS = EZZ
since G is the pole of SKHAEB. And GL = Gz bec§use.z is
the pole of LOHT. Finally, Gz = ZE. The equation is
equivalent to

Cos 65 = R Cos € / Cos HT .
Substituting the expression for HT above, we
have
(200:2) Cos 8, = R Cos € / Cos arc Sin(Cos A Sin e/R).
If, however, the theorem of (198:9) is applied
to triangle AEZ, taking A as the acute angle, there re-
sults,
(200:8) Sin(aE=)\) / Sin(aB=90°) = Tan(EZ=62) / Tan(BD=g),
from which is the expression for 8o
(200:10) Tan 6, = SinATan € / R

which is certainly far easier to compute than (200:2).

146. Calculating the Arc of Daylight (201:1 - 202:5)

As an additional example of the utility of the
tangent function, Birinl poses the following problem.
Given &8, ZE in Figure 54, and ¢ = GD, calculate e = AE,
the equation of daylight.

He writes

(201:6) Sin(gz=6) / Sin zc = Sin(BD=§) / Sin(DG=¢),
from which 2zC can be found. Biriini does not not%ce
that the equation is in fact equal to c?t ¢. Nelther.
does he say how the expression was obtained, but appli-
cation of the law of sines to triangles ACZ and AEZ
gives
sin ¢ / sin ¢z = 1/sin Az = sin ¢ /sin § ,

which is equivalent to his equation.

Now
(201:9) Sin(6z=8) / Sin 2zC = Sin(GE=90°) / Sin(EA=e ),
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by the Rule of Four applied to triangles GzC and GAE.
Or

(201:10) Sin e= R - Sin 2Cc / cos §
= R (Sin 6 Sin ¢ / Cos ¢) / Cos 6.

On the other hand, an application of theorem
(198:9) to triangle AEZ , taking angle DAB as the acute
angle employed, gives

(202:3) Sin(aE=e) / Sin(aB=90°) = Tan(zE=6) / Tan(DB=§) ,
whence
(202:1) Sine e = Tan 6 - R / Tan § .

With the benefit of modern notation it is easy to
see that grouping of the pairs of functions of § and ¢
in (201:10) gives this immediately.

P.1%9 cuapTER 28

DISTANCES AND HEIGHTS BY USING SHADOWS

147. The Width of a Valley (202:8 - 203:7)

This chapter gives a number of problems in mensura-
tion solvable with the astrolabe or with gnomons. They
are applications of elementary plane geometry of a genre
frequently encountered in books on the astrolabe. The
first example follows.

The observer stations himself with an astrolabe
at A4 (in Figure Cll4) on the accessible bank, and sights

B A

Figure Clu

through the alidade pinnules P on the far bank. The
number S which he then reads off the scale of horizontal
shadows is the length in digits of a shadow which would
be cast in light emanating from P by a gnomon set up as
shown. Its position is such that the end of the shadow
coincides with P. The observer then rotates the alidade
to the setting for a shadow .of S + 1 digits, and he re-
tires along a horizontal line normal to the valley. He
continues until he finds a second station, B, from which
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P again appears when sighted through the pinnules. This
implies that the gnomon would have to be moved one digit
toward B in order that a shadow cast by light from there
again terminate at P. The length AB being measured and
found to be x units, the valley width is

(203:7) w = Sx

in the same unit. For, by invoking the proportionality

of corresponding sides of similar triangles, w / x = S / 1.

The technique is in theory sound, but not very
practical. The valley bank must be endowed with a prov-
identially level stretch of sufficient length; the astro-
labe shadow scale is essentially imprecise, and, as Birini
says, AB should be elevated considerably above P.

148. The Height of an Object Whose Base Is Accessible
(203:8 - 205:9)

A technique which requires no computation is for the
observer so to station himself that the angle of elevation
from him to the top of the object is 45°, There being
then an isoceles right triangle, the distance to the base
of the object equals its height.

A more general method is illustrated in Figure 55.
The observer, from any convenient distance, rotates the
alidade of his astrolabe until the sights are aligned on
A, the summit of the object. He then reads S, the amount
of the horizontal shadow, off the appropriate scale on
the back of the instrument. He must also measure the dis-
tance BG from his station to the foot of the object. By
similar triangles

AB / BG =g/ sS,
where, as usual, g is the gnomon length. So
(204:10)° AB = BG:g / S .

If the observation is not taken from ground level, due
adjustment must be made of the result.

The example allegedly from the Brahmasp.is rather
an inverse of the problem as posed. Now, as illustrated
in Figure 56, the distances are given, and the shadow is
required. Again, by similar triangles,
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GD/TG=S/9=BG/AM
whence . :m
(205:4) S = BG-g / AM = 110 x 12 / 88 = 15

(The rule, but not the example, is given in
Brahmasp. 12, 53 and 19, 14. However, the worked example
is in the commentary of Ppthiidakasvamin. D.P. ) (See
Section 114).

149. Height of an Gbject - Base Inaccessible
(205:10 - 208:6)

The situation is indicated on Figure ‘57, where
the dimensions and dotted lines have been added by the
translator; they do not appear on the text figure.

With the astrolabe the observer measures S, the
horizontal shadow cast at D by a light source at a. He
finds also AS, the increase in shadow length when the
instrument is moved from D to E. The distance DE = Ax
is measured. Then the desired height is

(206:8) y = AB = g:DE / AS = 12:+Ax/AS

Further,
{206:10) x = DE*S /AS = x-S/ AS

These also foliow from the proportionality of
corresponding pairs of sides of similar figures, e.g.,

€206:13) As / g =ED /AB=0bx )y,

Another rule of Brahmagupta is illustrated on
Figure 58, where again the dimensions have been added to
the text figure. Here the astrolabe is replaced by a
gnomon at each of the stations.

Here, as shown,

(207:7) S, = 18 and DE =17,
(207:9) the "base" X, - x) =DZ=7 + 18 = 25 ,
(207:10) Sp -5 =3,s08), =5, -3=15,

The rule is

S L S A



Page 162 ) Section 149

(207:11) x) = (xp-x1)51 / (S5-51)  xp = (x0-%1)8y / (S5p-51)

=25 .15/ 3 = 125 =25 .18 / 3 = 150,
and
(207:12) y=g:x3 /8 y=gxy /8,
=12 . 125 / 15 = 100 =12 - 150 / 18 = 100

The final computation is not carried out in the text.

. Birtini demonstrates the validity of the rule by
noting that, from the similar triangles ZHE and 2aB,
(207:18) (Bz = x,) / (26 = 5,) = (aB = y) / (EH = g) .

The text has the second ratio upside down. It is corrected
here.
From the similar triangles DTG and DAB,

(208:1) (6D = 5,) / (pB = x)) =(6T =g) / (aB = y).

Hence ZB / ZE = DB / GD ,
or
(208:3) (2B = ¥p) / (DB = x1) = (zE =

55) / (DG = s,) .
From this
(208:4) (2K=S-s1) / (DG=57) = (Dz=x3-x1) / (DB=x71) ,
and
(208:5) (2K=s3-51) / (2E=s,) = (Dz=xp-x1) / (2B-x,) .

Thus Brahmagupta's expressions for ¥ and x,
at 207:11 have been established.

The final steps at 207:12 depend upon the pro-
portions

. - ylg = x1/5, and y/g = 12/52
already set down at 208:1 and 207:18.
(This rule is found in Brahmasp. 12, 54 and 19,5

and 15. The numerical example is from the commentary of
Prthudakasvamin. D.P.) (See Section 114.)
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150. Special Cases (208:7 - 209:13)

As usual, Birtinl feels constrained to exhaust
possible special cases. One possibility is that the
base of the second gnomon coincide with the end of the
first shadow so that ED = 0 as shown in Figure 59a.

He does not discuss the consequences in general terms
but alters the numerical example accordingly, keeping
the same minaret and the same position for the first
gnomon. Then x; = 125 as before,

but now (Sy4x)) / y=5,/9
" or (s,4125) / 100 = 5,/ 12
so 1252 + 1500 = 100 52
. 1
and (208:10) 5, = 1755 s

as he says, but without explanation.

The second contingency occurs when the first
shadow overlaps the second, by an amount ED as shown in
Figure 59b. Again a specific assumption is made, that
ED = 7 as before, but now E is to the left of D. We
proceed to calculate S, = EZ, assuming as before that
the minaret and the first gnomon are unchanged

(52-ED+BD)/y=SQ/g,
(52-7+125)/100=s2/l2 s

125, + (118)12 = 100 5,

1 .
s, = 177/11 = 1643 = EZ .

The text says at 209:1 that EzZ = Qi%y which is
absurd, since it would made S, shorter thafi 5;. We
note that Dz = Sp - ED = 16 - 7 = 9, which differs very
slightly from the number in the text. Perhaps BirGni
had this in mind.

The chapter closes with a passage to the effect
that the same technique may be used for measuring depths
as well as heights and widths.
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CELESTIAL DISTANCES INVOLVING SHADOWS

151. Solar Distance by Means of an Orifice (210:3 - 212:1)

The language of this passage is sometimes obscure,
as when, at 210:10, BirlinI speaks of the "shadow" cast by
a beam of sunlight passing through an orifice. Nevertheless,
the general tenor of the argument is clear.

The orifice, whether circular or a narrow slit is
not stated, is of width Ez in an opaque plate, represented
in Figure 60, fixed normal to the sun's rays. Lines AF and
BZ are rays extending from the sun's limbs to the near edges
of the orifice and striking, at ¥ and T respectively, a
plane surface parallel to EZ. L is the center of TH. BM
is the ray from one limb of the sun's disk to the opposite
edge of the orifice at E.

Assuming that LH, LM, EZ, and EK can be measured
(210:11), the author proceeds to calculate the solar dis-
tance and apparent diameter in terms of these segments.

Draw EO parallel to BT. Then, by similar triangles

(210:16) MO /ME = TM /MB ,
Now MO = ML-LO = ML-(TO-TL) = ML-(EZ-LH) ,
ME = VER2+KM? = JEK2+(OM+2F)2, and TM = MO+TO = MO+EZ ,

So the fourth term of the above proportion, MB, can be
calculated.

It is now claimed that triangle TMB "is known as to
sides". 7TM and MB are indeed known, but the third side,
BT, has not been worked out in terms of the measured quan-
tities, although this can now be done. This goes also for
CT, the solar distance. Next

(210:18) TZ / (ZF=£2'-(EZ—HT)) = TB/ (BC=AN) ,

from which BC can be determined. Then the solar diameter
is AB = 2(BC + LH).
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In exactly the same fashion, if DG were the apparent
lunar diameter, the computation would proceed as before,
except that DES would replace BEM, and so on, culminating
in the lunar distance and diameter.

Birlinl returns to the sun, observing at 211:10 that
the angles as well as the sides of triangle MTB can be cal-
culated.

The geometry involved is unexceptionable, but the
technique is quite impractical. The rays penetrating the
hole Ez are very nearly parallel, yet the observer is
required to note precisely the positions of points H and
M, which is out of the question. The region TH is illu-
minated from the whole solar disk. At H the illumination
begins to decrease, until at M no direct light is received
at all. The three regions TH, HM, and from M on must merge
imperceptibly into each other.

Birlini gives no numbers at all, and his skepticism
is implied at the end of the passage. In the next chapter
he makes a weak attempt to apply the technique (see Section
156 below), but soon gives it up as a bad job.

152. Ptolemy on the Solar Distance (212:2 - 213:2)

Now, using Figure 61, the idea is to combine the
previously determined lunar distance and diameter with
the fact that the lunar and solar apparent diameters are
almost equal, to calculate the solar distance and dia-
meter.

The values of DG, EZ and MZ = EZ - DG are at hand,
and ET can be calculated in terms of these quantities.
So,

(212:13) ET / EZ = TO(=TE+GE) / OK ,

in which Ok is the only unknown, and can be calculated.
Further, HK = OK-OH can now be found, since OH is the
known lunar radius. Draw SK parallel to EH. So in

(12:16) zs (=zE-kH) / SK (=EH) =ZE/EA ,

EA is the only unknown and can be calculated. This is
taken as the solar distance. Finally,

(212:18) EH/HO = EA/AB ,

where the only unknown is AB, the solar radius.
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This completes the problem, and it is essentially
the method explained in Almagest 5, 15, where , however,
numerical results are carried through.

Our author, at 213:1, iterates his undertaking of
209:11 to compose a separate treatise on the determination
of distances. There is no evidence that he in fact carried
through on this.

153. sinan b. al-Fath and al-Kindi on the Lunar Distance
(213:3 ~ 214:10)

The few lines quoted here seem to be the only
extant fragment of the works of this minor scientist.
Born at Harran on the upper Euphrates, Sindn (fl.c.925)
wrote books on arithmetic and algebra (Suter, p.66).

Reworded, his rule amounts to this: Observe the
(apparent) lunar altitude at culmination, h,. Calculate
h, its true (i.e. geocentric) altitude at the same time.
The difference, p = p - hp, is the parallax in the al-
titude circle. Then the lunar distance is

(213:5) D=R/p .,

An independent derivation may illuminate both the
rule and Birlini's discussion. In triangle TAE of Figure
C15, the altitude from 2 is approximately r cos h, as
shown. Also

sin p = r cos h/D ,

Introducing the medieval functions and solving
for p,

D ='r Cosh/Sin p ,
If we measure p in earth-radii, as customary,
r = 1, and .the rule becomes
(1) D~ Cos h/Sin p ,

Suppose that the moon is on the horizon, or nearly
so. This violates the condition of the rule, that it be
culminating, but it is what Birtni implies in saying (at
213:12, referring to Figure 62) that p=GD. He then writes
(213:13) pK (=Sin £) / pr(=Sin 90°) = Dk(=r=1) / DE(=the lunar

distance).
(2) Or, in our notation, p = R / Sin p.
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Figure C15

This.is also the special case of expression (1)
when h = 0, for Cos 0 = R. And, as Biriini says-(Qlu:s),
if in Sinan's rule of 213:5, p is replaced by Sin p,
equation (2) results.



Page 168 Section 153

Suppose, however that Sindn is using Aryabhata's
R = 57;18 = 3438', as did some of his contemporaries.
Then for small p, the case here, Sin p ~ p, the angular
measure being degrees (cf. Overview, p. 347). The gen-
eral expression (1) then becomes

D= Cos h/p
and, for the special case h » 0,
D=R/p

which is precisely Sinan's rule.

The passage closes with a reference to a lost work
of al-Kindi on the lunar distance. This is probably the
source of his remarks on parallax previously noted (see
Sections 12, 21, and 75). The word gathit is an Arabic
transliteration of Greek k&fetos , "perpendicular'.

154. Lunar Distance fram Eclipses (214:11 - 216:5)

In this section Birlini shows that the lunar dis-
tance can be obtained from observations of lunar eclipses.
To this end, Figure 63 uses the shadow cone cast in space
by the earth in the rays of the sun. In our version of
the figure the cone is sketched in; in the text only the
axis, GB, and an element GA, appear.

A pair of eclipses are observed, both in what can
be thought of as the plane normal to GB at D. The reader
may find it useful to follow the discussion on Figure Cl6,
which depicts this plane. What we will call the first
eclipse takes place when the lunar latitude 8, = Dz. The
magnitude EH, the portion of the lunar diameter which
penetrates into the shadow, is taken to be 1/3 (215:4),

A second eclipse, portrayed dotted on Figure C16,
has latitude 8,=DT and magnitude EK of 1/5 (215:6).

Since “1/3 - 1/5 = 2/15,

(215:8)  2/15 = kH(=AB=TZ) / (the apparent lunar diameter).

From this the lunar diameter can be calculated, of which
ZE is a sixth.
Hence the shadow radius

(215:11) ED = ZD - EZ

| can be determined.

R
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In the same manner, presumably by observation of
a second pair of eclipses, both at distance LB, the cor-
responding shadow radius LM is calculated.

Now

(215:13) pL (=BL-BD) / OE(=ED-ML) = GD/DE ,
So GD can be calculated. BG being known, and since
(216:2) BG / BA = GD / DE ,

AB can be calculated in units such that, presumably, BG=60.
Finally, taking AB as a unit, express the lunar distances
and the length of the shadow cone in terms of it.

In principle the method is valid, provided that
observations be at hand of two pairs of eclipses which ful-
fill the conditions assumed.




CHAPTER 30
MISCELLANEOUS PROBLEMS

155. The Disappearing Umbrella Shadow (216:8 - 217:8)

The reader who considers seriously the disparate
and sometimes whimsical topics with which the book closes
can only agree with the author's verdict — they are
troublesome indeed. At the same time, some involve lost
documents which are of great historical interest.

As for the first problem, presumably the idea is
to elevate a parasol sufficiently high in the direction
of the sun that the vertex of the shadow cone cast by
the parasol will coincide with the observer. This re-
quires that

1) Du/Xuabs/Xs
where D stands for distance, x for diameter, u for um-

brella, and s for sun (see Figure Cl7a).
The rule at 216:12 says

D, = (10,000/4) X, = 2,500 x

u
so that in this case p_ = 2,500 4 = 10,000 cubits.

The word ayuta ?at 216:13) is Sanskrit for ten
thousand (India, transl., vol. 1, p. 175); the translit-
eration with Arabic jIm, ajita, is doubtless a reflection
of a local pronounciation.

Birlini goes on to claim that the ratio

(216:16) Xs/ Ds = 1/625 (= 4/2,500) ,

where now, as in Figure C17b, the distance involved is
the axis length of the earth's shadow cone. Two miscon-
ceptions. are involved. First, the author acts as though
the parasol's shadow cone were 2,500 cubits in length,
whereupon dividing this by the parasol diameter would
give the "convergence ratio" of 1/625. But the length
of the cone is 10,000 cubits.

What is worse is his assumption, continued in
the sequel, that the comvergence ratio of the parasol's
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shadow equals that of the earth, which is by no means the
case.

He now examines the situation with Ptolemaic pa-
rameters. With these the convergence ratio of the earth's
shadow cone will be

(217:1) Xs /Lg = 11/(1210+268) = 1/ 134

as can be seen from Figure Cl7b. The various distances
and dimensions are from Almagest 5,15 and 5,16.
BirlGni persists in thinking this applies to the



Page 172 Section 155

parasol shadow also, so that to find the length of its
shadow he puts

(217:3) Du = 134 Xu = 134 + 4 = 536 cubits,

although the text writes 534, perhaps a scribal error.
We do not understand the talk of division at 217:5 nor
the origin of the number nineteen cited later. Per-
haps it arises from the same sort of reasoning which
led to expression (216:16).

156. An Abortive Attempt at the Solar Distance
(217:9 - 218:7)

The author now reports on an experiment along the
lines discussed in Section 151. First he poses a tar-
get of diameter 164 in some suitable units, the shadow
of which is cast upon a screen distant from it by 61hy
of the same units. The arrangement is schematized in
Figure Cl7c. He observes that the diameter of the tar-
get's shadow is 116. To determine the distance at which
t?e shadow disappears completely one may solve the equa-
tion

x / 164 = (x-614y4) / 116,

as seen from Figure Cl7c. Its root is x = 20992 as the
text says at 217:13. So in this cone the "patio of
convergence' is 164 /20,992,

Now Abd Rayhan begs the question by assuming the
same ratio for the Ptolemaic Xs = 11 and X, = 1. He
puts Ds/xs = Ds/ll = 20992/164,

whence
(217:15) ' D= 1408 earth radii.

Also D, /Xé =D, /2 = 20992 /164, from which
(217:16) D, = 256 earth radii,

So the earth-sun distance is 1408-256 = 1152
earth radii, and the difference between the Almagest
value and the new determination is 1210-11562 = 58,
as stated at 217:16.

Birini claims that in the same units, the sun's
nearest distance would be 1163. We attempt to verify
this by taking Ptolemy's eceentricity of 0;2,30 (from
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Almagest 3,4), from which the nearest distance should be
1210 ~ 57.5/60 = 1159.6,

which is close to the text value, but not quite the same.

If the text result is accepted the difference becomes

1163 - 1152 = 11, although at 217:18 Biriini calls it 10.

He now starts over again, using an orifice through
which the sun shines, instead of the shadow of a target.
The new situation is sketched on Figure C17d. This pro-
cedure is much closer to what he described in Section 151
and Figure 60, but he is unable to carry through complete-
ly.

Y The diameters of the hole and of the spot of
light on the screen are 18 and 59 respectively, the dis-
tance between them being the same as that between the
target and the screen in the preceding experiment. If
the size of the hole were 164 units, like the target,
the size of the spot would be

(218:1) L =59 « 164 /18 = 5375 in diameter.
To avoid fractions he again changes scale, mul-
tiplying all dimensions by nine:
(218:3) 9 x 6144 = 55,296 for the ruler,
9 « 164 = 1,476 the target and hole,
9 x 116 = 1,044 the shadow,
and 9 x 5378 = 4,838 the spot.

At this stage the futility of the operation
overcomes the author. He throws up his hands, and con-
signs the data to anyone who is prepared to work with
them. He adds, however, one item. From 217:8 he re-
calls that in standard units the length of the ruler
bearing the target and the orifice is

(218:6) 5 cubits = 5 x 24 = 120 digits

(see Luckey, p.6).

Somehow or other he arrives at a result of
321,563,636 digits for the radius of the earth. Di-
vision by 24 gives

13,398,484§.cubits.

Two other estimates by Birini are:
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in the Canon 12,851,269;50,42 cubits,
and in the Tahdid 12,803,337;2,9 cubits,
(Tahdid, comm., p. 143)

157. Al-Fazarl's Rule for the Lighted Portion of the
Earth (218:11 - 220:15)

This passage gives a fragment from the non-
extant 21j of Fazari (Section 39). Consider the great
circle on the earth determined by a plane through its
center normal to the rays of the sun. The rule says
that from any point on this circle, in a direction
opposite the sun, the earth will be lighted by the
sun to a distance of

(218:16) (d/2)-(6583/21600') farsakhs,

where d is the solar apparent diameter in minutes of
arc. A farsakh contains three miles.

The rule is satisfactorily explained by Birfni
using Figure 64, and we paraphrase his remarks. Note
that the method is essentially that used by Hipparchus,
c.150 B.C. (Dreyer, p. 183). Let the circle MTH rep-
resent the earth with the line ES through the centers
of the earth and the sun. Then on a large circle SLz
with center at E the apparent diameter of the sun will
intercept an arc d bisected at S as shown. The inscribed
angle SzL will be of magnitude d/4 since it intercepts an
arc of magnitude d/2. Lz is an element of the shadow cone,
and the sun's rays will reach around beyond the diameter
(or great circle) pk illuminating the zone KDTM in addi-
tion to the hemisphere kHD. The portion of the great
circle MHT illuminated in addition to the semicircle KHD
will be ¥ + 7D = 2 TD. But because of the similarity
of triangles 'TED and DZE, FD = /TED = ¢EzD = d/4.

Hence, in linear rather than angular units,

2:DF = 2+(d/4)+(c/360°),
where d is in degrees and ¢ is the earth's circumference.
But this is al-Fazari's rule, since 216000' = 360° and
6583 is his c.

There follows a metrological discussion. Before
commenting upon it we note that 6583 farsakhs is close to
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the value 6597.2 attributed to FazarI elswhere (Tahdid,
comm. p. 147).°70On the other hand. Birtni himself at-
tempts to explain this parameter by saying that Faz3ri
increased Pulisa's earth circumference of 5026 yojanas
by a quarter

(220:14) 5025 + (5026/4) = 5026 + 1256% = 6282%

% 6283,

Perhaps, therefore, one digit in the 6583 of
the rule (218:16) should be emended to 6283.

The equation
(220:3) 1 yojana = 2% farsakhs
is suspect. There is authority, in our text at 220:12,
and in the India (transl. vol.l, p. 167) for putting

1 Indian farsakh = 16,000 cubits.

Then 2% farsakhs = u2,666§-cubits,

not 38,000 as stated at 220:3. A closer approximation is
1
%3 farsakhs = 37,333%—cubits, but the

exact conversion is
2% farsakhs = 38,000 cubits.

Perhaps the text should be emended along these lines.
The relations

1 yojana = 8 kroh = 8 miles

appear also in the India (vol.l, p. 167).

Brahmagupta's values, accurately reported at 220:6
and in the India (transl., vol. 1, p. 168) are from Brahmasp.
21,32. They lead to

5000/1561 = 32T = 3.1625... ~/10 ,
which is Brahmagupta's approximation to m.

Returning to the circumference of 5026 and dia-
meter of 1600 yojanas attributed to Pulisa, in the orig-
inal Paulisasiddh3nta the circumference was taken as
3200 (Pafica. III, 14; comm. p. 31). But in the India
(transl., vol. 2, p. 67) Birini gives 5026%% and 1600
again.




Page 176 Section 158

158. Operations from an Archaic zij (220:16 - 221:5)

The material in this passage most certainly did
not originate in the Almagest, but from the early stages
of Muslim astronomy before it was affected by Ptolemy.

The first procedure is, given the shadow, s,
calculate

(221:2)  ¥s2 + 144 = V52 + 122 = /52 + g2 = Cscyph (cf.
Section 38)

This is to be divided into
41,265' = 12 « 3438' = 12 x 57;18 = g.R,

the R being that of Aryabhata. Hence the next step
is to find
(221:3) g-R,/Cscg h=R/csc h=Rsinh = Sln57;18 h.

The result, which is simply the sine of the so-
lar altitude, is called the solar "hoop" (tawg). The
same term, associated with the same R, appears in the
Tahdid (comm., p. 146). Birini's exegesis, at 221:9-1u4
is clear and concise.

The next operation, explained in 221:15-18, cal-
culates

. U o =

(221:4) 3438 Vers,, .06 005575186 ,
which is simply the radius of the day circle.

The third procedure prescribes the calculation of

(221:6) (23/60) Sin h = (23/60) Sinlsoh
(23 x 150/60) sin h
(3450/60) sin h = 57;30 sin h

= Sin h
57330

where the expression to the left of the first equals sign
is the rule quoted from the anonymous zij. All the rest
is based on Birlini's explanation in 221:19 - 222:5. From
this it is clear that the objective is simply to determine
the sine of the solar altitude, but with a change of pa-
rameter included. It is tacitly assumed that the sine
table at hand is one in which R = 150', as in the Khand.,
 and the result is transformed into a sine in which
R = 57;30 = 3450'. This parameter has been encountered
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nowhere else in the literature. As BirQni says, it is
distinct from Brahmagupta's R = 54330 = 3270' and Aryab-
hata's R = 57;18 = 3438, of which it may be a rounding
(cf. Section 32).

The language of the quotation contains technical
terms: "hoop", "solar distance" (for declination), and
"minutes of the chord", which were no longer current in
Biruni's time.

159. The Sindhind and Shahriyaran zijes (222:6 - 223:12)

This quotation, from the same anonymous zIj cited
above, purports to calculate a "difference" between the
bases of two famous documents (or categories of documents)
which have since disappeared.

The first is the Sindhind (Section 116) with base
locality at the Cupola (qubba, sometimes written qubbat
arin, for Ujjain). Its coordinates are taken to be:

A = 90° (222:7) and ¢ = 0°. The latter is not stated
explicitly, but this can be inferred from what follows,
For it

(222:8) Coslso ¢, = SinlSO 30° = 150,

the term "chord" here meaning sine. The subscripts ¢
and B will denote Cupola and Baghdad respectively. The
same transformation is then carried through here as in
the preceding section to give

= o = . + = .
Coss.7;30 ¢c C0857;30 0 150-23 +60 = 57;30.

These coordinates for the Cupola are consistent
with what BirGni says about it in the Canon (vol. 1, pp.
502-5). Since the point called the Cupola is the apex of
a hemisphere, the inhabited half of the terrestrial globe,
the notion of a dome was appropriate. He states that the
idea was taken over by the Iranians from Indian books, not
named.

The second 2z1Ij is the Shah (Section 39), called
here alternatively Shahriyidran. Its base is Babylon with
coordinates given as: A = 78°, ¢ = 36°.

No source available to us has precisely these
coordinates for Babylon. In Almagest 2,13 the latitude
characterizing the fourth climate is indeed 86°. But
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Ptolemy, both in the Handy Tables and the Geography, gives
A = 79° and ¢ = 35° for Babylon. He is followed by Battdni
(zIj, vol. 2, p. 43, see also Geogr.Tables) ,but on p.35 Battani
also has "BabilGiniya regio Babil", A = 78°, ¢ = 320,

For the Shah Zij also

(222:11) Cosygq ¢ = Sin gy h¢ = 8in 0 F = 8in, o540 = 122,

This is reasonably accurate, since 150 sin 5u4°
= 150 x .8090 = 121.35. The same transformation gives

Cos., . & = (23/60)+122 = U646 as in the text.
57330

Next
(222:12) Cos ¢c ~ Cos ¢B = 57330 - L6346 = 10344,
whereupon the text says "find its arc" by calculating

(11/7) = 10;u44 = 16;52.

Then .
Sinlso,lﬁ;sz° = 03;43,16, called "the retained".

(The parameter R = 150' is not stated, but is clearly in-
tended, for 150 sin 16352 = 43;36,20, and the 16 for 36
may be a scribal confusion of ya'= 10 for lam = 30).

The text now turns ¢B into hours by computing

(222:15) ¢ /15 = 36/15 = 22 (= 0;6%).

Underlying the operation is the relation 860° = 2uh = 1d
for the daily rotation. But it makes no sense whatever
for latitudes. Since the daily mean motion of the sun is
0;59,8,20°, and 0;6 = 0;59,8,20 = 0;5,54,50, it is cor-
rect to say (at 222:16) that in 2§-hours the sun travels
0;5,55°,

This last result is added to the retained to ob-
tain (0;43,16 + 0;5,55%) 0;49. The result is, as it
were, a difference due to latitude. The text now sets
about calculating an analogous difference due to long-
itude which, as it happens, is legitimate. For

(222:18) (4/5)h = (Ac-AB) / 15 = (90°-78°) / 15 = 0324,
In this time the sun travels 0;2 « 03;59,8,20
= 0;1,58,17°. The text has 0;1,57,36. This is the

difference due to longitude. The latitude and longi-
tude differences are next added to produce, at 222:19,
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(0;1,57,36 + 0349 = 0;50,57,36%) 0351, <the final result.

It is, of course, sheer nonsense — that is why
BirGni has exhibited it. The anonymous author felt, in
some vague way that both latitude and longitude should
be taken into consideration in shifting from one zIj to
another. His result does so, at whatever cost to the
facts of astronomy.

The first part of the operation, the calculation
of ACos ¢ at 222:12, is susceptible of interpretation.

It gives the difference between the day radii of the two
localities, and exhibits some relation to an Indian opera-
tion explained in the Tahdid (comm., p. 147) for finding
the distance between two localities. Hence, as in the
Tahdid,the coefficient by which Cos ¢ is multiplied, here
23/60, may involve a shift to some sort of terrestrial
unit. BIrfini's reasonable conjecture of a change of R
may have been wrong.

Nonsensical as it is, the passage is useful in
that it gives reliable coordinates for the base locali-
ty of one version each of the lost Sindhind and Shahri-
yaran zijes.

160. The Final Passages (223:13 - 226:19)

In the little that remains of the book there is
even less that requires comment, since Biruni continues
his recital of the foolishness of others.

Mashd'allah (fl. 780) was, after Abl Macshar,
perhaps the best known astrologer of the Middle Ages.
An Iranian of the Jewish persuasion, his name went into
Latin as Messahala. He served the Abbasid caliph al-
Manglir (see Suter, p. 7).

The mythical Hermes Trismegistos (226:3), the
Hellenistic appellation of the Egyptian god Thoth, en-
tered the Islamic world as a hero (or three heroces) of
ancient times, author of books on philosophy, science,
and magic (EIne, vol. 3, pp. 463-65).

The "Eighty-five Chapters" is referred to in
various places in the literature, and a copy is extant
in manuscript. However, it has not been studied in
modern times (see Ullmann, p. 292).

The practise of assigning "years' to the planets

Witk i,
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was well established . in astrology. But the set given
at 223:18 differs from any seen by us. It is

Saturn 32
Jupiter 64

Mars 48
Sun 72
Venus 30

Mercury 51
Moon 33

See Neugebauer & Van Hoesen, p. 10.
We find no other mention in the literature of
the Ahmad b. Salmin named at 225:8.

161. The Date of the Shadows

The colophon at 226:18 fixes the date at which
this particular copy was finished as between 28 August
and 26 September of 123u4. It says nothing about when
the work itself was composed. In the Canon, vol. 3, p.
vii, Barani asserts that this took place in Ghazna in
1022. He gives no source for the statement, but Ab{
Rayhdn himself mentions Ghazna in the text, at 176:12.
It is not difficult to show that Barani's date is reason-
able, and cannot be in error by more than a few years.
BirGini's own bibliography (see Aufsdtze, vol. 2, p. 490)
lists the Shadows. Hence it must have been in existence
by 1035. There is some reason for making the Shadows
earlier than the Canon, since in the latter the modern
tangent function is tabulated (g = 1, see Section 45
above), whereas the Shadows makes no mention of this
practise by Birlini himself. The Canon in turn was ded-
icated to Sultan Mas<ud, presumably shortly after he
came to power in 1030. As for a terminus post quem,

Abu Rayhdn had no opportunity to study Indian civili-
zation and to become acquainted with the Sanskrit
sources until after he had been hauled off to Ghazna
by Sult@n Mahmud in1015 or thereabouts. And by the
time he wrote the Shadows he had accumulated a great
deal of information on these subjects, a task which
must have occupied him for some years.
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GENERAL INDEX

To the Text, Translation, and Cammentary

Here, and in the indices of parameters which
follow, references consisting of a pair of numbers
separated by a colon are to the page and line respec-
tively of the Hyderabad edition of the Arabic text.

The same pages and lines are indicated in our transla-
tion. Page references preceded by the letter s are to
the passage of the text publlshed by mistake in the book
by Ibn Sinan. The reader is reminded that other passages
of the text were printed out of order. In the transla-
tion their proper order has been restored, but the pagi-
nation of the printed text has been retalned A full
spec1flcatlon of the displaced passages has been given

in the preface.

Numbers in italics are references to the num-
bered sections of this commentary.

The Arabic definite article al-, and ibn and
abil have been ignored in alphabetizing.

AbQ al-<Abbas al-Iranshahri 15:6, 16.

Ibn “Abbas  172:17, 133.

Abbas, Ihsan 4.

Abbasid dynasty  1u4l:12, 115.

‘Abd al-Jalll, see al-Sijzi.

‘Abdullah b. Muhammad al-Nashi  17:16, 17.

Abu “Abdallah b. Karam  171:14,

“Abdallah b. <Umar 173:11, 133.

Abraham 8:6, 6.

absar s38:3, 2.

acute (angle)  84:11.

Ahmad b. Salman  225:8.

Ahmad b. al-Tayyib al-Sarakhsi s54:15, s55:19, 6.
al-Ahwali, AbU al-Qasim al-Hasan b. Muh. 75:11, 54.
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al-Ahwazi, Abl al-Hasan 57/8dLg 42,

air, blackness of s54:16, 6.

ajuta, see ayuta.

Albumasar, see Abu Maeshar.

alchemy  226:10.

algebra 76:6, 2, 55,

“Al1 ibn abi Talib 172:17, 173:7.

alidade 70:8,16,18, 71:3, 73 6, 77:11,17, 78:5,
79:13,17, 80:12, 187 11,12, 188 8,9 ll 13,17,
189:4, 190:3, 191 14, 203 2,3,4 15 204 7,
50, 53 54, 57, 58, 140, 141, 147, 14s8.

alldade, the crescent 191:11, 142..

alidade, edged (swordwise) 73 7, 8:12, 186:3,8.

alidade, called the locust's thlgh 191:5, 141.

Almagest  32:13, 41:7, 56:5, 180: 7, 186:10, 220:17,
221:1, 5, 42, 47, 75, 158.

Almagest, of AbTG al-Wafa' 43:2.

almucantar 102:5,11,12, 103:2,12, 104: 7,12,14,15,
112:4,6, 15 113: 8 183 12, 184:18, 185 2,3,

altltﬁde(s? §58:11, s59:8, 19:12, 20:7, 27:12,
28:6, 29:16,19, 30:9, 10, ll 31: 5 6,10,13, 49:7,14,
15 l7 50:2,4 6 Un 52 2,3, 5 7,11,12, 53 5 ,6,8, 9 lO
18,19, 54:7, 13 lS 18, 55 3 4 9,13,18, 56: 6 9,10,11,
14, 57 3,9 12 15 16, 18 58:1,4, 59 8,10,17, 61: 8 10,
13,15, 62 11,12, 65:1, 70:9, 16 Ablg 7l 2, 76:14, l7 18,
79:14,17, 81:3, 8 ,10,14, 81:1, 82: 7 10, ll 12,13, 83 dbe
5,8, 85: 4 86:3,7,8,13, 87:4,7,8 ll 88 8, lO 89 1,2,
91 lG 92: 6, 94:11, lOO 16, lOl 8 l7 102:5,6,11, 13
103:3,4,8,11,13,14 ,15,18, 104 9, ll 15 105:2,5,8,9,
106:1,3,16, 109:14,19, lll 10,11, 122:5,11, 123 4 6
124:8,10,11, 125:4,6, 129: 13, 138 17, 146 4 lu48:4,
149:1,5 1u 150:1, 7 153:11,13,14,16, 154:2,15 .16,
155:1, 157 1,6,7,10, 158:1, 5 177:7, 179:4,5, 15 l7 18,
182:10,11,15, 16 18 183:1,3 13 184:13, 186 6 188 1,
2, 193:11, 203 13 1u 206:1, 213 5,12, 214:9, 221:6,
11,18, 223 1, 224:10, 8, 38, 41, 59, 78, 79, 125-7.

altltude, apparent 28:8,13, 19.

altitude of no azimuth 122:6, 123:2.

altitude, circle of 19:6, 26,2, 27:3, 49:11, 82:2.

altitude, mean  154:11, 14,15.

altitude, noon s49:8, 91:1,2,3,7,10,11, 17, 92:6, 94:4,
100:1, 147:17, 148:5 ,11, 180:2, l7 188 ll 191:15,
222: ll 224 lO 65-76.
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altitude, of the pole 126:1.

altitude, solar 17:1, 19:2.

altitude, solsticial 107:15, 108:4,

altitude, true (or computed) 19:10, 21:15, 28:9,13, 19.

amplitude, see rising a. and setting a.

analemma 86, 92, 94, 96, 117.

analemma of Diodorus, the 116:12, 90, 91.

angle, external 19:15.

aflgula 27.

aperture, small 11, 13, 15.

apogee  22:5,6,9, 95 16,18, 96:2, 176:7, 218:12, 75.

Apollonius 180 4

Arabs sh42:3, sl3:1, suB8:7, s6 2:3, 25:2, 166:9, 172:8.

“Arafat = 173:2, 133,

arc(s) 50:8, 60 11, 61:6,8,13,18, 62:13, 64:10,12,13,
15,16, 65: 5 6, 66:9,10, ll 57 ll 68:4,8,9, 69 128
71:7 ll 82:7, 83: 4, 87 14, 88:5, 90:1,8, 97 7, 98:13,
194: 19 195:7,8.

arc of the day(light) s59:5, 93:18,19, 139:10,17,
140:3,11,15, 149:14, 150: 1, 150:8, 152 11, 178 15,16,
179: l2 77 97.

arc(s) of revolution 105:7, 139:18, 140:10,14, 146:14,15,
147:3,7, 148:5, 149:6 ,12,14, 150:8, 152: 5,6,17, 153:2,3,
155:9 12 ,13,15.

arc(s), from shadows 41:5, 182:15, 198:12,

arc sine 87:12, 149:4,17, 151:12, 159:10, 200:4,8, 222:13,
224:12,

Archimedes 180 ;4,

argument, see also azimuth, argument of, 134:13, 96.

Aristotle s851:16, s5U4: 17, 855:5,16, s56:4,8, s57:12,
s59:18, 6, 7, 8.

arithmetic  s35:18, §36:7, s37:1.

"arithmetic" methods 113.

Arkand (21j) - 33: 13, 35:8, 106:6, 133:10, 134: 10, 224:16, 27,80,104.

armillary sphere,see sphere armlllary.

arrangement (or order?)  146:14, 148:1, 152:6.

Arthadastra 73,

Aryabhata  41:3, 128:5, 222:1,2, 32, 99, 158.

ascendant, see also horoscope, 92:7, 103:17, 104:1,6,12,16,
105:1, 225:16, 226:2, 79,

ascension(s), see also rising times, 125:12, 128:8, 129:7,
131:8,9, 132:7, 133:7,15,17, 134:4,7, 11,15,18, 135 1,2,4,
11,14, 18 137: u 5,6 lO ll 12 14,16, 18 138 al 6 10,11,12,
153 lO 155 6,8,9,11, 201:1, 100.
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ascension, mean 155:6,8,9,11,14,

ascensional differences 129:2, 224:16, 100, 103.

al-Ashrari, AbU Misa 162:7, 129.

AbG “Asim “Isd@m  93:11, 70.

astrolabe 54:2, 106:2, 183:7 - 185:3, 186:2 - 192:6,
203:2, 204:4,5, 209:9, 50-8, 147-9.

astrolabe, description of 50.

astrolabe, etymology of 69:6-14, 51.

astrolabe, makers of 70:5, 72:9, 73:13.

astrolabe, mater of  74:4,

astrolabe, shadow functions on the 69:4 - 80:12,
137 - 141.

astrologers  36:3.

astrology, see also astronomy, 194:11, 223:11.

astrology, etymology of 69:11.

astronomy, see also astrology, s37:6,15.

astronomy, etymology of 69:10.

“Atd  169:5, 132.

Athens 118.

axis s45:5, s47:16, 9:18, 10:7, 116:7,8.

ayuta 216:13,14, 155,

azimuth(s) su4l:1, s58:1, 21:4, 99:2, 100:4, 101:3,4,8,
102:6, 103:1,4,5,14, 105:6, 106:4, 109:13,17,19, 111:11,
115:6,8,10, 120:13, 121:3, 121:3, 123:9, 153:10 - 160:4,
177:5, 179:17, 181:13, 183:4, 192:3,4, 193:12, 224:18,
8, 78, 79, 83, 93, 94, 125-7.

azimuth, argument of 125:8, 157:12,19, 158:5, 96.

azimuth, definition of s60:6, 153:13, 177:9.

azimuth zero 94.

azman (pl. of zaman) see time-degrees.

Babylon  138:3, 222:10,15,17, 223:9, 226:6, 68, 112, 159.

Baghdad  223:10, 159. _

AbU Bakr Muh. b. €Umar b. al-Farrukhan, see also al-Farrukhan,
87:1, 108:11.

AbU Bakr al-$iddiq 8:16, 9.

bala, see also pala, 133:19, 104.

Balabhadra 153:1, 124.

balance, a 110:1, 82.

al-BalkhI see AbU Mac<shar.

al-Balkhi, abU Zayd 24:2, 22.

bandri see vinadi

barleycorn  35:12.



Page 196

Barmecid 70.

base, for computation 137:4,5,7,11, 138:6,10.

‘Batini'in, the 40:2, 31.

al-Battani, Muh. b. Jabir 51:13, 52:8, 53:3,12, 57:17.
85:4, 39, 40, 74.

Bear, Daughters of the Great 97:2.

Benares 107:2.

black, one of the colors s55:14,

book(s) 69:16,18, 134:16, 209:12, 213:2, 225:16.

book(s), of alchemy and talismans 226:10,

book, of Aristotle, Meteorologica s55:5, s56:8.

book, of Aristotle, De Sensu s54:18,

book, Ark3n al-falsafa sS5u:l6.

book, al-Athar al-<alawiyya s55:5.

book, of Birtini, on distances 209:12, 213:2, 152,

book, FI'1l <amal bi'l-asturlab S4:2, 79:15, 41, 58.

books, Greek, on the astrolabe 69:11,

book, of Hermes, the "Eighty-five Chapters" 223:15,
225:16, 160.

book, Hisdbat al-mutdraha 76:5, 55.

book, al-Hiss w'al-mahsiis s54:18, 6.

book, fi'l-<r1al (or Kitib al-<ilal, of Yae<qub b. Tariq)
84:6, 127:17, 131:1, 60, 99, 102.

book, al-Kibrit al-ahmar  27:9, 24.

book, al-Jabr w'al-mugibala 76:5.

book, al-Muwazina 69:6, 51.

book(s) of the Persians 137:13.

the Book of Red Sulfur 27:9, 24.

book,of al-Sarakhsi s54:15.

book, of al-Sijzi, see book, Fi’l <amal bi'l-asturlab.

book(s), translated from Indian languages  141:11.

book of Yae<qub b. Tariq 84:6, 127:17, 131:1, 60, 99, l102.

Brahmagupta 41:1, 115:13, 126:9, 140:19, 141:8, 152:1,16,
205:1, 207:4, 209:4, 220:6, 222:3, 32, 37, 89, 97,
99, 114, 124, 148, 149, 157, 158.

Brahmasiddhanta  41:3, 126:9, 140:19, 205:2, 207:5, 32, 114.

Brieux, Alain ]08.

Brtuswam, see also PrthUdakasvamin, 141:7.

Bulgars 108:9, 81.

burning instruments (as mirrors) s52:14.

al-Busti, Abu al-Fath 7:9, 9.

al-Buzjani, abud al-Wafa', see also abi al-Wafa', 43:1, 51:1u4,

Byzantines (al-Riim) 35:18, 37:9, 69:15.
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calendar, Muslim  28.

Canon 45, 96, 161.

caradala (Sanskrit)  133:10.

casaka (Sanskrit) 129:1, 99.

Caucasus Mountains s55:4, 6.

cave 25:6.

celestial bodies, luminosity of s55:19.

center, of the earth  19:15, 28:17.

center, of the universe 19:6, 21:5, 28:12.

Chaldeans 226:5.

chameleon s43:15.

chess 13:15.

chick-pea 18:16, 19:2.

chord  56:11,14,16,17, 63:12, 95:4,5, 97:7, 116:3,4,6,7,
127:19, 128:2,5, 131:2,6, 136:15, 219:7, 221:5,7,16,
222:8,14, 42, 74.

chord, minutes of the, see minutes of the chord.

chord, reversed (= Vers) 127:1,5, 99.

chord, straight (= sine) 127:1,4, 99.

Christ 7:18, 8:3, 9.

Christians  7:16, 8:4, 175:2.

circle(s)  18:16, 14:6 - 15:5, 64:1, 70:19, 83:4, 115:15,
116:3,6, 117:2,6, 118:1,3,4,5, 120:14, 121:1,13, 122:2.

circle, graduated 120:1,8, 121:2,4, 123:16.

circle, Indian  106:5 - 109:3, 111:12, 114:8, 119:19,
181:12, 182:3, 80, 83-8.

circle, Indian, diameter of  114:1, &1.

clepsydra(s), sk0:8, 105:11, 178:14, 135,

climate(s) 126:2, 222:11, 223:9, 74.

Climates and Countries, a book 38:15.

clocks, water or asand, see also clepsydra 105:11.

colors s53:3, s55:14,

compass  192:9,

computation, see also arithmetic s37:16, 20:14, 87:16,
88:18, 90:1.

concavity  87:19.

cone s52:16, s53:9, s54:1, 110:6, 216:17, 219:4, 91,

cone of light 11:3,9,11,12.

cone, shadow si5:3, su7:14, 9:12,13,14,16,17,18,
10:2,7, 18,7, 117:12, 118:1,4, 212:6,7, 216:5,
217:2, 218:13, 155.

cone, of vision 3:2

conic section(s)  118:1,3, 177:13, 192:8,11, 1o0.

conjunction  22:12,13.
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convexity  87:19.

copyists  87:16.

cosecant (= hypotenuse of the shadow) 26:11, 49:9,17,
50:1,5, 51:15, 52:1,5,10,13,19, 53:4, 54:13,15,19,
55:3,6,7,8,18, 58:8, 69:1,2, 94:8,11, 221:10,
23, 37, 40, 43.

cosine = 52:2,3,5,11, 53:8,9,17, 54:8, 55:8, 57:16,19,
58:4, 66:12, 67:1,13,15, 68:1,4,9,10,13, 87:8,11,
88:6,10,17, 89:2, 95:1, 100:1, 122:12, 123:3,5,
124:8,11, 125:4, 127:12, 128:6, 129:5, 130:5,7,16,
154:9, 157:6, 158:1,5, 196:16, 200:2,5, 201:12,
221:17, 40, 43, 49.

cotangent (= direct, or extended or horizontal shadow,
which see) 26:2-11, 49:7,17, 52:4,10, 53:7, 55:1u4,
58:8,9, 59:4,6,9,11,13,14,18, 60:2,4,10, 61:1,9,12,
18, 62:10, 64:16, 65:5,8, 66:7,8, 68:7-12, 70:6,12,
78:4, 77:19, 78:3,4,9, 79:2,8,11, 8l:4, 82:11,13,
94:17, 198:12, 203:3, 23, 43, 45, 46, 48, 49, 53, 57-9,

cotangent, on astrolabes 70:6 - 71:18, 54.

crescent, see visibility.

cubit(s)  114:1, 162:3, 168:3, 206:7, 216:12,13, 217:
5,8, 220:13.

culmination, solar 65.

Cupola 222:7,18, 224:9,18, 159.

cylinder 11:1,2,u4,7.

daily path, of a star 126:12,14, 127:5,6,13,19, 128:
1,6,7.

daily (solar) path, or circle (= madir) see also sun,
daily path of the, 9:10,12, 10:6, 100:18, 101:13,
126:18, 147:10, 187:12, 193:10,11, 221:17.

dajaka 129:1,

Damdvand, Mount, see Demavand.

AbU Darda' 8:7, 9.

al-Darir 92,

date of the Shadows 161.

Davidian, M.-L. 113.

dawn sh9:11, 161:16, 162:1, 163:1, 164:12, 167:9,10,13,
16,17, 175:16, 185:1,2.

dawn, angle of depression for 185:1.

dawn, false 167:17.

day arc, see arc of the day.

day circle, gee also daily path, s59:11, 146:17, 147:2,
77, 97, 98, 120, 123.
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day sine 100:2, 146:12,14, 148:6, 149:4,10,11, 150:
10,12,16, 151:8, 152:3,6,9,11, 153:7, 77, 97.

day, time of 138:15 - 153:8, 113 - 124.

day triangle, or triangle of the day  99:11, 122:3,
157:9, 159:13, 77, 95, 127.

daylight length(s) 125:13 - 138:18, 66, 97, 113.

day(light), longest 92:15, 93:1, 126:2,

day-minutes, see minutes of the day.

day-second 135:4, 95, 104, 106.

De Caelo (by Aristotle) g.

De Sensu (by Aristotle) ¢,

declination(s),(the first) 9:12, 90:11, 91:1,5,12,14,
92:6, 93:9,13,16, S4:17, 101:13, 102:8, 112:16, 113:5,
114:1,6,7, 114:14,17,19, 115:1,2,4,5,7,10, 121:6,
122:7,13, 123:9,10, 126:10,12,18, 127:11,12, 128:6,7,
129:5,10, 130:5,7,16, 132:5, 151:11,12,13, 154:1,6,13,
14,15, 155:2,8,11,14, 157:13, 179:5,6,7, 193:11, 193:7,
201:8,4,7,9,10,18, 202:1, 221:15,17, 225:18, 63, 77,
83 - 6, 100, 125, 145, 146.

declination, the second 199:13, 200:6, 201:1, 145.

degree  134:3,

Demavand, Mount s55:3, 185:17, 6.

depress, to 33:3,8, 42:17,18, 52:9,10, 53:18,19, S4:1,
57:14,19, 58:1,2, 26, 34, 43.

depression, angle of s59:8, 85:3,4, 86:12,19.

Dhu al-Rumma  s43:13,18, s61:10, 4, 9.

AbU Dhu'ayb  su3:11, 4.

differences, tabular 47.

diameter of the heaven  135:16.

digit(s) = 83:13 - 35:15, 36:13, 40:14, 41:13,17, 42:6,
43:7,8,12,16, 45:2,6,7,9,11,15,19, 46:4,6,15,18,
48:3,8,11,17, 48:5, 51:1, 52:1, 70:10,12, 71:13,
74:13,75:6, 87:5,14,15, 88:6,7,18, 89:9, 90:8, 92:17,
97:3, 98:19, 107:16,17, 108:5,6, 114:8,10, 128:1,
133:1, 134:9,11,14, 137:16,17, 139:8, 140:4, 142:13,
185:12,15,18, 186:15, 190:6, 192:3, 203:3,4, 205:3,4,
207:6,7,8,10, 208:10,11, 209:1,2,9, 218:6,7, 224:13,16,
226:1, 27, 35, 53, 54, 62, 63, 66, 139, 147.

digits, eclipse 35:6, 27.

Dik al-Jinn  §36:15, 2.

dimensions s58:4,

Diodorus 116:12, 90, 92.

diopter 82,
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division 33:4,5,

Diwdn al-adab s44:6, 4.

dirham  35:11, 134:1, 104.

distance 221:5,15.

distance(s), celestial  210:2 - 216:5, 151-6.

distance, earth-moon s50:8, 22:14,15, 96:18, 212:10,
213:3 - 216:5, 218:9, 75, 153, 154.

distance, earth-sun s50:8, 20:3, 95:12,16,18, 96:2,3,
12, 210:6 - 213:2, 216:19, 217:16, 218:8,11, )
75, 152, 156

distance(s), terrestrial 202:7 - 209:13, 147-150.

earth  s47:17, s48:2,11, s50:12, 28:9, 97:6, 98:5,
218:15,17,18, 219:2,5.

earth, flatness of 225:1.

earth, shape of 9:4,5,

earth, radius of 218:7,17.

earth, sphericity of 29:11-15, 25,

east-west line (= equinoctial line) s59:15, s60:10,
99:11, 100:4, 102:2, 103:14, 107:4,9, 114:3,16,
120:11, 121:3, 122:3, 122:5, 123:8, 125:6,7, 157:
16,17.

eccentric (orbit) 62:18, 96:15.

eclipses 22:11, 218:9, 20,27.

eclipses, colors of 13:6.

eclipse(s), lunar sb5:2, s47:19, sk8:1, s49:13, 17:18,
29:13, 212:7,14, 214:13, 215:3, 154.

eclipse(s), solar s50:13, 212:4,

ecliptic  9:4, 104:5,7,13,14, 131:12, 179:1,3, 183:5,11,
19, 199:7,12, 200:3,10.

ecliptic, inclination of 92:3, 131:5,10,11,12, 132:1,6,
179:6, 180:1, 199:10,18,19, 200:3,5,10.

Elements, the Book of the 180:6.

elevate, to 33:3,8, 26.

ellipse -10:8,10, 11:9.

emission of light 1, 6.

Enoch 180:8, 135,

epicycle 62:18.

equation  85:5,6,7, 150:11,15,19, 151:8,11,18, 224:6,8,9,
225:16.

equation of the altitude 154:13, 155:1, 125-6.

equation of (half the) daylight 126:10 - 130:18, 131:1,
131:9, 132:4,5, 133:2,3,5,6,10,13,14,15,16, 147:2,3,
150:19, 151:9,10,12,14,16,17, 152:2,8,9, 153:4,5,6,
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154:3, 155:11,15, 178:19, 179:2, 201:3,5,13, 202:2,
66, 97-102, 124, 126, 146. ‘

equation (planetary) 62:18.

equation of the sine 149:5,17,19, 150:4,5,6.

equator, celestial 95:15, 98:3, 99:10, 102:8, 112:11,
113:12, 118:3,5, 119:5, 127:4, 129:8, 140:11, 153:18,
155:10, 193:9, 201:1.

equator, terrestrial s60:13, 9:15,17, 92:5, 98:2,5,
184:4, 1u41:9, 147:10, 97.

equatorial shadow 126:12,18, 127:7, 128:1, 129:3,15,17,
130:5,8,9, 131:2,5,8,10, 132:2, 133:9, 134:9,17, 136:
6,9,15, 187:3,8,14,15,17, 138:4, 224:12,16, 225:19,

equinoctial line, see east-west line.

equinoctial point(s) 91:3.

equinox(es)  32:15, 33:11, 96:13, 102:7, 112:7, 112:15,
113:5, 1u47:8.

excess of daylight 136:10,11.

eye 553:1, 3:6.

Faddla al-Zahrani 165:6, 130.

Al-Fadl b. Nadim al-Nayrizi, see also al-Nayrizi, 51:12.

fala (= pala ) 133:12, Jo4.

al-Farabi, Ishaq 4.

AbU al-Faraj b. Hind 7:4.

Fargh3na, the people of 39:1,11,

al-Farghdni 1,

Ibn al-Farrukhan, Abu Bakr Muh. b. <Umar 87:1, 108:11,
62, 81.

farsakh = 97:3, 98:5,19, 126:3, 162:5, 218:17,18, 220:1,3,
10,12,13,15, 76, 157.

farsakh, Indian 220:12, 157,

fasting 2.

AbU al-Fath al-BustI  7:10, 9.

fay', (pl. afyi') definition and etymology of su3:1 -
shh:18, s62:5.

al-Fazari, Muh. b. Ibrghim  51:11, 52:16, 54:18, 143:8,
218:14, 219:11, 220:10, 39, 41, 116, 157.

feet see foot.

feet, fractional see fractional.

fish(-shaped figure) 107:3, 115:16, 116:3,5, gg.

foot  35:16, 36:8-14, 37:15,18, 38:1,5,8, 39:11, 40:11-16,
41:18,17, 42:4, 44:1,3, 45:11,13,15,19, 46:4,10,16, 47:
15,17,18, 48:1,3,4,7,9,12, 49:4, 51:2,19, 55:18, 56:1,
70:10,12, 71:13, 74:13, 75:6, 94:6, 36, 54.
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fraction, common 75:8.

fraction(s) multiplication of 43:1y.

fractional (feet, R = 63) U41:14,18, 4y: 8, 46:19, 47:
5,6,12, 48:9,14,19, gl t4, 55:17, 75:7, 29, 36.

freezing of water s56:17, 7.

Gabriel 161:12, 172:8.

Galen s51:15, 38:19, 6.

geometers s51:16.

geometry s35:18, s36:7, s37:1,6,9.

ghatI (Sanskrit) 126:16, 128: 11, 136:10, 140:1, 142:1,3,
97, 108, 115.

ghatikas (= ghulij&t, which see) = ghatis  115.

Ghazna 176:12.

ghulijat = ghatikas 141:16,18, 115.

ghurra 108, 124.

gnomon(s), see alsostick, s4l:16, s4B8:18, s54: 4, 6:5,
9:6,10,14, 10:8, 13:1, 1k: 2, 19:8, 21:9, 22:6,19, 23 9,
25: 15 26:8,9, 27 2, 28 11, 29:17,19, 30:6,8, 31:8,12, 1u
18,19, 43:9, 10 48:15, u9: l 9,12, 13 50:1, 5 6 9,12, 51 1,
14,16,18, 52 15, 53:7,8,9 13 15,19, 54:9,10 15, 55:1,5,7
18, 56 1,2, 56:13,15, 57 5 ,6,10,16,17, 58 1,2, 59:9, lO
11,17, 60: 2 3,4,5,9, 61:1, 2 63:4, 64:16, 65 7 &5 66 dbg
4,5, 70:18, 7l 12 72:11, 73 11, 74 13, 75:6, 78 2,7,8,
ll 79:2,5,8,10, 19 81:11,12,16, 83:2, 7 8, 84 3,8,15, l7
85:1,10, ll 86 2,3,19, 87:2, 5 6,8,18, 88: 2 7,18, 90 u
94:8,10,12, 95:1, 96: 3 7,11, 98:8,10, 106: 7 9, lO7 9P 18
108: 7 lO 109 2, 111:8, llS 15,19, 116 g ll7 2,10, 13
120:5,8,14, 121:1,9, 123 5,6, 17 124 U 127 6, 128 by
129:13 l5 18, 130:1,2,10, 14 140 4,17, 141:1, 6 S1h, 1hy:
14, 1'4537 1u46:5, 148239 16011& 16810 18015
181:13 182:4,8,9,18, 186:1, lS 192:4, lO 193: lO 16,
194:15, 195:2,10, 196 17,18, 197:1,2, 199 2, 204:10,11,
205:4,5,6, 206 8,14, 207:1,6,7,8, 12 15 19, 208 2,8,
213:7, 221 10, 14, 25-27, 48, 56-62, 64, 75, 80, 81,
90, 95, 113, 114, 132, 147, 149, 150.

gnomon, algebraic, 116.

gnomons, classification of  29:1, 41:12.

gnomon, conical  18:10 - 19:5,

gnomon(s), divisions of 32:1 - 41:10.

gnomon, horizontal 27:1.

gnomon, the human body used as 36:7, 28-30.

gnomon, nomenclature of 25:19.

)

gnomon, the seven-part 35:16 - 40:16, 44:1, 5
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1:3,

03

28.

gnomon, the six-and-a-half-part 35:16 - 40:16, 44:9,

51:4, 94:10, 29.

gnomon, the sixty-part  32:12-19, 43:3, 50:12, 182:15,

26, 34.
gnomon, tipped 18:15 - 19:5,  18.

gnomon, the twelve-part 33:9 - 35:15, 130:9, 1u42:13,

143:1, 148:2, 149:8, 158:12, 182:14, B5:16,
40, 113, 121.
gnomon, the two-and-a-half-part 40:19, 51:6.

gnomon, the unit 33:7, 43:2, 54:1, 55:4, 58:3,

38, 40.
gnomon, use of finger for  34:11, 27.
gnomon, vertical 26:3, 27:9.
Gospel, or the New Testament 7:17.
Greek (language) 69:9.
Greek(s), the 32:14, 107:1, 226:4.

Habash al-Hasib  51:12, 53:2,12, 54:18, 81:9,
182:12, 190:12, 39, 41, 59, 136.

habasha, see also casaka, 129:1.

Hadaliyin  sbu2:5.

Ibn al-Hajjdj s36:15, 1.

al-Hallaj, al-Husayn 27:9, 24.

Hamza al-Isfahdni 69:6, 51.

Ibn Hanbal, Ahmad 167:6, 131.

hand-breadth 33:17, 34:6.

27,

25,

82:8,

AbT Hanifa 167:3,4, 168:12,17,18, 172:2, 182:10,

Harrdnians 160:9, 11, 128.

HarGni, Zij 159:8, 119, 120, 121.

Abd al-Hasan al-Ahwd@zi  57:1.

AbU al-Hasan Musafir b. Hasan, Shaykh  3:11,
AbT al-Hasan Thabit b. Qurra  10:12,18.
al-Hashimi, Muh. b. “Abd al- “Aziz 39:16,17,
al-Hashimi, €Al b. Sulayman 109.

Ibn al-Haytham 1.

heads, flattened 38:12 - 39:5, 30.
Hermelink  92.

Hermes 223:15, 225:16, 226:4, 160.

hermit  31:2.

Heron 82.

Hind, see also AbU al-Faraj b. - 7:4, 9.
Hindus  160:8.

Hippocrates  38:15, 30.

1.

31.

25,

33,

130, 132.
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hisabat al-mut3raha 76:5, 55.

hole(s) s53:1, 13:9,13, 20:18.

hole, small il:1,4,10,12, 30:4,5.

holes, two nearby l4:6 - 15:5.

hoop (solar) 127:19, 128:2,6, 221:1,4,7,14,18, 99, 158.

horizon(s) 19:13, 25:12,17, 26:3,5,8, 28:4, 34:10, 49:13,
70:13,14, 84:3,7 ,13,16, 85:8, 86 9,11,19, 88: 3, 103:5,
7, 104:2,3,11, 106 8 109 5, 6 110:3, 112 15, 129:7,
lSl 4, 156 2, 3 157: 7 8, 159 13, 160:1,2, 168:1, 169:11
170: 15 183:9, 184 3 8 9,18,17, 193:3,5, 7 9,15, 201:1,4,
203:8, 223 6.

horizon, apparent 10:3, 19:9.

horizon, plane of 9:2,6,15,17, 10:6, 7,13, 49:12, 59:8,10,
11, 16 99:9,11, 102:1, 118 2,6, 119 1,4, 122: 2 124:10,
125:6, 127:1, 147 11, 153:13, 18 180:16, 192:2, 204:2,
209:3,7.

horizon, true 19:7, 213 10.

horns 160:14,17.

horoscope 70:1, 79.

hour(s) see also unequal hours, 81:7, 141: 17, 142:2,4,9,
144:5,13, 145:10, 147: 18, 158:13, 159 1,2,11, 163:9,
180:13, 185 5B 189 8,12, 190:3, 192 58 222 16.

hour angle 120.

hours, lines of the 183:17, 184:2, 188:Y4,

houses, illumination of interior of s54: 9.

AbU Hukayma s36:15, 2.

Humayd b. Thaur 165 9, 130.

al-Husayn b. Manglr al-Hall3j 27:8, 24,

hyperbola(s) 9:19, 116:8, 182:2, 192:6.

hypotenuse 19:13, 51:16, 54:13, 88:15.

hypotenuse(s) of the (dlrect) shadow(s) (= cosecant(s)),
see also cosecant, 69:1, 81:16, 85: 12,14, 94:11, 1u46:
6,12,13, 1u47:16, 148 3,11, 1u49: l 3, 150 10,11, 152 3,
4,7 12 153:7,8, 159:8,9, 160: 3, 221 3, 37.

hypotenuse of the (dlrect) shadow (= cosecant), definition
of 26:11, 49:9, 23, 37.

hypotenuse(s) of the (reversed) shadow(s) (= secant(s)),
see also secant, 57:10, 69:1, 24.

>

Ibrahim b. Sinan 10:13, 1, 11.
identities, trlgonometrlc 45, 48, 49.
Idris  180:8, 135.

Ikhwan al-$afa' 40:8, 31,
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al-<Ilal, by Yaequb b. Tariq 84:6, 127:17, 131:1.

inclination  86:5,14,17.

inclination of the ecliptic, see ecliptic, inclination
of the.

Indian(s) s46:1, 33:10, 34:7, 35:19, 41:9, 69:15,19,
92:10,18, 106:6, 126:8, 128:11, 132:9, 136:14, 139:
1,5, 141:11,12, 142:7, 159:3, 160:9, 216:10, 220:2,
12, 27, 52, 68.

Indian book(s)  133:18, 134:4, 141:11.

Indian circle, see circle, Indian.

Indian rules 66, 73, 74, 97, 109.

inhabited region (of the earth) s56:11, 91:15, 97:11,
107:13.

instruments  180:13.
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21:2,3,8,9,11,17, 22:9,15, 28:14, 29:9, 175:11, 211:4,
212:3, 218:9, 224:3,

noon altitude, 'see altitude, noon.
noon, determination of 177:3, 181:4 - 182:5, 225:3-12.
noon shadow, see shadow, noon.

moon, distance of, see distance. E north 97:5.

moon, heat of s45:17. ) numerals, alphabetical 73:13, 75:1.
moon, orbit of 96:16. numerals, on the astrolabe 73:1,12, 74:9.
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al-Sabbah, al-Hasan b. 39:18, 31.

Sabians, the 11, 39, 128.

sd<d 7:8.
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shadow, Arabic etymolcgy of see zill, and fay'.
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shadow, of Aries, see also shadow, equinoctial, 97.

shadow(s), on astrolabes 53.

shadow(s), book(s) on 1, 10.

Shadow(s), the Book of, by IbrdhiIm b. Sinan 10:13, 10.

shadow(s), cast as in prostration 5:17, 7:2.

shadow, cast by the moon s62:9, 19:3,

shadow(s), cast by planets 20:15-19.

shadow, of Christ 7:18.

shadow(s), condensation of 17:8.

shadow cone, see cone, shadow.

shadow(s), definition of 3:9,

shadow, direct, (= the cotangent, which see) Uu40: 15, 42:1,
5, 58 9, 59:13, 60:10, 196:7, 197: 8, 199:3,4, 44.

shadow, direct (= cotangent), deflnltlon of 26 2-11, u49:
7, 59:1, 23, -

shadow, double 17:1. .

shadow of the earth  su5:5, su7:19, s49:17, 850:9, 13:2,5,
29:8-15.

shadow, edge of 12:6, 12, 17, 18.

shadow, of the equator see equatorial shadow.
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130:3, 135:9, 74-6, 97.
shadow, erect (= the tangent function) 27:5,10,11.
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shadow of a gnomon 6:6, 19:12,14, 20:1, 53:8, 128:8, 14.
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shadows, intensity of 12:11-15, 18:2.
shadow, ladder, on astrolabes 73:9 - 80:12.
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17, 176 2,10, 19 180: 16 182:6,13, 16 185:15, 187:1,
65—76 113, 114, 132, 135.

shadow(s), of planets  23:6.

shadows, power of  17:11, 24:13,

shadow, reversed (= the tangent function, which see)
shh:16, 31:7, 40:17, u42:2, 5, 57:2,5, 59:1,13, 60:10,
24, 25, 44.

shadow reversed (= the tangent function), definition of
27:1-6, 24,

shadow(s), of rocks  24:19 - 25:11.

shadow, sexagesimal  42:17, 43:3,

shadow, on a sphere 87:1 - 90:8.

shadow, solsticial 107:16, 108:7.

shadow, at sunrise or sunset 112:1,8.

shadow, of the tan<ima tree 25:9,10.

shadow(s), of trees  24:10.

shadow triangle(s) 119:8.

shadow(s), of two gnomons 20:8.

shadow(s) types of  41:11 - 42:5,

shadow, umbra and penumbra  15:1,

al-Shafi<i 166:6, 167:1,5, 168:2 ,13,18, 169:3, 178:5,
182:9, 130-2.

Sh&h zij  52:1,18, 53:11, 56:19, 148:13, 222:7, 39,
40, 122, 159.

Shahriydran 21j 135:5, 222:9, 106, 159.

al-Shami, see al-khali® al-Shami 4.

shatba (?) 188:7, 189:3,

al- Shaybanl, see also Muh. b. al- -Hasan 131, 132.

Shicites 170:17, 133.

shore  15:7,8, 202:19, 203:2,6.

siddhanta(s) 41:4,9,

sight(s), on an alidade or ruler 77: 13, 109:6,8, 186:5,
188:17, 190:1,2,4, 203: 2,16, 204:7.
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sign(s), zodiacal, 95:10, 127:19, 132:10, 137:18,
186:10,11,12, 193:13, 194:1,5,

al-S8ijzi, Abu Sacid Ahmad b. Muh. °Abd al-Jalil 5u:
2, 79:15, 92:18, 41, 58, 68.

Sindn b. Fath 213 3, 214:5,10, 153.

Ibn Sin3n, Ibrahlm 10 13.

Sind 92:13,19, 67.

Sindhind (Zij) 142:8, 220:18, 222:7, 116, 159.

sine(s) 20:5, 27:13, 32:19, 49:10,15,16, 50:2,6,8, 52:
2,3,7,12, 53:8,10, 54:7,13,18, 55: 1,4,13,18, 56:18,
57: 12 16,18, 58:1, 66: l2 67:1,4,5, 12 16, 68 9,13,
69:2,3, 86 6,7,13,14,16,17, 87:7, 88 5 7,10, 89 1,
90:1,7, 94:3,7,11, 95 1,4 5 100:16,18, 122:5,7, 10
11, l2 123:1,2,4, 124:9, 126 10,12,14, 18 127:6,11,
16, 128 4,9, 129 4,5,12,13,14, 16 17 130 1,2,4 5 7,
15, 131:2,8,19, 132 2,3,4,5,7,8,12, 138:17,18, 146
16,17,18, 147:2,3,6, l7 18, 148 4,5,11, 149:1, 2 5,
10,16, 150:3, 151:4,10,14, 15, 152 8 9,14, 153 2 5
6, 154 7,8,9,10,11, 12 13 18 19 155:1,2, 157:7, 9 ,10,
11,14, 158 3, 159:10, 160 b, 194 14, l7 195:11, 15
16,17,19, 196 1,11 12 13,16,18, 197:2,3,5,6,7, 198:
5,7,9,10, 199:2,9, lO 11, 12 16, 17 18,19, 200 1,3,5,6,
8,9, 201 5,6,7, 8 9 10,11, 202:2,3, 213 13, 214:4,6,
221 6,11,14,18, 222 2, 223 1, 224 12, 19, 37, 43, 49.

sine of the day, sei day sine.

sine, Indian (R = ) 50:12, 51:2,4,5,7,8.

sine(s), law of 49, 125-7.

sine, of Ptolemy (R = 60) 50:12, 51:1,3,4,7.

sine, sexagesimal (= Ptolemaic sine) 52:9, 53:15,
54:18, 57:14.

sine, terminology of 74.

sine, total, or maximum 20:4, 21:14, 31:13, 33:3, 41:10,
49:10,50:2,6,9,11, 52:4,8,15, 53:15, 54:11, 55:2,4,5,
17, 57:11,14, 58:1,3, 81:18, 86:15,17, 87:7,9, 88:8,10,
89:1,2,8, 94:8,9, 11u: 9, 122:10, 126 11,14, 19 127:11,
14,16, 129 18, 130 9, 135 17, 1u46:5, 1u7 4,5, 148:2,4,
6, 8 9, 150:4, 5 16,17, 151:3, 152:9 19 153:1, 157: 19
158 7, 194: 15 195:11, 197: 3 4,5,6,7, 198:9, 199:10,
200:3,11, 201:12, 202:2,. 213: 6, 214 1,3, 221 10,16.

sine, total (R = 2450' = 57501 222 2, 223:3.

sine, total, (R = 150' = 250 Ok 9 147:5, 148:2, 149:
8,16,18, 159: lO, 222:1,4,8, 223:2,

sine, total of Aryabhata ( = 3438' = 57;18) 41:3, 128:
5, 221: 13 222:2,

Page 217

sine, total, of Brihmagupta in the Brahmasp.
(R = 3270' = 545-)  u4l:2, 222:3,

sine, total, of Brahmagupta in the Khand.(R = 2%-: 150")
40:19.

sine, tutal, of al-Fazdri (R = 150' 22) 52:16.

sine, total, of al-Khwarizmi (R = % ="150') 52:17,
130:13.

sine, total, of AbG Macshar, (R = 150' = 230 52:17.

sine, total, of Pulisa (R = 57;18 = 3438')" 41:3,

sine, total, sexagesimal, 130:10. 1

sine, total, of the Shah zij (R = 150' = 250 52:18.

sine, total, of Ya<q@b b. Tariq (R = 150'‘= 250 52:17.

sine, total,kinds of  U4l:1-4,

sine, total, use of unity for 40: 18, 43:3, 55:4,

sine, versed see versed sine.

$loka, verses 1u2:8, 116.

smoke si6:8,

solstice(s) s55:17, s56:11, 32: 15, 33:11, 58:12, 59: 1,
92:4, 113:3,6,16, 17, 179:5, 184:2, 192: 5 ,11, 193 19,
44.

south 97:5.

space, interplanetary su47:9.

span, hand 33:16,18, 34:15,18, 35: 7, 40:4,5,6,8,13,
143:14, 185:16, 27

sphere 18:17,19, 38:10, 99:5, 62-64.

sphere, armillary 69:17, 176:8.

sphere, celestial 69:16.

sphere, prime (= celestial sphere) 111:7.

sphere, shadow on a 87:1 - 90:8.

spiral 9:9, 10:16, 112:11,14, 194:7,

square 199:16, 201:5.

stars (fixed) s51:1, 5:16, 6:3, 8: 9, 171:13.

stick (= gnomon) 69: 16,18, 70:1, 142:10, 13,15,17, 143:11
15,18, 145:5, 146: 3, 181:3, 209:5, 225 lO

Sufis 27 7.

Suhayl, the inferior 97:3, 76.

sulfur, red 27:9, 24.

sun s41:5,15, 543 7, sh6:6, su47:15, s48:8 ,13, sh9:1,
s52:17, s54:9, s56:2, s61: 6, 6:9, 8:9, 9:7,10,11, 10: 6,
17, 11:6,11, 16:12, 17: 18, 19:9, 20: 13 21:4, 6 10,12,
18, 28:9, 31 1, 34:9, ug9: 13 50:4,7, 62:12, 76 12,14,
77:14, 81 14, 82:7, 86 3,13, 87:4, 88 2, 90:11, 91 4,
10: 94 17, 95 12, 102 5, 6 ,10, 103:18, lOH 10,13,15, 16
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109:8,10,18, 113:13, 114:11, 115:1,6, 120:8, 121:7,
122:14, 124:3,4, 142:16, 144:1, 153:19, 154:15, 155:
16, 157:1,6, 158:3,8, 160:8,14,17,19, 161:1, 162:4,
5,8,9,19, 163:2,7,16,18, 164:3,11,15, 165:7,15,16,
19, 166:18, 167:2,4, 168:1, 169:7,11,13, 170:17, 172:
6, 173:16, 176:7, 179:1,6,13,16,17, 180:15, 184:13,
16;17,18, 185:1, 188:12, 203:13, 210:7,12,18, 211:
6, 212:1, 218:10,15,17, 219:9, 221:11, 222:16,18,
224:1, 225:11.

sun, apparent diameter of  23:3, 35:6, 210:6, 211:3,
216:16.

sun, daily path of 9:9, 112:10,13, 77.

sun, distance of, see distance.

sun, orbit of 96:10,14.

sun, shining through a hole 11:4,

sun, size of s50:7.

sundial 192:1,4,12, 193:10, 44, 141-3.

sunlight  s42:6.14, s43:1, slh4:1,

sunrise  s49:11, 8:4, 16:8, 2u4:1, 30:2, 62:11, 120:6.

sunset  8:4, 30:2, 62:12, 171:10,12.

surveyor 203:10, 205:12.

table(s) 36:14, 50:6, 61:3 - 69:3, 8l:4, 129:2 - 130:18,
159:1, 4e.

table, of shadows (or tangents) 182:15,17,19, 190:4-12.

tabular differences 62:4,5,6,7,8,15, 63:2.

Tahdid 79, 85, 93, 95, 96.

Ta'if 172:8.

Talha, Mangir b. s49:10.

talismans 226:10.

tangent, function (or reversed, or erect shadows which see )
27:1-6, 57:2,4,9,10,11,13,16,17,19, 59:4,6,11,13,18,
60:3,4,7,8,10, 61:1,9,12,19, 62:12,15, 64:9,10,11,12,13,
14,15,16, 65:6,8, 66:9,12, 67:1,11, 70:12,15, 71:4,19,
72:1, 78:4,7,9, 79:3,5,10,12, 81:4, 82:6,11,12,13, 132:
2-6, 190:7-12, 191:2, 195:7,8,10,13,14, 196:5,16,17,18,
19, 197:1,8,7,9, 198:4,5,7,8,9,10,11, 199:2,3,5, 200:
7,9,10,11, 202:2,3, 23, 24, 43-49, 57-9, 76, 144-6.

tangent, function, on the astrolabe 71:19 - 73:7, 53,
54, 141.

tangent function, differences 63:2 - 64:12.

tangent, geometric  14:1, 6u4:1, 88:1, 196:6,8.

target 109:11, 217:8,9,13,14, 218:3,4,

ibn Tariq, Yaeqlb, see also Yacqib, 51:11, 84:6.
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tawg, see hoop.

Ta'us  169:5, 132,

Thabit b. Qurra 10:12,18, 11, 13.

Ibn Thawdba 7:8, 9.

thread  85:12.

Thule 81.

tilaka 108.

the Timaeus 17:6, 17.

time, definition of s40:2.

time, determination of s39:10, 34:8, 81:5,7, 113-124,
126, 141.

time past of day(light) 101:9, 114:5, 138:15 - 153:8,
153:15, 154:17, 188:14, 113-124, 126.

time(s) of prayer, see prayer, times of

time triangle 100:3, 122:4, 125:3, 160:1, 77, 95,
96, 127.

time-degree(s)  93:18, 128:12, 134:3,6,15, 135:4,7, 136:
12, 139:17,19, 140:3,8,15, 66, 71, 97, 105, 106, 109,113.

time-seconds  105.

tongue 110:2,4,9.

transparent s4l:7, s47:10, s51:7, s52:1.

transparent medium  s53:4.

transversal theorem, see Menelaos' Theorem.

tree(s) 5:16, 25:2-11.

triangle(s) 19:16,18,19, 49:18, 51:16, 56:11, 64:2,3,4,
5,6, 78:14, 82:8, 88:10,11,15, 98:12, 100:12,14,15,
109:15, 117:11, 119:8,11,14, 127:9,11, 157:18, 207:18,
208:1, 210:13,17, 211:7,8,9,10, 212:10,11, 219:1.

triangle of the day, see day triangle.

triangle, of gnomon and shadow  31:11.

triangle(s), spherical 198:5, 101, 144.

triangle of time, see time triangle.

trigonometry 144, 145.

tula 27, 104.

twelve-digit gnomon  27.

twilight s49:12, 161:5,15, 163:1, 164:11,13, 166:4, 167:
4,10,12,19, 169:7, 170:18, 173:9, 174:10, 175:16, 185:3.

twilight, angle of depression for  185:1, 139,

AbT “Ubayd 169:19, 133.

Ujjain  103.

Ulwiya, kitab al- s55:5.

“Umar b. “Abd al- “Aziz  185:4, 139.
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Ibn <Umar b. al-Farrukhan, see also al-Farrukhan, 87:1,
108:11.

“Umar b. al-Khattab 162:2, 129.

umbrella 216:11,13, 217:4, 155.

unequal hours 140:2, 145:2, 159:4,7, 184:2,6, 185:6,
188:10,13, 116, 129, 139.

units, see also gnomon unit, 33, 34.

Ursa Minor 171:7.

AbU “Uthman al-Jahiz  24:19, 22.

valley, width of 202:19 - 203:7.

Varahamihira g0.

Vatedvara (= Vittisvara) 136:5, 152:3, 108, 124.

Venus 20:17, 171:11.

verse(s), see also $loka, and ode,  1u44:10, 153:u4, 1j6.

versed sine, see also day sine, 146:12,14, 149:12,13,16,
18,19, 150:12, 151:18, 152:5,11,18, 153:3, 221:5,17,
77, 99, 120, 122-4.

vighati  1o0s.

Vijayanandin (of Benares) 107:1, 126:16, 136:8, 80, 10s.

vinddi (Sanskrit) 126:15,16, 128:12, 95, 97, 99, 104.
visibility of the lunar crescent s37:16, s38:1.

visual perception s51:15.

visuvacchaya (Sanskrit)  133:11.

Abu al-Wafid' al-Buzjani 43:1, 51:13, 54:1, 55:2, 58:2,
26, 34, 41, 43.

wall  76:6,9,12,14, 77:1,4,5,6,7, 55.

wandi 27.

vater, freezing of s56:19, 7.

water, surface of s52:11.

water, to test a level surface 99:6.

weights  35:11, 133:19,

Yaltaban the Indian  136:14, 109.

Yacqlb b. Tarig 51:11, 52:17, 53:11, 84:6, 94:19, 95:3,
127:16, 131:1, 147:15, 39, 60, 74, 99, 102, 121.

years, planetary 223:18, 160.

yojana 220:3,6,13, 157,

AbU Ylsuf, see also al-Kindi 167:5,13, 168:18, 182:9,
131, 132.

Abl Zayd al-Balkhi  24:2, 22.
Zaydites, the 171:4, 133.
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zamharir s45:17.

zawal, meaning of  sLk:19.

zenith sk9:8, 59:8,9,17, 62:12, 102:3, 103:7, 104:6,
154:2,

zenith distance 19:11, 21:17, 28:8.

zIj(es)  32:13, 33:6, 39:14,16,19, 41:2, 42:15,17,
43:2, 50:9,11, 51:11,18, 52:16, 53:14, 56:19, 61:5,
11, 152:8, 153:4, 221:8, 222:19, 39, 40, 158.

zIj, an anonymous  220:19.

Z1j, Arkand, see Arkand Zij.

z1j of AbU Asim °Isam  93:11, 70.

z1j of al-Battani 51:14, 53:12, 40.

z1j of Ibn al-Farrukhdn 87:2, 109:1, 62.

z1j of al-Fazari 51:14, 218:15, 220:12, 39, 157.

z1j(es) of Habash al-Hasib 51:12, 53:12, 81:10, 182:12,

zij, HartnI 159:8, 119.

21j of al-Hasan b. al-$abbah see also zij of al-Sabbah,
39:19.

z1j of al-Hashimi  31.

z1j(es), Indian  93:4, 106:6, 132:9, 142:7.

z1j of €Isdm, AbT “Asim 93:11, 70.

al-Zij al-Jami® , see Jamic Zij.

21j, Karapasa@ra, see also Karanasdra, 136:5.

40.

21j, Khapdakhadyaka, see also Khapdakhadyaka, 133:9, 150:9.

21j of al-Khwarizmi 51:14, 129:2, 40, 100.

21j of Kushydr, see also Jami® Zij 40.

z1j of AbT Ma<shar 39:14, 47:7,14, 49:1, 51:14, 53:12,
31, 40.

z1j, Mukhtaric 31.

z1j, of al-NayrizI  39:15, S1:1u4, 53:12, 31, 40.

z1j of al-Sabbah 31.

zIj al-Shah, see Shah Zij.

zIj, Shahriyaran, see also Z1j al-Shah, 135:5, 222:9.

zij(es), Sindhind, see also Sindhind, 142:8, 222:7.

zij of AbU al-Wafa' 51:14.

z1j of Yaequb b. Tariq  51:14, 53:11, 40.

gill, (pl.azl&l, zilal) definition and etymology of  su2:

3 - sub:18, s62:4.
Zoroastrians 175:10, 128, 134.



INDEX OF SEXAGESIMAL PARAMETERS

Entries are arranged as in the other indices,
and in the order of the leading digit, without regard
to the location of the sexagesimal point.

1=r . . ) . 33:6, 40:18, 31, 34, 41,
43, 48.

1,0 =60 = R . . . 32:12, 31, 41, 42.

2330 .. . . 32,

6;30 =g . . ) . 35:16, 37:12, 39:15, 29,
3.

6340 = g . . . . 39:14, 35.

7=g . . . A . 35:16.

12 .. . . 83:9, 40, 41, 121, 122,158.

180 .. . . 139,

233350 .. . . . 81, 83, 103.

54330 = 3270' = R . . sl 32,

57;18 = 5+ %-+ fﬁ . . 41:2, 32, 99, 153, 158,159,

B SR e

INDCEX OF DECIMAL PARAMETERS

Entries are arranged in the order of the leading
digits, without regard to the location of the decimal
point (e.g., 150 precedes 2.5). As with the general
index, references to the published text and English trans-
lation show page and line of the text, separated by a co-
lon. References indicated by italics are to sections of
this commentary.

12 . . . . - 33:9, 40, 41, 121, 122,
158,

150" = 2330 = 2% . . 32, 119, 121, 122, 158, 159.

2.5 = 2%‘ =R . . . 130:13.

1

37 . . . . . 62,

3.1625 . . . . 157,

3270 . . . . 32,

(- = 1,1 .
3438' = 57;18 = 54+ =+ — . 127:19, 128:2, 32, 99, 153,
5 10

158.

5 . . 105,

5026 . . . . 157,

S5400' = 90 x 60 = g0° . 150:17, 123.

6583 farsakhs . . . 218:17, 157.
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