Introduction	Metrics	On distance	Measuring differences	Final thoughts

Comparing Different Metrics Quantifying Pedestrian Safety

Arne Hillebrand Han Hoogeveen Roland Geraerts

Department of Information and Computing Sciences Utrecht University, the Netherlands

9th Conference on Pedestrian and Evacuation Dynamics August 22, 2018

Introduction	Metrics	On distance	Measuring differences	Final thoughts
Why?	0			

Analysis of crowd disasters

- Hajj (2006, 2009) [1]
- Love Parade (2010) [2]

Calibration and safety

- NIST 1822 [3]
- Fundamental diagrams [4]
- Level of Service [5]

Improving safety

- Simulations of the Hajj [6]
- Evacuations of concerts [7]
- Crowd flow optimization of the Grand Départ [8]

- [4] Zhang et al., "Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions"
- [5] Fruin, Pedestrian planning and design
- [6] Khan and McLeod, "Managing Hajj crowd complexity: Superior throughput, satisfaction, health, & safety"

^[1] Dridi, "Tracking Individual Targets in High Density Crowd Scenes Analysis of a Video Recording in Hajj 2009"

^[2] Helbing and Mukerji, "Crowd disasters as systemic failures: analysis of the Love Parade disaster"

^[3] Ronchi et al., "NIST Technical Note 1822: The process of verification and validation of building fire evacuation models"

 $[\]left[7\right]$ Wagner and Agrawal, "An agent-based simulation system for concert venue crowd evacuation modeling in the presence of a fire disaster"

^[8] Zwan, "The Impact of Density Measurement on the Fundamental Diagram"

Introduction	Metrics	On distance	Measuring differences	Final thoughts
00				
Classifying safety				

Density ρ

The number of pedestrians (*N*) located in a unit area (*A*). • $\rho = \frac{N}{A}$

Velocity v

The average direction and speed of pedestrians.

Flow q

The number of pedestrians crossing a virtual line.

$$\blacktriangleright \vec{q} = \rho \times \vec{v}$$

Pressure p

The amount of pressure a pedestrian experiences.

•
$$p = Variance(\vec{v}) \times \rho$$

Introduction	Metrics	On distance	Measuring differences	Final thoughts
	•			
How to measure	density for ped	lestrians?		

Many choices

- 7 different categories [1]
 All give different results...
- For each category, different methods exist And each is supposed to be better than its predecessor...

We implemented:

- A grid-based method [2]
- A Voronoi-based method [3]
- The Gaussian-based method
- An improved Gaussian-based method [4]

^[1] Duives, Daamen, and Hoogendoorn, "Quantification of the level of crowdedness for pedestrian movements"

^[2] Fruin, Pedestrian planning and design

^[3] Steffen and Seyfried, "Methods for measuring pedestrian density, flow, speed and direction with minimal scatter"

^[4] Plaue, Bärwolff, and Schwandt, "On measuring pedestrian density and flow fields in dense as well as sparse crowds"

Introduction	Metrics	On distance	Measuring differences	Final thoughts
		0000		
Flat-world				

Are these methods suitable for pedestrians?

No, because some ignore obstacles. No, because these methods are only defined for flat worlds.

Possible solution: Geodesic distance

This world is not flat (unless you really like maths)

Introduction	Metrics	On distance	Measuring differences	Final thoughts
		0000		
Geodesic distan	ice			

In this situation, the **geodesic distance** is the shortest walking distance.

Advantages:

- Defined for any surface
- Takes obstacles into account

Disadvantage:

Computationally expensive

– – Euclidean distance
 — Geodesic distance

Introduction	Metrics	On distance	Measuring differences	Final thoughts
		0000		
Impact on differe	ent metrics			

Density:

Introduction	Metrics	On distance	Measuring differences	Final thoughts
		0000		
Impact on safety	?			

What we see:

- It looks different
- We get different/higher peaks
- No "values" are crossing obstacles

What we don't see:

- Does it affect safety decisions?
- Are these differences significant?

We propose new ways of comparing methods.

Old:

New:

- Peaks
- Biggest difference

- Quadratic score
- Bin difference

We propose new ways of comparing methods.

Old:

New:

- Peaks
- Biggest difference

- Quadratic score
- Bin difference

Definition (Quadratic score)

The quadratic score (qs) is the maximum divided by the local value squared, normalized over the area.

$$qs(M) = rac{1}{A_R} \sum_{i=1}^N \left(rac{v(C_i, M)}{\max(M)}
ight)^2 A_i$$

We propose new ways of comparing methods.

Old:

New:

- Peaks
- Biggest difference

- Quadratic score
- Bin difference

Definition (Bin difference)

The bin difference is the weighted difference in misprediction of safety levels (for example Level of Service).

$$bd(M_1, M_2) = \frac{1}{A_R} \sum_{i=1}^{N} (bin(C_i, M_1) - bin(C_i, M_2))^2 A_i$$

Introduction	Metrics	On distance	Measuring differences	Final thoughts
00	0	0000	••••	
Experiments				

Basic environments

Scenarios

- Spawn agents every x seconds
- Let the agents move from start to goal
- After the first agent reaches the goal, start a timer (120 seconds)
- ▶ When the timer runs out, measure for 10 minutes

Here, x is one of 2, 1, $\frac{2}{3}$, $\frac{1}{2}$, $\frac{2}{5}$, $\frac{1}{3}$, $\frac{2}{7}$, $\frac{1}{4}$, $\frac{2}{9}$, $\frac{1}{5}$.

Averaging windows: Instantaneous, 1s, 10s and 60s

Introduction	Metrics	On distance	Measuring differences	Final thoughts
			0000	
Results (windows)			

U-turn environment; density:

Conclusion: An averaging window of 10s is enough

Introduction	Metrics	On distance	Measuring differences	Final thoughts
			0000	
Results (windows)			

U-turn environment; density:

Conclusion: An averaging window of 10s is enough

Introduction	Metrics	On distance	Measuring differences	Final thoughts
			0000	
Results (windows)			

U-turn environment; density:

Conclusion: An averaging window of 10s is enough

Introduction	Metrics	On distance	Measuring differences	Final thoughts		
			0000			
Results (Comparing)						

Conclusion: Different ranges and different trends

Introduction	Metrics	On distance	Measuring differences	Final thoughts
				0
Open questions				

Are these comparisons enough?

More research required

Can we efficiently calculate geodesic distances in 3d environments?

Depends on what you call efficient

Do we really need the geodesic distance for accurate threat assessment?

Probably not for all situations

Introduction	Metrics	On distance	Measuring differences	Final thoughts
00	0	0000		○●
Thanks!				

Arne Hillebrand

A.Hillebrand@uu.nl https://research.arnehillebrand.nl/

Han Hoogeveen J.A.Hoogeveen@uu.nl http://www.cs.uu.nl/staff/slam.html

Roland Geraerts

R.J.Geraerts@uu.nl http://www.cs.uu.nl/staff/roland.html