Balancing Cost and Precision of Approximate Type Inference in Python

Levin Fritz and Jurriaan Hage

Department of Information and Computing Sciences, Universiteit Utrecht
J.Hage@uu.nl

January 17, 2017
Introduction

- Static typing: variables have types, checked at compile-time
 - C, Java, Haskell, ...
- Dynamic typing: values have types, checked at runtime
 - Scheme, Python, PHP, ...
- Type inference for statically typed languages:
 - determine the type of each variable
- Type inference for dynamically typed languages:
 - for each variable: which types can it refer to at runtime?
 - detecting errors
 - optimization
 - supporting tools
In this paper

- Method for approximate type inference of Python 3.2 programs
 - based on monotone frameworks
 - for interactive tools, eg, code completion in an editor
- Proof-of-concept implementation
- Experimental evaluation, balance of cost and precision
 - Focus on suitability for code completion
Python:

- general-purpose, high-level programming language
- imperative, object-oriented
 - features from functional and scripting languages
- uses dynamic typing
def factorial(x):
 if x == 0:
 return 1
 return x * factorial(x - 1)

numbers = [10, 20, 30]
for n in numbers:
 print(n, factorial(n))

Indentation implies structure
Some language elements

- Mutable variables (both value and type)
- The usual (imperative) control structures
- Functions first class, anonymous functions
- Assignments, functions and class can introduce new variables
- Scope limited to enclosing block (module, function body, ...)
 - Can be overridden
- List, set and dictionary comprehensions
Object-oriented Programming

Example:

class C:
 x = 1
 def m(self, y):
 self.x = y

o = C()
o.m(10)
print(C.x, o.x)

Output:

1 10

Multiple inheritance, methods are attributes that are functions,
All is dynamic

- types of variables
- create classes at run-time
- add and delete attributes at run-time
Control flow graph (intraprocc)

Analysis implemented on top of a program’s control-flow graph:

\[
\begin{align*}
[a = 42]^1 \\
[b = 70]^2 \\
\text{while } [b \neq 0]^3: \\
\quad \text{if } [a > b]^4: \\
\quad \quad [a -= b]^5 \\
\quad \text{else:} \\
\quad \quad [b -= a]^6 \\
[gcd = a]^7
\end{align*}
\]
Montone Framework: Overview

- Basic idea: propagate values through control flow graph.
- Two values for each program point l:
 - $A\circ (l)$: context value
 - $A\bullet (l)$: effect value
- Values are elements of a complete lattice L
 - join operator \sqcup, bottom elt. \bot and top elt. \top
- $A\bullet (l) = f_l(A\circ (l))$ where f_l is the transfer function for l
- $A\circ (l)$ is the join of effect values of l’s direct predecessors
 - l' is a direct predecessor of l if there is an edge (l', l)
Solving Monotone Frameworks

- Fixpoint iteration
- Basic/naive algorithm:
 - Initialization:
 - $A_\circ(l) = \nu$ for program entry point
 - $A_\circ(l) = \bot (= \emptyset)$ for others
 - Iteration:
 - compute all $A_\bullet(l)$ using transfer functions
 - compute all $A_\circ(l)$ by propagating over CFG edges
 - repeat until there are no more changes
 - guaranteed to happen if paths from \bot to \top (= all types) all finite (Ascending Chain Condition)
Interprocedural Data Flow Analysis

▶ Intraprocedural analysis: within procedures (functions)
▶ Interprocedural analysis:
 adds support for procedure definitions and calls
▶ Procedure definition:
 ▶ entry and exit nodes l_n and l_x
 ▶ Example:
 \[
 \text{[def]}^{l_d} \ [\text{f(x)}]^{l_n}_{l_x} : \ldots
 \]
▶ Procedure call:
 ▶ call and return nodes l_c and l_r
 ▶ Example:
 \[
 [\text{f(1)}]^{l_c}_{l_r}
 \]
▶ Add edges $(l_c, l_n), (l_x, l_r)$.
Late Binding

- Late binding: which function a method call refers to is determined at runtime.
- With first-class functions and late binding, it’s not obvious which function a call refers to.
- Type inference tracks functions.
- Edges for calls are added when solving the monotone framework.
Tracking Functions

- Each function is assigned a unique id.
 - included in type inferred for function

- Extend monotone framework with function table Λ:
 $$\Lambda[f] = (l_n, l_x)$$
Call Transfer Functions

- Two kinds of transfer function:
 - Simple transfer function: as before.
 - Call transfer function:
 - for \(l_c \) nodes
 - returns a set of function ids

- When solving the monotone framework, for call transfer functions:
 - look up each function id in \(\Lambda \),
 - add edges for function calls to the CFG.
 - intuitively: edges in the CFG are part of the lattice, growing along with the sets of types
Late Binding: Example

\[\text{def} \quad f(x) = \begin{cases} \text{return } x + 1 & \quad \text{if } x \geq 1 \\ f(1) & \quad \text{if } x = 0 \\ f(2) & \quad \text{if } x < 0 \end{cases} \]

Function table:

<table>
<thead>
<tr>
<th>x</th>
<th>f(1)</th>
<th>f(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
Late Binding: Example

\[
\text{[def]}^1 \quad \text{[f(x)]}^2_3:
\]

\[
\text{[return } x + 1\text{]}^4
\]

\[
\text{[f(1)]}^5_6
\]

\[
\text{[f(2)]}^7_8
\]

Function table:

<table>
<thead>
<tr>
<th></th>
<th>(l_n)</th>
<th>(l_x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Late Binding: Example

\[
[\text{def}]^1 \quad [f(x)]^2_3 : \\
\quad [\text{return } x + 1]^4
\]

[\[f(1)]^5_6
\[f(2)]^7_8

Function table:

\[
\begin{array}{cc}
 l_n & l_x \\
 1 & 2 & 3 \\
\end{array}
\]
Late Binding: Example

\[
\begin{align*}
[\text{def}]^1 & \quad [f(x)]^2_3: \\
& \quad [\text{return } x + 1]^4 \\
[f(1)]^5_6 \\
f(2)]^7_8 \\
\text{Function table:} \\
\begin{array}{c|cc}
\hline
l_n & l_x \\
1 & 2 & 3 \\
\hline
\end{array}
\end{align*}
\]
Late Binding: Example

\[
\text{[def]}^1 \quad [f(x)]^2_3: \\
\quad \text{[return } x + 1\text{]}^4
\]

\[
[f(1)]^5_6 \quad [f(2)]^7_8
\]

Function table:

<table>
<thead>
<tr>
<th></th>
<th>(l_n)</th>
<th>(l_x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Inferring Types: Overview

Source Code
 ↓ Parsing
 ↓ Abstract Syntax Tree
 ↓ Control Flow Graph
 ↓ Monotone Framework
 ↓ Fixpoint iteration
 ↓ Results
Type Lattice for Python

Types for variables in Python programs:

\[u \in \text{UTy} \quad \text{union types} \quad u ::= \{v\} \mid \top \]
Type Lattice for Python

Types for variables in Python programs:

\[u \in UTy \quad \text{union types} \quad u ::= \{v\} | \top \]
\[v \in ValTy \quad \text{value types} \quad v ::= b | f | c | i \]
Type Lattice for Python

Types for variables in Python programs:

\[u \in \text{UTy} \quad \text{union types} \quad u ::= \{v\} \mid \top \]
\[v \in \text{ValTy} \quad \text{value types} \quad v ::= b \mid f \mid c \mid i \]
\[b \in \text{BuiltinTy} \quad \text{built-in type} \quad b ::= \text{int} \mid \text{bool} \mid \text{list} \mid \ldots \]
\[f \in \text{FunTy} \quad \text{function types} \quad f ::= f_i \]
\[c \in \text{ClsTy} \quad \text{class types} \quad c ::= \text{class}(l, [c], \{n \mapsto u\}) \]
\[i \in \text{InstTy} \quad \text{instance types} \quad i ::= \text{inst}(c, \{n \mapsto u\}) \]
\[l \in \mathbb{N} \quad \text{label} \]
\[n \in \text{String} \quad \text{name} \]
Type Lattice for Python

Turning UTy into a lattice:

▶ $\bot = \emptyset$

▶ $a \sqcup b$ where neither is \top is $a \cup b$, except
 ▶ class types with the same class id are merged.
 ▶ instance types with the same class id are merged.
Map Lattice

- Goal of the analysis: infer a type for each variable.
- Lattice used in monotone framework: mapping from variables to union types.
- Example:

 \[
 x = 1 \\
 y = "a"
 \]

\[
\{ x \mapsto \{ \text{int} \}, y \mapsto \{ \text{str} \} \}
\]
Analysis variants under evaluation

- Parameterized datatypes
- Context-sensitive analysis
- Flow-insensitive analysis
Parameterized Datatypes

- Example code:
  ```python
  list = [1, 2, 3]
  sum = 0
  for x in list:
    sum += x
  ```
- Basic analysis infers \top for `sum`.

- To improve precision:
 Track types of contents of built-in collection types.
 - Example:
    ```python
    list  \langle \text{int} \rangle
    ```
 for list containing values of type `int`

- Extended type lattice:
  ```
b ::= \cdots | list \langle u \rangle | set \langle u \rangle | dict \langle u; u \rangle | tuple \langle [u] \rangle
```
Parameterized Datatypes

- Example code:
  ```python
  list = [1, 2, 3]
  sum = 0
  for x in list:
    sum += x
  ```
 - Basic analysis infers \top for `sum`.
 - To improve precision:
 Track types of contents of built-in collection types.
 - Example: `list<int>` for list containing values of type `int`
 - Extended type lattice:
 $$ b ::= \cdots \mid list(u) \mid set(u) \mid dict(u; u) \mid tuple([u]) $$
Context-sensitive Analysis

\[
\text{def}^1 \ [\text{id}(x)]^2_3: \\
\text{return } x^4 \\
[a = [\text{id}("abc")]^5_6]^7 \\
b = [\text{id}(1)]^8_9]^{10}
\]
[def] \[1\] [id(x)] \[2\]:
[return x] \[4\]
[a = [id("abc")]] \[5\]
[b = [id(1)]] \[8\]

Diagram:

1 \rightarrow 5
5 \rightarrow 6\rightarrow 7
6 \rightarrow 2\rightarrow 4
2 \rightarrow 3
3 \rightarrow 9
9 \rightarrow 10
Context-sensitive Analysis

- Problem: results of different calls are combined.
- Context-sensitive analysis: we separate different elements of the map lattice inside functions apart based on “what calls we did to get there” = call site sensitivity.
- Call-string context (up to a fixed depth)
Data flow analysis is flow-sensitive: different result (lattice value) for each program point.

Flow-insensitive analysis: one global result.

Optionally use flow-insensitive analysis for certain values:
- types of module-scope variables
- class types
- instance types
Manually Specified Types

- Sometimes we have to resort to \top:
 - modules implemented in C
 - standard library modules
 - other libraries

- But types for a module can be specified in a text file.

- Example:

  ```python
  math.pi : \{float\}
  math.sqrt : \{\lambda \{\text{bool, int, float}\} \to \{float}\}\}
  ```
Manually Specified Types

- Sometimes we have to resort to \top:
 - modules implemented in C
 - standard library modules
 - other libraries
- But types for a module can be specified in a text file.
- Example:
 - `math.pi : {float}`
 - `math.sqrt : {lambda {bool, int, float} -> {float}}`
- Polymorphic function types:
 - `def id(x):
 return x`
 - `id : {lambda !a -> !a}`
Experimental Evaluation

- Experiments: apply implementation to 5 Python projects
 - measure runtime
 - measure precision:
 percentage of results that are not \top or \bot
Experimental Evaluation: Results

<table>
<thead>
<tr>
<th></th>
<th>euler</th>
<th>adventure</th>
<th>bitstring</th>
<th>feedparser</th>
<th>twitter</th>
</tr>
</thead>
<tbody>
<tr>
<td>precision</td>
<td>0.45</td>
<td>0.75</td>
<td>0.91</td>
<td>0.53</td>
<td>0.75</td>
</tr>
<tr>
<td>time in ms</td>
<td>14</td>
<td>981</td>
<td>2,531</td>
<td>22,929</td>
<td>3,114</td>
</tr>
<tr>
<td>size (loc)</td>
<td>110</td>
<td>2,211</td>
<td>4,299</td>
<td>4,454</td>
<td>1,868</td>
</tr>
</tbody>
</table>

The value 0.45 is the percentage of variables for which a non-⊥ and non-⊤ type could be inferred. The higher, the better.
Experimental Evaluation: Results

The best results were for flow-insensitive analysis for module-scope variables.

<table>
<thead>
<tr>
<th></th>
<th>euler</th>
<th>adventure</th>
<th>bitstring</th>
<th>feedparser</th>
<th>twitter</th>
</tr>
</thead>
<tbody>
<tr>
<td>precision</td>
<td>0.45</td>
<td>0.75</td>
<td>0.91</td>
<td>0.53</td>
<td>0.75</td>
</tr>
<tr>
<td>time in ms</td>
<td>14</td>
<td>981</td>
<td>2,531</td>
<td>22,929</td>
<td>3,114</td>
</tr>
<tr>
<td>size (loc)</td>
<td>110</td>
<td>2,211</td>
<td>4,299</td>
<td>4,454</td>
<td>1,868</td>
</tr>
</tbody>
</table>

with manually specified types:

<table>
<thead>
<tr>
<th></th>
<th>euler</th>
<th>adventure</th>
<th>bitstring</th>
<th>feedparser</th>
<th>twitter</th>
</tr>
</thead>
<tbody>
<tr>
<td>precision</td>
<td>0.72</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time in ms</td>
<td>18</td>
<td>1,075</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experimental Evaluation: Results

With respect to everything off:

<table>
<thead>
<tr>
<th>Parameterized datatypes</th>
<th>Precision</th>
<th>Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+2.51 %</td>
<td>+5.80 %</td>
</tr>
<tr>
<td>Context-sensitive analysis</td>
<td>+0.69 %</td>
<td>+153.95 %</td>
</tr>
<tr>
<td>Flow-insensitive analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>for module-scope variables</td>
<td>+25.13 %</td>
<td>−19.98 %</td>
</tr>
<tr>
<td>for class types</td>
<td>+15.37 %</td>
<td>+264.88 %</td>
</tr>
<tr>
<td>for instance types</td>
<td>0.00 %</td>
<td>−0.79 %</td>
</tr>
<tr>
<td>Manually specified types</td>
<td>+54.59 %</td>
<td>+4.31 %</td>
</tr>
</tbody>
</table>

Some conclusions (for these examples)

- Having specified types helps much, costs little
- Context-sensitivity costs a lot, helps only little
- Flow-insensitive costs less and is more precise!!!
 - How is that possible?
Conclusions

- Method for approximate type inference for Python programs
 - based on data flow analysis
 - supporting Python’s dynamic features
 - basic method + six variants

- Implementation
- Experimental evaluation
Future work

- exceptions, generators, and the with statement
- bigger programs
- a better approximation of quality
Thank you for your attention.