Conservative Dynamical Systems 2010/2011

Heinz Hanflmann and Holger Waalkens

The last exercise is homework, to be handed in on Tuesday 5 October.

4.1 A harmonic n—body problem

The particles A; with masses m; (i = 1,2,...,n) move in three-dimensional space. Any
two particles A; and A; attract each other by a force of magnitude F;; = I'm;m;d;;, where
I' > 0 and d;; denotes the distance TAJ We suppose that the motions of A; and A; are not
disturbed if they pass simultaneously through the same point. Determine the general motion
of the particles.

4.2 Small oscillations

In a plane II, a fixed homogeneous rod (length 2a, mass density s, midpoint O) is given. A
particle P of mass M moves in II. It is attracted by any mass element dm at a point () on the
rod by a force of magnitude I Mr® dm. Here, I is a positive constant, PQ = r and o = 2n—1
for n = 1,2,3,.... Obviously O is a stable equilibrium point. Determine the frequencies of
small oscillations of P in the neighbourhood of O.

4.3 Geodesics on a surface of revolution

Let r,¢ and z be cylindrical coordinates on R® = {x,y, 2}, so where x = rcos¢ and y =
rsin . In the (z,z)-plane a parametrised curve x = f(v),z = g(v) is given, where v varies
over an open interval; we assume that here always f(v) > 0. Without limitation of generality
we also assume that (f'(v))?+ (¢'(v))? = 1, which expresses that v is an arclength parameter.
This curve is revolved around the z—axis, yielding the surface S parametrised as

r = f(v)cosp, y = f(v)sing, =z = g(v)

by v and ¢. We now investigate when a curve t € R — R(t) € S is a geodesic. By definition
the curve R is a geodesic if for all ¢

R(t) LS.

Comment. In the mechanical interpretation we look at a ‘free particle’ (a point mass of
mass 1) moving over S, i.e. without external forces like gravity. According to the d’Alembert
principle, the point mass is kept on the surface S by the perpendicular force R(t).

1. Show that for a geodesic t € R +— R(t) € S one has
R = re, + roe, + ze,
R = (iF—rpde, + (21¢ + r@le, + Ze, .
2. Show that 72 and %(R |R) = 5 (7% + 122 4 52) are two (first) integrals of the system
and that moreover
i — flre* + g% = 0.
From now on we write r(t) = f(v(t)), z(t) = g(v(t)). —p.t.o—



3. Show that the statements in item 2 are equivalent to

2fflop + f2p =
b — [P =

4. Show that from 3, in reverse, it follows that R(t) L S.

5. Define qi1, g2, p1 and p2 by

G =v,q=¢,p1 =0, p= fAv)p

and express H = %(R | R) in g1, g2, p1 and po. Show that 3 is equivalent to the canonical

form SH SH
.i = 3 .’L' = - ) = 13 2).
q o ! 4, (i )

Now re-interprete the conservation laws found under 2.

6. Let 6 = 6(¢) be the angle that the geodesic makes with the ‘meridian’. Show that
|f¢| = |R|sinf. Next show that C' = fsinf is another first integral (this is the
celebrated theorem of Clairaut).

7. Show that all meridians of S are geodesics and that a parallel circle v = vg of S is a
geodesic precisely when f’(vg) = 0.

8. Fix po = M, taking M # 0. Reduce to one degree of freedom with the effective potential
2

Vi (q1) = M (compare with the case of the central force field).

2f%(q1)
(a) Show that if vy is a critical point, then the reduced system has an equilibrium
(q1,p1) = (vo,0). Compare with 7.

(b) Describe the dynamics of the reduced system near such equilibria in the cases
where vg 18 a maximum or a minimum.

(c) Re-interprete the above findings for the original, unreduced system. Here describe
the phase space and its decomposition in invariant level sets po = M, H = FE.
What is the geometry of these sets and what is the corresponding dynamics? Also
interprete the findings in the configuration space. Why is this description incom-
plete?

9. Explain the relationship of the items 1 - 5 with the calculus of variations.



