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The last exercise is homework, to be handed in on Tuesday 5 October.

4.1 A harmonic n–body problem

The particles Ai with masses mi (i = 1, 2, . . . , n) move in three-dimensional space. Any
two particles Ai and Aj attract each other by a force of magnitude Fij = Γmimjdij , where
Γ > 0 and dij denotes the distance AiAj . We suppose that the motions of Ai and Aj are not
disturbed if they pass simultaneously through the same point. Determine the general motion
of the particles.

4.2 Small oscillations

In a plane Π, a fixed homogeneous rod (length 2a, mass density s, midpoint O) is given. A
particle P of mass M moves in Π. It is attracted by any mass element dm at a point Q on the
rod by a force of magnitude ΓMrα dm. Here, Γ is a positive constant, PQ = r and α = 2n−1
for n = 1, 2, 3, . . .. Obviously O is a stable equilibrium point. Determine the frequencies of
small oscillations of P in the neighbourhood of O.

4.3 Geodesics on a surface of revolution

Let r, ϕ and z be cylindrical coordinates on R3 = {x, y, z}, so where x = r cos ϕ and y =
r sinϕ. In the (x, z)–plane a parametrised curve x = f(v), z = g(v) is given, where v varies
over an open interval; we assume that here always f(v) > 0. Without limitation of generality
we also assume that (f ′(v))2 +(g′(v))2 = 1, which expresses that v is an arclength parameter.
This curve is revolved around the z–axis, yielding the surface S parametrised as

x = f(v) cos ϕ , y = f(v) sinϕ , z = g(v)

by v and ϕ. We now investigate when a curve t ∈ R 7→ R(t) ∈ S is a geodesic. By definition
the curve R is a geodesic if for all t

R̈(t) ⊥ S .

Comment. In the mechanical interpretation we look at a ‘free particle’ (a point mass of
mass 1) moving over S, i.e. without external forces like gravity. According to the d’Alembert
principle, the point mass is kept on the surface S by the perpendicular force R̈(t).

1. Show that for a geodesic t ∈ R 7→ R(t) ∈ S one has

Ṙ = ṙer + rϕ̇eϕ + żez

R̈ = (r̈ − rϕ̇2)er + (2ṙϕ̇ + rϕ̈)eϕ + z̈ez .

2. Show that r2ϕ̇ and 1
2〈Ṙ | Ṙ〉 = 1

2(ṙ2 + r2ϕ̇2 + ż2) are two (first) integrals of the system
and that moreover

f ′r̈ − f ′rϕ̇2 + g′z̈ = 0 .

From now on we write r(t) = f(v(t)), z(t) = g(v(t)). –p.t.o.–



3. Show that the statements in item 2 are equivalent to

2ff ′v̇ϕ̇ + f2ϕ̈ = 0
v̈ − ff ′ϕ̇2 = 0 .

4. Show that from 3, in reverse, it follows that R̈(t) ⊥ S.

5. Define q1, q2, p1 and p2 by

q1 = v , q2 = ϕ , p1 = v̇ , p2 = f2(v)ϕ̇

and express H = 1
2〈Ṙ | Ṙ〉 in q1, q2, p1 and p2. Show that 3 is equivalent to the canonical

form
q̇i =

∂H

∂pi
, ṗi = −∂H

∂qi
(i = 1, 2) .

Now re-interprete the conservation laws found under 2.

6. Let θ = θ(t) be the angle that the geodesic makes with the ‘meridian’. Show that
|fϕ̇| = |Ṙ| sin θ. Next show that C = f sin θ is another first integral (this is the
celebrated theorem of Clairaut).

7. Show that all meridians of S are geodesics and that a parallel circle v = v0 of S is a
geodesic precisely when f ′(v0) = 0.

8. Fix p2 = M , taking M 6= 0. Reduce to one degree of freedom with the effective potential
VM (q1) = M2

2f2(q1)
(compare with the case of the central force field).

(a) Show that if v0 is a critical point, then the reduced system has an equilibrium
(q1, p1) = (v0, 0). Compare with 7.

(b) Describe the dynamics of the reduced system near such equilibria in the cases
where v0 is a maximum or a minimum.

(c) Re-interprete the above findings for the original, unreduced system. Here describe
the phase space and its decomposition in invariant level sets p2 = M , H = E.
What is the geometry of these sets and what is the corresponding dynamics? Also
interprete the findings in the configuration space. Why is this description incom-
plete?

9. Explain the relationship of the items 1 - 5 with the calculus of variations.


