Conservative Dynamical Systems 2010/2011

Heinz Hanßmann and Holger Waalkens

The homework consists of two exercises, to be handed in on Tuesday 19 October.

6.1 Dissipative subsystems and linearization

- 1. Show that every system of n differential equations can be completed to a Hamiltonian system on \mathbb{R}^{2n} .
- 2. Show that the linearization of a Hamiltonian system is again Hamiltonian. How are the corresponding Hamiltonian functions related to each other?

6.2 Transformations in one degree of freedom

Let $H : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be a given smooth function, with corresponding Hamiltonian vector field X_H . Here we use the standard symplectic structure on \mathbb{R}^2 . Moreover, let $g : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be a diffeomorphism. Consider both the function $K := H \circ g^{-1}$, together with the associated Hamiltonian vector field X_K , and the transformed vector field $g_*(X_H)$, defined by $g_*(X_H)(g(p)) := D_p g X_H(p)$. Show that

$$g_{\star}(X_H) = \det(Dg)X_K$$
.

Hint: exploit a coordinate free formulation of the fact that X_H is the Hamiltonian vector field corresponding to H. Discuss the implication for the integral curves of $g_{\star}(X_H)$ and X_K . Also consider the time-parametrisation of these curves. What happens in the special case that g is canonical?