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The homework consists of two exercises, to be handed in on Tuesday 19 October.

6.1 Dissipative subsystems and linearization

1. Show that every system of n differential equations can be completed to a Hamiltonian
system on R2n.

2. Show that the linearization of a Hamiltonian system is again Hamiltonian. How are the
corresponding Hamiltonian functions related to each other?

6.2 Transformations in one degree of freedom

Let H : R2 −→ R be a given smooth function, with corresponding Hamiltonian vector field
XH . Here we use the standard symplectic structure on R2. Moreover, let g : R2 −→ R2

be a diffeomorphism. Consider both the function K := H ◦ g−1, together with the asso-
ciated Hamiltonian vector field XK , and the transformed vector field g?(XH ), defined by
g?(XH )(g(p)) := DpgXH (p). Show that

g?(XH) = det(Dg)XK .

Hint: exploit a coordinate free formulation of the fact that XH is the Hamiltonian vector field
corresponding to H. Discuss the implication for the integral curves of g?(XH ) and XK . Also
consider the time-parametrisation of these curves. What happens in the special case that g
is canonical?


