## Conservative Dynamical Systems 2010/2011

## Heinz Hanßmann and Holger Waalkens

The last two exercises are homework, to be handed in on Tuesday 15 November.

### 10.1 Motion of a charge in an electromagnetic field

Consider a particle of mass $m$ and charge $e$ moving in $\mathbb{R}^{3}$ under the influence of a magnetic field $\mathbf{B}=\left(B_{x}, B_{y}, B_{z}\right)$ and an electric field $\mathbf{E}=\left(E_{x}, E_{y}, E_{z}\right)$. The electric field is conservative and can thus be written as $\mathbf{E}=-\nabla \phi$ where $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is called the electric potential. From physics we know that Newton's equations of motion for the particle are

$$
m \ddot{\mathbf{r}}=e \dot{\mathbf{r}} \times \mathbf{B}+e \mathbf{E}
$$

Define the symplectic 2-form

$$
\omega=\mathrm{d} p_{x} \wedge \mathrm{~d} x+\mathrm{d} p_{y} \wedge \mathrm{~d} y+\mathrm{d} p_{z} \wedge \mathrm{~d} z+e\left(B_{x} \mathrm{~d} y \wedge \mathrm{~d} z+B_{y} \mathrm{~d} z \wedge \mathrm{~d} x+B_{z} \mathrm{~d} x \wedge \mathrm{~d} y\right)
$$

and the Hamilton function $H(\mathbf{p}, \mathbf{r})=\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right) / 2 m+e \phi(\mathbf{r})$. Show that the Hamiltonian vector field corresponding to $H$ on the symplectic manifold $\left(T^{*} \mathbb{R}^{3}, \omega\right)$ give the above Newton equations of motion for a charged particle.

### 10.2 The Morse oscillator

Consider the Morse oscillator described by the Hamilton function

$$
H=\frac{p^{2}}{2 m}+D_{e}\left(\mathrm{e}^{-2 a q}-2 \mathrm{e}^{-a q}\right),
$$

where $D_{e}$ and $a$ are positive constants, and $(p, q) \in \mathbb{R}^{2}$.

1. A Morse oscillator is often used to describe a chemical bond. What is the meaning of $D_{e}$ in this case?
2. Show that there are two critical energies, $E_{1}<E_{2}$, such that the level sets

$$
M_{E}=\left\{(p, q) \in \mathbb{R}^{2}: H(p, q)=E\right\}
$$

are empty if $E<E_{1}$, topological circles if $E_{1}<E<E_{2}$, and topological lines for $E>E_{2}$. Plot the level sets for the energies $E_{1}, E_{2}$, an energy between $E_{1}$ and $E_{2}$, and an energy greater than $E_{2}$.
3. For $E_{1}<E<E_{2}$, compute the area, $A(E)$, of the region enclosed by the level set $M_{E}$ in the ( $p, q$ ) plane. For such energies, compute the period

$$
T(E)=\frac{\mathrm{d} A(E)}{\mathrm{d} E}
$$

Sketch and interpret the graph of the period $T(E)$ for energies $E_{1}<E<E_{2}$.

### 10.3 Reduced Euler top

Analyse the dynamics of the "reduced Euler top"

$$
H(x, y, z)=\frac{x^{2}}{2 a}+\frac{y^{2}}{2 b}+\frac{z^{2}}{2 c}, \quad 0<a \leq b \leq c
$$

on $\mathbb{S}^{2}$ in the limiting cases $a \rightarrow b$ and $b \rightarrow c$.

### 10.4 Another Hamiltonian system on $\mathbb{S}^{2}$

In this exercise we study another Hamiltonian system defined on $\mathbb{S}^{2}$ which is not a cotangent bundle.
In $\mathbb{R}^{3}$ with coordinates $\left(x_{1}, x_{2}, x_{3}\right)$ consider the submanifold $\mathbb{S}^{2}=\left\{x \in \mathbb{R}^{3}: x^{2}=1\right\}$ and the 2 -form

$$
\omega=x_{1} d x_{2} \wedge d x_{3}+x_{2} d x_{3} \wedge d x_{1}+x_{3} d x_{1} \wedge d x_{2}
$$

1. Show that $\omega$ is not closed. Show that $\omega$ is degenerate in $\mathbb{R}^{3}$ by finding at each point $x \in \mathbb{R}^{3}$ the space $N_{x}=\left\{\xi \in T_{x} \mathbb{R}^{3}: \omega(\xi,-)=0\right\}$. Show that the restriction $\varpi=\left.\omega\right|_{\mathbb{S}^{2}}$ of $\omega$ to $\mathbb{S}^{2}$ is closed and non-degenerate. Show that $\varpi$ is not exact.
2. Let $H: \mathbb{S}^{2} \rightarrow \mathbb{R}$. Find the Hamiltonian vector field $X_{H}$ on $\mathbb{S}^{2}$ that satisfies $\varpi\left(X_{H},-\right)=d H(-)$.
3. Compute the Poisson brackets $\left\{x_{i}, x_{j}\right\}, i, j=1,2,3$ with respect to $\varpi$ and then compute the Poisson bracket $\{F, G\}$ for two arbitrary functions $F, G: \mathbb{S}^{2} \rightarrow \mathbb{R}$.
4. Describe the dynamics of the Hamiltonian function $H=x_{1}$ on $\mathbb{S}^{2}$.
5. Show that every locally Hamiltonian vector field $X$ on $\mathbb{S}^{2}$ is globally Hamiltonian, given that every boundaryless 1-chain on $\mathbb{S}^{2}$ is the boundary of a 2-chain.

Hint. Use appropriate coordinates on $\mathbb{S}^{2}$ (but be careful!).

