Conservative Dynamical Systems 2010/2011

Heinz Hanßmann and Holger Waalkens

The homework consists of two exercises, to be handed in on Tuesday 23 November.

11.1 Revisiting constant gravity

Consider the motion of a particle under a gravitational force described by the Hamiltonian function

$$
H(x, y)=\frac{y_{1}^{2}+y_{2}^{2}}{2 m}+m g x_{2}
$$

on the phase space \mathbb{R}^{4} with co-ordinates $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$. Find a complete solution of the Hamilton-Jacobi equation for this problem.

11.2 Revisiting the Kepler problem

The Hamilton-Jacobi equation for the Kepler problem is separable in polar co-ordinates. Furthermore, because of the degeneracy of the problem (all orbits are periodic which implies the existence of "too many" integrals), the Hamilton-Jacobi equation is also separable in other co-ordinates.

Consider the Kepler Hamiltonian on $T^{*} \mathbb{R}^{2}$ given by

$$
H(x, y)=\frac{y_{1}^{2}+y_{2}^{2}}{2}-\frac{1}{\sqrt{x_{1}^{2}+x_{2}^{2}}}
$$

1. Express H in terms of the co-ordinates

$$
\begin{aligned}
& q_{1}=\sqrt{x_{1}^{2}+x_{2}^{2}}+x_{1} \\
& q_{2}=\sqrt{x_{1}^{2}+x_{2}^{2}}-x_{1}
\end{aligned}
$$

and their conjugate momenta p_{1}, p_{2}.
2. Use the Hamilton-Jacobi method in order to obtain a generating function such that in the new co-ordinates three integrals of the problem become manifest (i.e., three of the new co-ordinates are constant in time). Give a closed expression for the generating function.
3. Express the integrals obtained from the Hamilton-Jacobi method in Cartesian and polar co-ordinates.
Hint: Choose wisely the type of the generating function for the Hamilton-Jacobi method.

