Conservative Dynamical Systems 2010/2011

Heinz Hanßmann and Holger Waalkens

The last two exercises are homework, to be handed in on Tuesday 14 December.

14.1 Diophantine numbers: A thick Cantor set

In the unit interval [0, 1], for given constants $\gamma > 0$ and $\tau > 2$, consider a subset $D_{\gamma,\tau}$ of Diophantine numbers, defined as follows. We say that $\rho \in D_{\gamma,\tau}$ if for all rational numbers p/q one has

$$\left| \rho - \frac{p}{q} \right| \geq \frac{\gamma}{q^{\tau}} \; .$$

Show that $D_{\gamma,\tau}$ is nowhere dense. Also show that the Lebesgue measure of $[0,1] \setminus D_{\gamma,\tau}$ is of order $O(\gamma)$ as $\gamma \to 0$.

14.2 A small divisor problem by Sternberg

On \mathbb{T}^2 , with coordinates (x_1, x_2) , a vector field X is given, with the following property. If C_1 denotes the circle $C_1 := \{x_1 = 0\}$, then the Poincaré return mapping $P : C_1 \to C_1$ with respect to X is a rigid rotation $x_2 \mapsto P(x_2) = x_2 + \rho$, everything counted mod 1. From now on we abbreviate $x := x_2$. Let f(x) be the return time of the integral curve connecting the points x and P(x) in C_1 . A priori, f does not have to be constant. The problem now is to construct a(nother) circle C_2 , that does have a constant return time. To this purpose let φ_t denote the flow of X and express P in terms of φ_t and f. Let us look for a circle C_2 of the form

$$C_2 = \left\{ \varphi_{\alpha(x)}(x) \mid x \in C_1 \right\} .$$

So the search is for a (periodic) function α and a constant c, such that

$$\varphi_c(C_2) = C_2$$
 .

Rewrite this equation explicitly in terms of α and c. Solve this equation formally in terms of Fourier series. What condition on ρ in general will be needed? Give conditions on ρ , such that for a real analytic function f a real analytic solution α exists.

14.3 The flux form

Let \mathcal{P} be a (2n)-dimensional symplectic manifold with symplectic 2-form ω , and $c \in \mathbb{R}$ be a regular value of the Hamiltonian function $H : \mathcal{P} \longrightarrow \mathbb{R}$. Consider on the energy surface $E_c = H^{-1}(c)$ the volume form Ω_c , see exercise 8.3, and show that

$$\iota_{X_H}\Omega_c = \frac{n!}{(n-1)!}\omega \wedge \ldots \wedge \omega$$

(the (n-1)-fold wedge product). This is the flux form of transition state theory.