Exercise 1 Let $a, b \in \mathbf{R}$, a < b. We denote by $L^1(a, b)$ the space of classes of a.e. equal integrable functions, equipped with the norm

$$||f||_1 := \int_a^b |f(x)| \,\mathrm{d}x.$$

We recall that $L^1(a, b)$ is a Banach space, i.e., any cauchy sequence in $L^1(a, b)$ has a limit in $L^1(a, b)$. We define the Sobolev space

$$W^{1,1}(a,b) := \{ u \in \mathcal{D}'(]a,b[) \mid u, u' \in L^1(a,b) \},\$$

where u' denotes the distributional derivative of a distribution u. We equip this space with the norm

$$||u||_{W^{1,1}(a,b)} := ||u||_1 + ||u'||_1.$$

- (i) Show that this norm turns $W^{1,1}(a,b)$ into a Banach space.
- (ii) Define $f:]a, b[\to \mathbf{C}$ by

$$f(t) := \int_{a}^{t} u'(x) \, \mathrm{d}x = \int_{a}^{b} \mathbf{1}_{]a,t[}(x)u'(x) \, \mathrm{d}x$$

Use Lebesgue's Dominated Convergence Theorem to conclude that $f \in C([a, b])$.

(iii) Show that for all $u \in W^{1,1}(a, b)$ there is a constant $c \in \mathbb{C}$ so that u = f + c. Conclude that any distribution $u \in W^{1,1}(a, b)$ is given by an element of C(]a, b[). (Hint: Show that f' = u'and use Theorem 4.3. The equality $\mathbf{1}_{]a,t[}(x) = \mathbf{1}_{]x,b[}(t)$ may be useful.)

Exercise 2 Suppose $f \in C(\mathbf{R})$ has a distributional derivative $g \in C(\mathbf{R})$. Show that $f \in C^1(\mathbf{R})$ and f' = g.