The Hahn-Banach Theorem

Rein, Jasper, Lukas

March 2020

In this standalone article our aim is to give a proof of the Hahn-Banach Theorem for real linear spaces. The proof is aimed at students following an introductory course in functional analysis.

1 An introduction to POSets

The proof of the Hahn-Banach Theorem makes use of Zorn's Lemma, a statement equivalent to the Axiom of Choice. Before proving this theorem, we thus first introduce some concepts used by Zorn's Lemma. The structure of the following section is taken from [2].

Definition 1.1. A poset, short for partially ordered set, is a set P equiped with a relation $" \leq "$ between elements of P, which satisfies the following conditions:
(i) $a \leq a$ for all $a \in P$ (reflexivity)
(ii) $(a \leq b) \wedge(b \leq c) \Longrightarrow(a \leq c)$ for all $a, b, c \in P$ (transitivity)
(iii) $(a \leq b) \wedge(b \leq a) \Longrightarrow(a=b)$ for all $a, b \in P$ (antisymmetry)

Note that a poset need not to be a linear order, which is an order in which every two elements are comparable.

Examples of posets are given by the powerset $\mathcal{P}(X)$ of a set X, partially ordered by inclusion, and by the reals \mathbb{R} with the usual ordering. A counterexample is given by the complex numbers ordered by the usual ordering on the modulus, because condition (iii) is not satisfied.

We also introduce the following definitions:

Definition 1.2.

- A subset $C \subset P$ is called a chain if C with the restricted order of P is a linear order.
- An upper bound $b \in P$ of a subset $Q \subset P$ is an element of P such that $q \leq b$ for all $q \in Q$.
- A maximal element $m \in P$ is an element of P such that $(m \leq p) \Longrightarrow(m=p)$ for all $p \in P$.

Note that this maximal element does not have to be unique.
We are now able to state Zorn's Lemma. Note that we state it as a definition, since we treat it as an axiom.

Definition 1.3 (Zorn's Lemma). If every chain $C \subset P$ of a poset (P, \leq) has an upper bound in P, then P has a maximal element.

We illustrate this axiom by using it to prove two examples.

Example 1. Let R be a commutative ring with $1 \neq 0$. We will show that R contains a maximal ideal; a proper ideal, so not equal to R, that is not contained in any other ideal. Let P be the poset of all proper ideals of R, ordered by inclusion. Note that $P \neq \emptyset$, because $\{0\} \in P$. We now let C be any a chain in P. If $C=\emptyset,\{0\}$ is an upper bound of C. If $C \neq \emptyset$, we look at $\bigcup C$. We claim that $\bigcup C$ is again a proper ideal.

For all $a, b \in \bigcup C$ there are $C_{1}, C_{2} \in C$ such that $a \in C_{1}, b \in C_{2}$. Because C is a chain, we assume without loss of generality that $C_{2} \subseteq C_{1}$, and thus that $a, b \in C_{1}$. Because C_{1} is an ideal, this means that $a+b \in C_{1} \subseteq \bigcup C$. Furthermore, for all $c \in \bigcup C$ there is a $C_{3} \in C$ such that $c \in C_{3}$. Because C_{3} is an ideal, this means that $r c, c r \in C_{3} \subseteq \bigcup C$ for all $r \in R$. We conclude that $\bigcup C$ is an ideal of R. Finally, we see that $1 \notin C^{\prime}$ for all $C^{\prime} \in C$, because otherwise $r=r \cdot 1 \in C^{\prime}$ for all $r \in R$, which would mean that $C^{\prime}=R$. This implies that $1 \notin \bigcup C$, and thus that $\bigcup C$ is a proper ideal of R. Because $\bigcup C \in P$ and $C^{\prime} \subseteq \bigcup C$ for all $C^{\prime} \in C$, we conclude that every chain in P has an upper bound in P. By Zorn's Lemma, P has a maximal element M, which is a proper ideal not contained in any other proper ideal of P, and thus is a maximal ideal of P.
Example 2. Zorn's Lemma can also be used to show, and is even equivalent to the fact that every vector space V has a basis. To prove this, we look at the poset P of all linearly independent subsets of V, again ordered by inclusion. Note that $P \neq \emptyset$, because $\{0\} \in P$. We now let C be any chain in P. As in the previous example, $\{0\}$ is an upper bound for the empty set, so this case is settled. For $C \neq \emptyset$, we again look at $\bigcup C$. We claim that $\bigcup C$ also is a linearly independent subset of V. Indeed, if $v_{1} \in \bigcup C$ could be written as a finite linear combination of vectors in $\bigcup C, C$ being a chain would imply that there exists a $C^{\prime} \in C$ such that v_{1}, together with all these vectors, also lie in C^{\prime}. However, this would contradict our assumption that C^{\prime} is linearly independent. We conclude that $\bigcup C$ is an upper bound for C in P.

Having accomplished that every chain in P has an upper bound in P, we conclude, using Zorn's Lemma, that P has a maximal element M, and we assert that this M forms a basis of V. On the contrary, assume that there exists a $v_{0} \in V$ that is linearly independent from M. Then $M \cup\left\{v_{0}\right\} \in P$, while $M \subsetneq M \cup\left\{v_{0}\right\}$, which contradicts the maximality of M.

2 The Hahn-Banach Theorem

We first prove a general version of the Hahn-Banach theorem on real linear spaces. The following proof is from a mix of [1] and [4].
Theorem 1. Let X be a linear space over \mathbb{R} with a subadditive, positive homogeneous functional p. This means p satisfies

- $p(x+y) \leq p(x)+p(y)$ for all $x, y \in X$ (subadditivity)
- $p(\alpha x)=\alpha p(x)$ for all $x \in X, \alpha \in \mathbb{R}_{>0}$ (positive homogeneity).

Let M be a subspace of X and $f: M \longrightarrow \mathbb{R}$ be a linear functional defined on M, bounded by p, thus $f(z) \leq p(z)$ for all $z \in M$.

Then there exists an extension $F: X \longrightarrow \mathbb{R}$ of f such that $F(x) \leq p(x)$ for all $x \in X$.
Proof. The proof is an application of Zorn's Lemma on the poset of extensions.
Define Σ to be the set of tuples (W, g) where W is a subspace of X containing M and $g: W \longrightarrow \mathbb{R}$ is a linear functional (also denoted as $g \in W^{*}$), such that $g(x) \leq p(x)$ for all $x \in W$ and $g \circ i_{M}=f$, where $i_{M}: M \longrightarrow W$ is the inclusion map, or in other words, g is an extension of f. In a more compact form:

$$
\begin{equation*}
\Sigma:=\left\{(W, g) \mid W \text { subspace of } V, g \in W^{*}, \forall_{x \in W} g(x) \leq p(x), g \circ i_{M}=f\right\} \tag{1}
\end{equation*}
$$

Because Σ is a subset of $\bigcup_{M \subset W \subset X}\{W\} \times W^{*}$, we can say that Σ is a set.
Next we define a partial order on Σ, where $\left(U_{1}, g_{1}\right) \leq\left(U_{2}, g_{2}\right)$ precisely when $U_{1} \subset U_{2}$ and $g_{2} \circ i_{U_{1}}=g_{1}$ where $i_{U_{1}}: U_{1} \longrightarrow U_{2}$ is the inclusion map.

We check that Σ satisfies the prerequisites of Zorn's lemma, namely that Σ is nonempty and every ascending chain has an upper bound. We have $(M, f) \in \Sigma$ thus it is nonempty. Now let $\left(U_{i}, g_{i}\right)_{i \in I}$ be a chain in Σ, then define $g: \bigcup_{i \in I} U_{i} \longrightarrow \mathbb{R}$ as $g(x)=g_{i}(x)$ if $x \in U_{i}$. This is well-defined on the intersections because if $x \in U_{i} \cap U_{j}$, then by the ascending chain condition we can assume without loss of generality that $g_{j} \circ i_{U_{i}}=g_{i}$. This means $g_{i}(x)=g_{j}\left(i_{U_{i}}(x)\right)=g_{j}(x)$ so $g: \bigcup_{i \in I} U_{i} \longrightarrow \mathbb{R}$ is a well-defined linear functional that is bounded by p and is an extension of f. Thus $\left(\bigcup_{i \in I} U_{i}, g\right) \in \Sigma$ is an upper bound of $\left(U_{i}, g_{i}\right)_{i}$. Then Zorn's lemma gives us a maximal element (N, g).

To prove the main theorem, it is sufficient to show that $N=X$. We prove this by contradiction, so suppose a $x \in X \backslash N$ exists. Then $N \subsetneq \mathbb{R} x \oplus N \subset X$. We define an extension h of g by defining

$$
\begin{equation*}
h(x):=\inf _{z \in N}\{p(x+z)-g(z)\} . \tag{2}
\end{equation*}
$$

And by extending linearly as $h(\alpha x+z):=\alpha h(x)+g(z)$ for $\alpha \in \mathbb{R}$ and $z \in N$, we have defined a linear functional $h: \mathbb{R} x \oplus N \longrightarrow \mathbb{R}$.

Now our goal is to prove that $h(\alpha x+z) \leq p(\alpha x+z)$ for all $\alpha x+z \in \mathbb{R} x \oplus N$, because this would imply that $(\mathbb{R} x \oplus N, h) \in \Sigma$, contradicting maximality of (N, g). We make the following two remarks.
(A) for all $z \in N$ we have $h(x) \leq p(x+z)-g(z)$ thus $h(x+z)=h(x)+g(z) \leq p(x+z)$.
(B) for all $y, z \in N$ we have

$$
\begin{equation*}
g(z)-g(y)=g(z-y) \leq p(z-y)=p((x+z)-(x+y)) \leq p(x+z)+p(-(x+y)) \tag{3}
\end{equation*}
$$

which means $-p(-(x+y))-g(y) \leq p(x+z)-g(z)$. Now if we fix the y and minimize over z, we conclude that

$$
\begin{equation*}
-p(-(x+y))-g(y) \leq \inf _{z}\{p(x+z)-g(z)\}=h(x) \tag{4}
\end{equation*}
$$

which means $-h(x+y) \leq p(-(x+y))$ thus $h(-x-y) \leq p(-x-y)$ for all $y \in N$.
Now let $\alpha x+z \in \mathbb{R} x \oplus N$ be arbitrary. We separate three cases:

- $\alpha>0$: We have $h(\alpha x+z)=\alpha h\left(x+\alpha^{-1} z\right) \leq \alpha p\left(x+\alpha^{-1} z\right)$ by remark (A) and because $\alpha>0$. Then $\alpha p\left(x+\alpha^{-1} z\right)=p(\alpha x+z)$ because $\alpha>0$. Thus $h(\alpha x+z) \leq p(\alpha x+z)$.
- $\alpha=0$: Then $h(\alpha x+z)=h(z)=g(z) \leq p(z)=p(\alpha x+z)$.
- $\alpha<0$: Then $h(\alpha x+z)=(-\alpha) h\left(-x-\alpha^{-1} z\right) \leq(-\alpha) p\left(-x-\alpha^{-1} z\right)$ by remark (B) and because $-\alpha>0$. Thus $(-\alpha) p\left(-x+\left(-\alpha^{-1}\right) z\right)=p(\alpha x+z)$ because $-\alpha>0$, so $h(\alpha x+z) \leq p(\alpha x+z)$. Thus in all cases $h(\alpha x+z) \leq p(\alpha x+z)$.

This proves that $(\mathbb{R} x \oplus \bar{N}, h) \in \Sigma$ which contradicts maximality of (N, g) so $X=N$. This means $g: X \longrightarrow \mathbb{R}$ is an extension of f with $g(z) \leq p(z)$ for all $z \in X$.

When $X=H$ is a Hilbert space and M is a closed subspace, the statement is proved much easier. In that case, f has a Riesz representation

$$
\begin{equation*}
f(x)=\langle x, z\rangle \tag{5}
\end{equation*}
$$

for some $z \in M$. Since the inner product is defined on all of H, this formula already is defined on all of H and does not have to be further extended.

3 Corollaries and Applications

The following section discusses some corollaries and applications of the Hahn-Banach Theorem found in [2].

3.1 Corollaries of the Hahn-Banach Theorem

Corollary 1 (Hahn-Banach Theorem extended to norms). Let X be a normed linear space over \mathbb{R}, M a subspace of X and $f: M \longrightarrow \mathbb{R}$ a bounded linear functional on M. Then there exists a bounded extension $F: X \longrightarrow \mathbb{R}$ of f with $\|F\|=\|f\|_{M}$.

Proof. Define a subadditive, positive homogeneous functional on X by $p(x):=\|f\|_{M}\|x\|$. We have $f(x) \leq\|f(x)\| \leq\|f\|_{M}\|x\|=p(x)$ for $x \in M$. Then by the Hahn-Banach theorem (Theorem (1) there exists an extension F of f such that $F(x) \leq p(x)$ for all $x \in X$.

Now we note that p is also absolutely homogeneous, so we get $-p(x)=-p(-x) \leq-F(-x)=$ $F(x) \leq p(x)$ for all $x \in X$ which means $-F(x) \leq p(x)$, so $|F(x)| \leq p(x)=\|f\|_{M}\|x\|$ for $x \in X$. Thus F is bounded with $\|F\| \leq\|f\|_{M}$. We also have $\|F\| \geq\|F x\|\|x\|^{-1}=\|f x\|\|x\|^{-1}$ for $x \in M \backslash\{0\}$, and thus $\|F\| \geq\|f\|_{M}$. We conclude $\|F\|=\|f\|_{M}$.

Corollary 2. Let X be a normed linear space, $0 \neq x_{0} \in X$. Then there exists a bounded linear functional F such that $F\left(x_{0}\right)=\left\|x_{0}\right\|$ and $\|F\|=1$.
Proof. Define $M:=\left\{a x_{0} \mid a \in \mathbb{R}\right\}$ and consider the functional $f: M \longrightarrow \mathbb{R}, a x_{0} \mapsto a\left\|x_{0}\right\|$. We see f is a linear functional on a subspace of X with the desired properties and $\|f\|=1$. By the previous corollary there exists an extension $F: X \longrightarrow \mathbb{R}$ such that $\|F\|=\|f\|=1$.
Corollary 3. For every $x \in X$ we have $\|x\|=\sup \left\{\left.\frac{|f(x)|}{\|f\|} \right\rvert\, f \in X^{*}, f \neq 0\right\}$.
Proof. From the previous corollary we know there exists a linear functional such that $\frac{|F(x)|}{\|F\|}=\|x\|$, so $\sup \frac{|f(x)|}{\|x\|} \geq\|x\|$. We also know that $|f(x)| \leq\|f\|\|x\|$, or equivalently $\frac{|f(x)|}{\|f\|} \leq\|x\|$, so we have equality.

3.2 Application of the Hahn-Banach Theorem: linear extension of distance function

For a subset $A \subset X$ of a normed linear space X and $x \in X$ we can define the distance function $d(x, A):=\inf _{z \in A}\|x-z\|$. The Hahn-Banach theorem gives the following theorem.
Theorem 2. Let M be a subspace of a normed linear space X. For $x_{0} \in X \backslash M$ with $d\left(x_{0}, M\right)>0$, there exists an $F \in X^{*}$ such that $\|F\|=1,\left.F\right|_{M}=0$ and $F\left(x_{0}\right)=d\left(x_{0}, M\right)$.
Proof. We have $x_{0} \notin M$. Define the linear map $f: \mathbb{R} x_{0} \oplus M \longrightarrow \mathbb{R}: \alpha x_{0}+z \mapsto \alpha d\left(x_{0}, M\right)$. This gives us

$$
\begin{equation*}
\left\|\alpha x_{0}+z\right\|=|\alpha|\left\|x_{0}+\alpha^{-1} z\right\| \geq|\alpha| \inf _{y \in M}\left\|x_{0}-y\right\|=|\alpha| d\left(x_{0}, M\right)=\left|f\left(\alpha x_{0}+z\right)\right| . \tag{6}
\end{equation*}
$$

Thus $\|f\| \leq 1$.
Furthermore, by definition of the infimum, there exists a sequence $\left(z_{n}\right)_{n}$ in M such that $\left\|x_{0}-z_{n}\right\| \rightarrow d\left(x_{0}, M\right)$ as $n \rightarrow \infty$. Thus

$$
\begin{equation*}
d\left(x_{0}, M\right)=f\left(x_{0}-z_{n}\right) \leq\|f\|\left\|x_{0}-z_{n}\right\| \rightarrow\|f\| d\left(x_{0}, M\right) \tag{7}
\end{equation*}
$$

This means $\|f\| \geq 1$ because $d\left(x_{0}, M\right)>0$ and we conclude $\|f\|=1$. Now we apply the Hahn-Banach Theorem to get an extension $F: X \longrightarrow \mathbb{R}$ of f with $\|F\|=\|f\|=1$.

4 Geometric form of the Hahn-Banach theorem

The Hahn-Banach Theorem is also known in its geometric form. Before we state this form, we first recall the definition of the Minkowski functional (also see Exercise 1.18 of [3]).

4.1 The Minkowski functional

The Minkowski functional will be used as the subadditive, positively homogeneous functional p where we can apply the Hahn-Banach theorem.

Definition 4.1. Let W be a convex subset of a normed vector space X such that 0 is an interior point of W. For each $x \in X$, we define the Minkowski functional of x as

$$
\begin{equation*}
p(x):=\inf \left\{\alpha^{-1} \mid \alpha>0, \alpha x \in W\right\}=\inf \{\lambda \geq 0 \mid x \in \lambda W\} \tag{8}
\end{equation*}
$$

We make the following observations:

- $p(x)$ is always finite because 0 is an interior point,
- $p(x) \geq 0$ because $\alpha^{-1} \geq 0$ for all $\alpha>0$,
- p is not definite if W is not bounded, for example the whole space, because we can then enlarge α or shrink λ as much as we want and get a zero $p(x)$ without x being zero.
- p might not be absolutely homogeneous if W is not symmetric around the origin ie. $x \in$ $W \Leftrightarrow-x \in W$.

Lemma 3. The Minkowski functional satisfies the following properties:

- $p(x+y) \leq p(x)+p(y) \forall x, y \in X$ (subadditivity)
- $p(\lambda x)=\lambda p(x) \forall x \in X, \lambda \geq 0$ (positive homogeneity)
- $p(x)<1 \Longrightarrow x \in W$
- $x \in W \Longrightarrow p(x) \leq 1$

Proof.

- Let $\alpha, \beta>0$, and let $\alpha x, \beta y \in W$. Since W is convex,

$$
\begin{equation*}
\frac{\alpha^{-1} \alpha x+\beta^{-1} \beta y}{\alpha^{-1}+\beta^{-1}}=\frac{x+y}{\alpha^{-1}+\beta^{-1}} \in W \tag{9}
\end{equation*}
$$

This means that $p(x+y) \leq \alpha^{-1}+\beta^{-1} \leq p(x)+p(y)$.

- We note that $p(0)=0$. For $\alpha>0$, we see that

$$
\begin{equation*}
p(\alpha x)=\inf \left\{\beta^{-1} \mid \beta>0, \alpha \beta x \in W\right\}=\alpha \inf \left\{\gamma^{-1} \mid \gamma>0, \gamma x \in W\right\}=\alpha p(x) \tag{10}
\end{equation*}
$$

- When $p(x)<1$, there exists an $\alpha>1$ such that $\alpha x \in W$. Because $0 \in W$ and W is convex, this means that $x=\alpha x \cdot \alpha^{-1}+\left(1-\alpha^{-1}\right) 0 \in W$.
In terms of the λ definition we have a $\lambda<1$ such that $x \in \lambda W$, if $\lambda=0$ then we are done, while if $\lambda>0$ then $\lambda^{-1}>1$ and $\lambda^{-1} x \in W$ so $x=\lambda^{-1} x \cdot \lambda+(1-\lambda) 0 \in W$.
- If $x \in W, 1 x \in W$, and $x \in 1 W$ thus in both definitions $p(x) \leq 1$.

4.2 The Supporting Hyperplane Theorem

The Supporting Hyperplane Theorem follows as an application of the Hahn-Banach Theorem on the Minkowski functional.

We start with a point x_{0} outside of a convex subset C and we trace a line from x_{0} to a point y in the interior of C. On this line we can define a linear functional f that outputs for each point P on the line, the unique ratio $\lambda \in \mathbb{R}$ such that $\lambda\left(x_{0}-y\right)=P-y$. Thus $f\left(x_{0}-y\right)=1$.

Then this f is bounded above by the Minkowski functional and we can extend it to a functional α defined on the whole space. The hyperplane $\alpha^{-1}\left(\alpha\left(x_{0}\right)\right)=y+\alpha^{-1}(1)$, called the supporting hyperplane, then separates the point x_{0} and C, in the sense that $C \subset y+\alpha^{-1}((-\infty, 1])$ and $x_{0} \in y+\alpha^{-1}(1)$.

Figure 1: Illustration of the Supporting Hyperplane Theorem. The hyperplane $\alpha^{-1}\left(\alpha\left(x_{0}\right)\right)=$ $y+\alpha^{-1}(1)$ is a supporting hyperplane.

The following proof is from [4].
Theorem 4 (Supporting Hyperplane Theorem). Let C be a convex subset of a real normed vector space X with nonempty interior $y \in \operatorname{int}(C)$, and let $x_{0} \in X \backslash C$.
Then there exists a continuous linear functional $\alpha \in X^{*}$ such that $1=\alpha\left(x_{0}-y\right) \geq \alpha(x-y)$ for all $x \in C$.

Proof. Take a $y \in \operatorname{int}(C)$. Consider the translations $C^{\prime}:=C-y$ and $x_{0}^{\prime}:=x_{0}-y \neq 0$, then we have that $0 \in \operatorname{int}\left(C^{\prime}\right)$. Define a linear functional $f: \mathbb{R} x_{0}^{\prime} \longrightarrow \mathbb{R}$ as $f\left(\lambda x_{0}^{\prime}\right):=\lambda$, this is well defined because $x_{0}^{\prime} \neq 0$. Define the Minkowski functional p on C^{\prime} as discussed before in equation (8).

- We have $p\left(x_{0}^{\prime}\right) \geq 1$ by the contraposition of the third point of Lemma 3, which implies for $\lambda>0$ that $p\left(\lambda x_{0}^{\prime}\right)=\lambda p\left(x_{0}^{\prime}\right) \geq \lambda=f\left(\lambda x_{0}^{\prime}\right)$ by positive homogeneity.
- We also know $f\left(-x_{0}^{\prime}\right)=-1 \leq 0 \leq p\left(-x_{0}^{\prime}\right)$ by non-negativity of p, which means for $\lambda \geq 0$ that $f\left(-\lambda x_{0}^{\prime}\right)=-\lambda \leq 0 \leq p\left(-\lambda x_{0}^{\prime}\right)$.
Thus $f(x) \leq p(x)$ for all $x \in \mathbb{R} x_{0}^{\prime}$. Then by the Hahn-Banach Theorem, there is an extension $\alpha \in X^{*}$ such that $\alpha(x) \leq p(x)$ for all $x \in X$.

We remark that $\alpha\left(x_{0}^{\prime}\right)=f\left(x_{0}^{\prime}\right)=1 \geq p(x)$ for all $x \in C^{\prime}$ by point 4 of Lemma 3 which means $\alpha\left(x_{0}^{\prime}\right) \geq p(x) \geq \alpha(x)$ for all $x \in C^{\prime}$. Thus if we translate back, for all $x \in C$ we have $\alpha\left(x_{0}-y\right) \geq \alpha(x-y)$.

Finally we show continuity of α. Because $0 \in \operatorname{int}\left(C^{\prime}\right)$, there exists a $\delta>0$ such that $B(0, \delta) \subset$ $\operatorname{int}\left(C^{\prime}\right)$. Let $\epsilon>0$, then for $\|y\|<\delta \epsilon$, we have $\pm \frac{y}{\epsilon} \in \operatorname{int}\left(C^{\prime}\right) \subset C$ which means $p\left(\pm \frac{y}{\epsilon}\right) \leq 1$ by point 4 of Lemma 3. Thus $\pm \alpha\left(\frac{y}{\epsilon}\right)=\alpha\left(\pm \frac{y}{\epsilon}\right) \leq p\left(\pm \frac{\underline{y}}{\epsilon}\right) \leq 1$, so $|\alpha(y)| \leq \epsilon$, which proves continuity of α.

This completes the proof.

4.3 The Hyperplane Separation Theorem

The hyperplane separation theorem says that two convex sets where one of them has an interior point can be separated by a hyperplane. This is a corollary of the supporting hyperplane theorem, because we can reduce one of the convex sets to the origin and enlarge the other convex set by taking the Minkowski sum.

Figure 2: Illustration of the Hyperplane Separation Theorem. One of the possible separating hyperplanes is illustrated by $\alpha^{-1}(c)$.

The proof is from [4]. Before we prove this, we show a lemma about convex sets and Minkowski sums.

Lemma 5. Let A, B be convex subsets of a real vector space X. Then $A+B:=\{a+b \mid a \in$ $A, b \in B\}$ is convex. Here $A+B$ is called the Minkowski sum of A and B.

Proof. Let $(1-t)\left(a_{1}+b_{1}\right)+t\left(a_{2}+b_{2}\right)$ be a convex combination in $A+B$. Then this equals $(1-t) a_{1}+t a_{2}+(1-t) b_{1}+t b_{2}$, and by convexity of A and B, the summands are respectively in A and B, thus their sum is in $A+B$. Thus $A+B$ is convex.

Theorem 6 (Hyperplane Separation Theorem). Let A, B be nonempty disjoint subsets of a normed real vector space X, and $\operatorname{int}(A) \neq \emptyset$. Then there is a continuous linear functional $\alpha \in X^{*}$ and $a c \in \mathbb{R}$ such that $\alpha(a) \leq c \leq \alpha(b)$ for all $a \in A$ and $b \in B$.

Proof. Consider $Z:=A-B=A+(-B)=\{a-b \mid a \in A, b \in B\}$, then if B is convex then $-B$ also, and $A+(-B)$ as well by Lemma 5. Note that $0 \notin Z$ because A and B are disjoint. Furthermore if $a_{0} \in \operatorname{int}(A)$, then there exists a neighbourhood $B\left(a_{0}, \delta\right) \subset A$ of a_{0}. Fix some $b_{0} \in B \neq \emptyset$ and then $B\left(a_{0}-b_{0}, \delta\right)=B\left(a_{0}, \delta\right)-b_{0}$ is a neighbourhood of $a_{0}-b_{0}$ contained in $A-B=Z$, which means $a_{0}-b_{0} \in \operatorname{int}(Z) \neq \emptyset$.

Thus Z satisfies the conditions of Theorem 4 by taking $x_{0}=0 \in X \backslash Z$ and $y:=a_{0}-b_{0} \in$ $\operatorname{int}(Z)$. This means we get a continuous linear functional $\alpha \in X^{*}$ with $1=\alpha(0-y) \geq \alpha((a-b)-y)$ for all $a-b \in Z=A-B$. Then by linearity of α we get $\alpha(a-b) \leq \alpha(0)=0$.

Thus $\alpha(a) \leq \alpha(b)$ for any $a \in A, b \in B$, and it follows that

$$
\begin{equation*}
\sup _{a \in A} \alpha(a) \leq \inf _{b \in B} \alpha(b) . \tag{11}
\end{equation*}
$$

Then because $a_{0} \in A, b_{0} \in B$, we have

$$
\begin{equation*}
\alpha\left(a_{0}\right) \leq \sup _{a \in A} \alpha(a) \leq \inf _{b \in B} \alpha(b) \leq \alpha\left(b_{0}\right) \tag{12}
\end{equation*}
$$

so the infimum and the supremum exist.
Now choose a value $c \in \mathbb{R}$ such that $\sup _{a \in A} \alpha(a) \leq c \leq \inf _{b \in B} \alpha(b)$. For this choice of c we have $\alpha(a) \leq c \leq \alpha(b)$ for all $a \in A, b \in B$ which means the hyperplane $\alpha^{-1}(c)$ separates A and B.

References

[1] Israel Gohberg, Seymour Goldberg and Marinus A. Kaashoek. Basic Classes of Linear Operators. Birkhäuser Basel, 2003. DOI: 10.1007/978-3-0348-7980-4. URL: https://doi.org/10.1007/978-3-0348-7980-4.
[2] Alexander Gorodnik. Lecture notes on Functional Analysis. URL: https://www.math.uzh.ch/gorodnik/functional_analysis/lecture6.pdf.
[3] Heinz Hanßmann. Functionaalanalyse. Epsilon Uitgaven, Amsterdam, 2015.
[4] Robert Peng. The Hahn-Banach separation theorem and other separation results. URL: http://math.uchicago.edu/ may/REU2014/REUPapers/Peng.pdf.

