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In this standalone article our aim is to give a proof of the Hahn-Banach Theorem for real linear
spaces. The proof is aimed at students following an introductory course in functional analysis.

1 An introduction to POSets

The proof of the Hahn-Banach Theorem makes use of Zorn’s Lemma, a statement equivalent to
the Axiom of Choice. Before proving this theorem, we thus first introduce some concepts used
by Zorn’s Lemma. The structure of the following section is taken from [2].

Definition 1.1. A poset, short for partially ordered set, is a set P equiped with a relation 7 <7
between elements of P, which satisfies the following conditions:
(i) a < afor all a € P (reflexivity)

(ii) (a<b)A(b<c) = (a<c)forall a,b,c € P (transitivity)

(iii) (a<b)A(b<a) = (a=0b) for all a,b € P (antisymmetry)

Note that a poset need not to be a linear order, which is an order in which every two elements
are comparable.

Examples of posets are given by the powerset P(X) of a set X, partially ordered by inclusion,
and by the reals R with the usual ordering. A counterexample is given by the complex numbers
ordered by the usual ordering on the modulus, because condition (ii7) is not satisfied.

We also introduce the following definitions:

Definition 1.2.

e A subset C' C P is called a chain if C with the restricted order of P is a linear order.
o An upper bound b € P of a subset @) C P is an element of P such that ¢ < b for all ¢ € Q.

o A mazimal element m € P is an element of P such that (m < p) = (m = p) for all
peP.

Note that this maximal element does not have to be unique.
We are now able to state Zorn’s Lemma. Note that we state it as a definition, since we treat
it as an axiom.

Definition 1.3 (Zorn’s Lemma). If every chain C C P of a poset (P, <) has an upper bound in
P, then P has a maximal element.

We illustrate this axiom by using it to prove two examples.



Ezample 1. Let R be a commutative ring with 1 # 0. We will show that R contains a maximal
ideal; a proper ideal, so not equal to R, that is not contained in any other ideal. Let P be the
poset of all proper ideals of R, ordered by inclusion. Note that P # (), because {0} € P. We
now let C' be any a chain in P. If C =), {0} is an upper bound of C. If C # @, we look at | JC.
We claim that | JC' is again a proper ideal.

For all a,b € |JC there are C1,C2 € C such that a € C1,b € Cy. Because C is a chain,
we assume without loss of generality that Cy C C}, and thus that a,b € C;. Because C is an
ideal, this means that a + b € C; C |JC. Furthermore, for all ¢ € | JC there is a C5 € C such
that ¢ € C5. Because C3 is an ideal, this means that rc,er € C5 C |JC for all r € R. We
conclude that | J C is an ideal of R. Finally, we see that 1 ¢ C’ for all C’ € C, because otherwise
r=r-1€ ' forall r € R, which would mean that C’ = R. This implies that 1 ¢ [JC, and thus
that |JC is a proper ideal of R. Because |JC € P and C’ C |JC for all C" € C, we conclude
that every chain in P has an upper bound in P. By Zorn’s Lemma, P has a maximal element
M, which is a proper ideal not contained in any other proper ideal of P, and thus is a maximal
ideal of P.

Ezxample 2. Zorn’s Lemma can also be used to show, and is even equivalent to the fact that every
vector space V has a basis. To prove this, we look at the poset P of all linearly independent
subsets of V, again ordered by inclusion. Note that P # ), because {0} € P. We now let C
be any chain in P. As in the previous example, {0} is an upper bound for the empty set, so
this case is settled. For C' # 0, we again look at |JC. We claim that |JC also is a linearly
independent subset of V. Indeed, if v; € |JC could be written as a finite linear combination of
vectors in | JC, C being a chain would imply that there exists a C’ € C such that vy, together
with all these vectors, also lie in C’. However, this would contradict our assumption that C’ is
linearly independent. We conclude that | JC' is an upper bound for C in P.

Having accomplished that every chain in P has an upper bound in P, we conclude, using
Zorn’s Lemma, that P has a maximal element M, and we assert that this M forms a basis of V.
On the contrary, assume that there exists a vg € V' that is linearly independent from M. Then
M U{vo} € P, while M C M U {vp}, which contradicts the maximality of M.

2 The Hahn-Banach Theorem

We first prove a general version of the Hahn-Banach theorem on real linear spaces. The following
proof is from a mix of [I] and [4].

Theorem 1. Let X be a linear space over R with a subadditive, positive homogeneous func-
tional p. This means p satisfies

o p(z+y) <plx)+py) for all z,y € X (subadditivity)
o plax) = ap(x) for all x € X, a € Ry (positive homogeneity).

Let M be a subspace of X and f : M — R be a linear functional defined on M, bounded by p,
thus f(z) < p(z) for all z € M.
Then there exists an extension F : X — R of f such that F(x) < p(x) for allx € X.

Proof. The proof is an application of Zorn’s Lemma on the poset of extensions.

Define ¥ to be the set of tuples (W, g) where W is a subspace of X containing M and
g : W — R is a linear functional (also denoted as g € W*), such that g(z) < p(x) for all z € W
and go iy = f, where ip; : M — W is the inclusion map, or in other words, g is an extension
of f. In a more compact form:

¥ = {(W,g) | W subspace of V,g € W*,Voewg(x) < p(z),goin = f}. (1)



Because X is a subset of | Jy;cycx{W} x W*, we can say that ¥ is a set.

Next we define a partial order on X, where (U1, g1) < (Ua, g2) precisely when U; C Us and
g2 o iy, = g1 where iy, : Uy — Uj is the inclusion map.

We check that ¥ satisfies the prerequisites of Zorn’s lemma, namely that 3 is nonempty and
every ascending chain has an upper bound. We have (M, f) € X thus it is nonempty. Now let
(Ui, gi)ier be a chain in ¥, then define g : U;c; Ui — R as g(z) = gi(z) if € U;. This is
well-defined on the intersections because if x € U; NUj, then by the ascending chain condition we
can assume without loss of generality that g;oiy, = g;. This means g;(x) = g,(iv,(x)) = g;(x) so
9 : U;er Ui — Riis a well-defined linear functional that is bounded by p and is an extension of f.
Thus (U,c; Ui, g) € ¥ is an upper bound of (Us, g;);. Then Zorn’s lemma gives us a maximal
element (N, g).

To prove the main theorem, it is sufficient to show that N = X. We prove this by contradic-
tion, so suppose a 2 € X \ N exists. Then N C Rz @ N C X. We define an extension h of g by
defining

h(z) := inf {p(z +2) — g(2)}. (2)

And by extending linearly as h(az + z) := ah(z) + g(z) for « € R and z € N, we have defined a
linear functional h : Rx @ N — R.

Now our goal is to prove that h(ax + 2) < p(az + z) for all ax + z € Rz & N, because this
would imply that (Rz @ N, h) € X, contradicting maximality of (N, g). We make the following
two remarks.

(A) for all z € N we have h(z) < p(z + z) — g(z) thus h(z + 2) = h(z) + g(2) < p(z + 2).
(B) for all y,z € N we have

9(z) —g9(y) =g9(z —y) <plz —y) =p((z +2) — (x +y) <plx+2) +p(—(z+y)) (3)

which means —p(—(z +y)) — 9(y) < p(z + 2) — g(2). Now if we fix the y and minimize over
z, we conclude that

—p(=(z+y)) —g(y) < nf{p(z + 2) — g(2)} = h(z) (4)

which means —h(x 4+ y) < p(—(x 4+ y)) thus h(—z —y) < p(—x —y) for all y € N.
Now let ax + z € Rz & N be arbitrary. We separate three cases:
e a > 0: We have h(ax+2) = ah(r+a~12) < ap(z+a~12) by remark (A) and because o > 0.
Then ap(x + a~'z) = p(ax + 2) because a > 0. Thus h(azx + z) < p(azx + 2).
e a =0: Then h(az + 2z) = h(z) = g(2) < p(z) = plax + 2).
e o < 0: Then h(az+2) = (—a)h(—x—a~t2) < (—a)p(—z—a~1z) by remark (B) and because
—a > 0. Thus (—a)p(—x + (—a~™1)z) = p(az + 2) because —a > 0, so h(az + 2) < p(az + 2).
Thus in all cases h(azx + z) < p(ax + 2).
This proves that (Rz @& N, h) € ¥ which contradicts maximality of (N, g) so X = N. This
means g : X — R is an extension of f with g(z) < p(z) for all z € X. O

When X = H is a Hilbert space and M is a closed subspace, the statement is proved much
easier. In that case, f has a Riesz representation

fx) = (z,2) (5)

for some z € M. Since the inner product is defined on all of H, this formula already is defined
on all of H and does not have to be further extended.



3 Corollaries and Applications

The following section discusses some corollaries and applications of the Hahn-Banach Theorem
found in [2].

3.1 Corollaries of the Hahn-Banach Theorem

Corollary 1 (Hahn-Banach Theorem extended to norms). Let X be a normed linear space
over R, M a subspace of X and f : M — R a bounded linear functional on M. Then there
exists a bounded extension F : X — R of f with |F|| = || flla-

Proof. Define a subadditive, positive homogeneous functional on X by p(z) := ||f||a]lz]. We
have f(z) < ||f(@)| < |[fllmllzll = p(x) for € M. Then by the Hahn-Banach theorem
(Theorem [I]) there exists an extension F of f such that F(x) < p(z) for all z € X.

Now we note that p is also absolutely homogeneous, so we get —p(z) = —p(—z) < —F(—z) =
F(z) < p(z) for all € X which means —F(z) < p(z), so |F(z)| < p(z) = || fl|m]z| for z € X.
Thus F is bounded with ||F|| < [|f|las. We also have ||F|| > ||Fz|||z]|~' = || fz|/||=z]|~* for
x € M\ {0}, and thus ||F|| > || f|lar- We conclude || F|| = || f]| - O

Corollary 2. Let X be a normed linear space, 0 # xg € X. Then there exists a bounded linear
functional F such that F(xo) = ||xo| and ||F| = 1.

Proof. Define M := {axo | a € R} and consider the functional f : M — R,axo — al|zgl|. We
see f is a linear functional on a subspace of X with the desired properties and ||f|| = 1. By the
previous corollary there exists an extension F' : X — R such that [|F|| = ||f|| = 1. O

Corollary 3. For every x € X we have ||z| = sup { “ﬂ(fz”)‘ |f e X* f# 0}.

|F ()]

Proof. From the previous corollary we know there exists a linear functional such that ‘7 = 1zl
so sup L > || We also know that |f(x)| < [|f[[|lz], or equivalently ULl < 2], so we have
equality. O

3.2 Application of the Hahn-Banach Theorem: linear extension of dis-
tance function

For a subset A C X of a normed linear space X and x € X we can define the distance function
d(z, A) :=inf,cal|z — z||. The Hahn-Banach theorem gives the following theorem.

Theorem 2. Let M be a subspace of a normed linear space X . For xg € X\ M with d(zo, M) > 0,
there exists an F' € X* such that |F|| =1, F|yp =0 and F(x¢) = d(xo, M).
Proof. We have xg ¢ M. Define the linear map f: Rxo @M — R : axg + 2 — ad(xo, M). This

gives us
llao + 2| = [ellwo + a™"2]| = |a] inf llzo =yl = lald(wo, M) = |f(azo +2)|.  (6)
Thus ||f]] < 1.

Furthermore, by definition of the infimum, there exists a sequence (z,), in M such that
lzo = zn|| = d(x0, M) as n — oco. Thus

d(wo, M) = f(zo — 2n) < | fllllxo = 2nll = I flld(z0, M). (7)
This means ||f|| > 1 because d(xo, M) > 0 and we conclude || f|]] = 1. Now we apply the
Hahn-Banach Theorem to get an extension F': X — R of f with ||F|| = || f|| = 1. O



4 Geometric form of the Hahn-Banach theorem

The Hahn-Banach Theorem is also known in its geometric form. Before we state this form, we
first recall the definition of the Minkowski functional (also see Exercise 1.18 of [3]).

4.1 The Minkowski functional

The Minkowski functional will be used as the subadditive, positively homogeneous functional p
where we can apply the Hahn-Banach theorem.

Definition 4.1. Let W be a convex subset of a normed vector space X such that 0 is an interior
point of W. For each x € X, we define the Minkowski functional of x as

p(z) :==inf{a™ | a >0, ar € W} =inf{\ > 0|z € \W}. (8)
We make the following observations:

e p(x) is always finite because 0 is an interior point,

e p(z) > 0 because a~! > 0 for all a > 0,

e p is not definite if W is not bounded, for example the whole space, because we can then
enlarge « or shrink A as much as we want and get a zero p(x) without x being zero.

e p might not be absolutely homogeneous if W is not symmetric around the origin ie. = €
We —axecll.

Lemma 3. The Minkowski functional satisfies the following properties:
e p(z+y) <p(x)+ply) Yo,y € X (subadditivity)
e p(Az) = Ap(x) Vo € X, \ > 0 (positive homogeneity)
e p(z)<l = zeW
e xeW = p(z)<1
Proof.

e Let a,8 > 0, and let ax, By € W. Since W is convex,

alax + '8y _ x+y
a1 +571 T a-l +/871

This means that p(z +y) < o' + 871 < p(x) + p(y).

ew. (9)

e We note that p(0) = 0. For a > 0, we see that
plax) =inf{B71 | B>0, afr € W} =ainf{y™ ' |y >0, y2 € W} = ap(z). (10)

e When p(z) < 1, there exists an a > 1 such that ax € W. Because 0 € W and W is convex,
this means that z = az-a !+ (1 —a"1)0 € W.

In terms of the A definition we have a A < 1 such that x € AW, if A = 0 then we are done,
while if A > 0 then A™' >land A"'lz e Wsoz=X"1z- A+ (1-N)0e W.

o Ifx e W, 1lx € W, and x € 1W thus in both definitions p(z) < 1.



4.2 The Supporting Hyperplane Theorem

The Supporting Hyperplane Theorem follows as an application of the Hahn-Banach Theorem on
the Minkowski functional.

We start with a point xg outside of a convex subset C' and we trace a line from xg to a point y
in the interior of C'. On this line we can define a linear functional f that outputs for each point P
on the line, the unique ratio A € R such that A(zg — y) = P —y. Thus f(zg —y) = 1.

Then this f is bounded above by the Minkowski functional and we can extend it to a functional
a defined on the whole space. The hyperplane o~ (a(zg)) = y + a~1(1), called the supporting
hyperplane, then separates the point xg and C, in the sense that C C y + a~!((—o0,1]) and
To S Yy + 0471(1).

Figure 1: Illustration of the Supporting Hyperplane Theorem. The hyperplane a~!(a(xg)) =
y + a~1(1) is a supporting hyperplane.

The following proof is from [4].

Theorem 4 (Supporting Hyperplane Theorem). Let C be a convex subset of a real normed
vector space X with nonempty interior y € int(C), and let zp € X \ C.
Then there exists a continuous linear functional a« € X* such that 1 = a(xg —y) > a(x —y) for

all x € C.

Proof. Take a y € int(C). Consider the translations C' := C' — y and z{, := x¢9 — y # 0, then
we have that 0 € int(C”"). Define a linear functional f : Rzy — R as f(Az() := A, this is well
defined because xj, # 0. Define the Minkowski functional p on C” as discussed before in equation
®).
e We have p(z() > 1 by the contraposition of the third point of Lemma [B] which implies for
A > 0 that p(Azf) = Ap(z) > A = f(Azf) by positive homogeneity.
e We also know f(—z() = —1 < 0 < p(—=x{,) by non-negativity of p, which means for A > 0
that f(—Az)) = =\ <0 < p(—Az}).
Thus f(z) < p(z) for all € Rzj. Then by the Hahn-Banach Theorem, there is an extension
a € X* such that a(z) < p(z) for all z € X.
We remark that a(z() = f(zj) = 1 > p(z) for all € C’ by point 4 of Lemma Bl which
means a(z() > p(x) > a(z) for all x € C’. Thus if we translate back, for all x € C' we have
a(zo —y) > a(z —y).



Finally we show continuity of a. Because 0 € int(C"), there exists a ¢ > 0 such that B(0, ) C
int(C"). Let € > 0, then for ||y|| < de, we have £% € int(C’) C C' which means p(+%) < 1 by
point 4 of Lemma 3. Thus +a(¥) = a(£%) < p(£%) < 1, so |a(y)| < ¢, which proves continuity
of a.

This completes the proof. O

4.3 The Hyperplane Separation Theorem

The hyperplane separation theorem says that two convex sets where one of them has an interior
point can be separated by a hyperplane. This is a corollary of the supporting hyperplane theorem,
because we can reduce one of the convex sets to the origin and enlarge the other convex set by
taking the Minkowski sum.

A+ (-B)

ap —by =1y

Figure 2: TIllustration of the Hyperplane Separation Theorem. One of the possible separating
hyperplanes is illustrated by a~!(c).

The proof is from [4]. Before we prove this, we show a lemma about convex sets and Minkowski
sums.

Lemma 5. Let A, B be convex subsets of a real vector space X. Then A+ B:={a+b|ac€
A,b € B} is convex. Here A + B is called the Minkowski sum of A and B.

Proof. Let (1 —t)(a1 + b1) + t(az + b2) be a convex combination in A + B. Then this equals
(1 —t)ay +tag + (1 —t)by + tb2, and by convexity of A and B, the summands are respectively in
A and B, thus their sum is in A + B. Thus A + B is convex. ([l

Theorem 6 (Hyperplane Separation Theorem). Let A, B be nonempty disjoint subsets of a
normed real vector space X, and int(A) # 0. Then there is a continuous linear functional
a € X* and a c € R such that a(a) < c < a(b) for alla € A and b € B.

Proof. Consider Z := A— B = A+ (—B) ={a—0b]a € A,b¢c B}, then if B is convex then
—B also, and A 4+ (—B) as well by Lemma Bl Note that 0 ¢ Z because A and B are disjoint.
Furthermore if ag € int(A), then there exists a neighbourhood B(ag,d) C A of ag. Fix some
by € B # 0 and then B(ag — by, d) = B(ag,d) — by is a neighbourhood of ag — by contained in
A — B = Z, which means ag — by € int(Z) # 0.



Thus Z satisfies the conditions of Theorem M by taking o =0 € X \ Z and y := ag — by €
int(Z). This means we get a continuous linear functional o € X* with 1 = a(0—y) > a((a—b)—y)
for alla —b € Z = A — B. Then by linearity of « we get a(a —b) < «(0) = 0.

Thus a(a) < a(b) for any a € A,b € B, and it follows that

< inf a(b). 11
3230‘(“)—5230‘() (11)

Then because ag € A,by € B, we have

afag) < ilelga(a) < biélga(b) < a(bo) (12)

so the infimum and the supremum exist.

Now choose a value ¢ € R such that sup,c 4 a(a) < ¢ < infyep a(b). For this choice of ¢ we
have a(a) < ¢ < «a(b) for all @ € A, b € B which means the hyperplane a~!(c) separates A
and B. O
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