GEOMETRIC MECHANICS: 2009

ARTHEMY V. KISELEV

Deadline May 25, 2009

- 1. Let $\pi \colon \mathbb{R}^{m+n} \to \mathbb{R}^m$ be a trivial fibre bundle. Find $\dim J^k(\pi) = ?$
- 2. Verify that $\varphi = f(x) \cdot u_x + \frac{1}{2}f'(x) + g(y) \cdot u_y + \frac{1}{2}g'(y)$ is a symmetry of the Liouville equation $\mathcal{E}_{\text{Liou}} = \{u_{xy} = \exp(2u)\}$ for any f, g. Find φ -invariant solutions of $\mathcal{E}_{\text{Liou}}$.
- 3. Find any one-parametric family of travelling-wave solutions for the Korteweg-de Vries equation $u_t = -u_{xxx} + 6uu_x$.
- 4. Consider the extension $\mathcal{E}(\epsilon) = \left\{ \tilde{u}_t = -\frac{1}{2} \tilde{u}_{xxx} + 3\tilde{u}\tilde{u}_x + 3\epsilon^2 \tilde{u}^2 \tilde{u}_x \right\}$ of the equation $\mathcal{E}(0) = \left\{ u_t = -\frac{1}{2} u_{xxx} + 3uu_x \right\}$.
 - Verify that Gardner's map $\mathfrak{m}_{\epsilon} = \{u = \tilde{u} \pm \epsilon \tilde{u}_x + \epsilon^2 \tilde{u}^2\}$ yields the solution u(x,t) of $\mathcal{E}(0)$ for any solution $\tilde{u}(x,t;\epsilon)$ of $\mathcal{E}(\epsilon)$.
 - Show that all the Taylor coefficients $\tilde{u}_k(x,t)$ in the expansion $\tilde{u} = \sum_{k=0}^{+\infty} \tilde{u}_k(x,t) \cdot \epsilon^k$ are conserved densities for $\mathcal{E}(0)$, and derive the recurrence relation between them.
 - Prove that all such odd-index densities are trivial: $\tilde{u}_{2k+1} = D_x(\cdots)$.
 - 5. Prove Ibragimov's identity

$$\mathcal{E}_{\varphi} = \varphi \cdot \mathbf{E}_{u} + \sum_{i=1}^{n} D_{x^{i}} \circ Q_{\varphi,i},$$

where

$$Q_{\varphi,i} = \sum_{\tau} \sum_{\rho + \eta = \tau} (-1)^{|\eta|} \cdot D_{\rho}(\varphi) \cdot D_{\eta} \circ \frac{\partial}{\partial u_{\tau+1_i}}.$$