Exercise 8.7. Compute for the Hamiltonian

$$
H(q, p)=\frac{p_{1}^{2}+q_{1}^{2}}{2}+3 \frac{p_{2}^{2}+q_{2}^{2}}{2}+\frac{q_{1}^{3}-q_{2}^{3}}{6}
$$

in 1:3 resonance the normal form polynomial of degree 4.

Exercise 8.8. Let γ be a periodic orbit of the Hamiltonian system X_{H} with flow φ_{t} and Σ a hypersurface transverse to γ. Denote the unique point in $\gamma \cap \Sigma$ by x, put $h_{0}:=H(x)$ and consider for h close to h_{0} the iso-energetic Poincaré-mapping $F_{h}: \Sigma_{h} \longrightarrow \Sigma_{h}$ on $\Sigma_{h}:=\Sigma \cap\{H=h\}$. Let finally $T:=T(x)$ be the return time of x, so $\varphi_{T}(x)=x$.

How are the eigenvalues of $D \varphi_{T}(x)$ related to those of $D F_{h_{0}}(x)$? Formulate a condition under which X_{H} has for each h close to h_{0} a unique periodic orbit with period less than $2 T$.

