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1

Introduction

A dynamical system on an open subset P ⊆ Rm describes the time evolution of
the various states z ∈ P . When this description includes both (the complete)
past and future this leads to a group action

ϕ : R ×P −→ P
(t, z) 7→ ϕt(z)

(1.1)

of the time axis R on the phase space P , i.e.

ϕ0 = id and
∧

s,t∈R

ϕs ◦ ϕt = ϕs+t .

This implies ϕt ◦ ϕs = ϕt+s = ϕs+t = ϕs ◦ ϕt for all times s, t ∈ R and
ϕ−1

t = ϕ−t for the inverse evolution. We assume (1.1) to be smooth.
For every function f ∈ C∞(P) we can consider the time evolution f ◦ϕt ∈

C∞(P) and in particular the time derivative

ḟ =
d

dt
f ◦ ϕt

∣∣∣∣
t=0

.

The mapping
C∞(P) −→ C∞(P)

f 7→ ḟ

is a derivation, i.e. a linear mapping that satisfies the Leibniz rule when
applied to the product of two functions. The simplest examples of a derivation
are the partial derivatives along the co-ordinate axes and the chain rule shows
that

ḟ =

m∑

i=1

∂f

∂zi

dzi

dt
=

(
m∑

i=1

żi

∂

∂zi

)
f

is merely a linear combination of these, with coefficients in C∞(P).
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Exercise 1.1. Show that every derivation on C∞(P) is such a linear com-
bination of partial derivatives. Hint: consider the projections z 7→ zi to the

co-ordinates and the polynomial functions z 7→
∑

akz
k1

1 · · · zkm
m .

Hence, derivations correspond to directional derivatives

m∑

i=1

gi

∂

∂zi

(1.2)

with coefficient functions gi ∈ C∞(P). Our aim is to further relate a given
derivation to a dynamical system (1.1). Equating ḟ with (1.2) yields the sys-
tem

żi = gi(z) , i = 1, . . . ,m (1.3)

of differential equations. Thus, given z0 ∈ P there exists a unique solution
z : I −→ P satisfying z(0) = z0 and ż(t) = g(z(t)) for all t ∈ I . Here I ⊆ R is
the maximal interval on which the solution passing through z0 is defined.

Exercise 1.2. Show that the flow ϕ : (t, z0) 7→ z(t) defines a group action
on P if and only if the maximal interval I coincides with all of R for every
initial condition z0.

Where I is not all of R the equation

ϕ(s, ϕ(t, z0)) = ϕ(s+ t, z0)

only holds true when s, t, s + t ∈ I . This is called a local group action, by
definition the mapping

ϕ :
⋃

z∈P

Iz × {z} −→ P

still satisfies ϕ0 = id. On the other hand, replacing (1.1) by a local group
action still yields the derivation f 7→ ḟ and one still speaks of a dynamical
system.

Next to the algebraic aspect of defining a derivation the system of dif-
ferential equations (1.3) can also be given a geometric interpretation. The
assignment of a vector g(z) ∈ Rm at each point z ∈ P ⊆ Rm defines a vector
field and the solution curves are tangent to each vector at each point. The di-
rectional derivative (1.2) measures how much a function f ∈ C∞(P) changes
along these vectors and hence along the solution curves, in particular ḟ = 0
if and only if f is invariant under the (local) group action.

Exercise 1.3. Show that a group action F : Z × P −→ P is equivalent to
iterating an invertible mapping on P . What does iterating a non-invertible
mapping amount to?
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1.1 Newtonian mechanics

There are various approaches to mechanical problems. Probably the best
known is based on Newton’s axioms and leads to the (differential) equation

mẍ = F (1.4)

for the motion of a body with (fixed) massm. Here x ∈ R3 denotes the position

of the body, so ẋ =
dx

dt
is its velocity and ẍ =

d2x

dt2
its acceleration. Once the

force F on the right hand side of (1.4) is specified and both position x(t0) = x0

and velocity ẋ(t0) = v0 at time t0 are exactly known, the position x(t) is
determined for all1 times. This solution and its derivatives ẋ(t) and ẍ(t) satisfy

mẍ(t) = F (t, x(t), ẋ(t))

at all times, so it would in fact suffice to specify the vector F only along the
path (t, x(t), ẋ(t)). However, we are interested in the solutions to all initial
conditions, so the complete time-dependent vector field

F : R × R3 × R3 −→ R3

should be specified (F may in principle also depend on extra parameters, that
take different values for different bodies).

Note that the equation of motion (1.4) is a second order equation, this
is rephrasing Descartes2 principle of inertia. The Aristotelian view that all
bodies tend to rest would favour a first order differential equation, and if the
equation of motion were of third order, then one would have to also prescribe
the initial acceleration ẍ(t0) = a0 to determine the motion.

The force field F is rather general and may for instance contain a friction
term −αẋ. Even if F is time-independent and positional, i.e. F = F (x), it
is still an extra assumption that the work W (x, y) done by F between two
positions x and y does not depend on the path used to move from x to y, in
which case one may define the potential energy V (x) = W (x, x0) by choosing
e.g. x0 = 0 — a different choice x1 leads to the additional constant W (x0, x1)
and has no consequences for

F (x) = −∇V (x) .

For such a force field any solution x(t) of (1.4) conserves the sum T + V of
kinetic energy 1

2m(ẋ(t))2 and potential energy V (x(t)).

1 All times is the maximal interval given by the theorem on existence and unique-
ness of differential equations, for which we need the assumption that F is contin-
uous and satisfies locally a Lipschitz condition.

2 Discours de la méthode (1637), see also Galilei’s Discorsi e dimostrazioni matem-

atiche (1638).
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Introducing p := mẋ the second order equation (1.4) can be written as the
system

ẋ =
1

m
p

ṗ = F (t, x, p)

of first order equations. The dutch, english, french and german versions of
Wikipedia fiercely disagree on whether this is in fact how Newton formulated
his second axiom.

1.2 Lagrangean mechanics

The Lagrangean approach to mechanics is based on a variational principle.
The underlying idea that “nature tries to minimize something” has also proven
successful in other branches of physics, refraction of light may for instance be
thought of as light choosing the shortest way through an optical medium.

Possible motions in Lagrangean mechanics are extremals x(t) of the action
functional, which in turn is defined as the integral of the Lagrangean function
L = L(t, x, v) along the path

γ : t 7→ (t, x(t), ẋ(t))

over time. Minimizing

Φ(γ) =

∫ t1

t0

L(t, x(t), ẋ(t)) dt (1.5)

leads to the necessary condition

DΦ(γ) = 0

where D denotes the derivative with respect to all “admissible” paths γ, and
declaring this condition to be sufficient yields the extremals of (1.5).

The basic theorem of the calculus of variations states that the extremals
γ of Φ are exactly those paths which satisfy the Euler–Lagrange equation

d

dt
(∇vL) = ∇xL .

It is a co-ordinate free property of a path γ to be an extremal of Φ whence
we may choose any system q1, . . . , qn of “generalized” co-ordinates for the
position x of the mechanical system and the Euler–Lagrange equation takes
the form

d

dt

(
∂L

∂q̇i

)
=

∂L

∂qi
, i = 1, . . . , n . (1.6)
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Note that the freedom of co-ordinate choice does not extend to the velocity v
of the mechanical system, on the contrary, q̇1, . . . , q̇n are directly determined
from the qi. The notational choice of letting q̇i denote both co-ordinates and
time derivatives turns out to be extremely useful in computations.

For the motion of a body with (fixed) mass m in a positional force field
derived from the potential V the Lagrangean is the difference L = T − V be-
tween kinetic energy T = 1

2mv
2 and potential energy and the Euler–Lagrange

equation reads
mẍ = mv̇ = −∇V (x)

as in Newtonian mechanics.

1.3 Hamiltonian mechanics

The Hamiltonian formulation builds the conservation of energy into the the-
ory. For the motion of a body with (fixed) mass m in a positional force field
derived from the potential V the Hamiltonian function is the sum H = T +V

of kinetic energy T =
p2

2m
and potential energy. The equations of motion are

ẋ = DpH (1.7a)

ṗ = −DxH (1.7b)

and reproduce again (1.4). However, for any other choice H = H(x, p) the
system (1.7) conserves the Hamiltonian as well:

Ḣ = DxH · ẋ + DpH · ṗ = 0 .

Thus, the vector field defined by (1.7) is tangent to the level sets of H . Per-
pendicular to these is the gradient vector field, which points in the direction
of maximal growth of H .

Exercise 1.4. Show that every system of n differential equations can be com-
pleted to a Hamiltonian system on R2n.

Exercise 1.5. Show that the linearization of a Hamiltonian system is again
Hamiltonian. How are the corresponding Hamiltonian functions related to
each other?

Exercise 1.6. Let H(x, p) =
p2

2m
+ V (x) be the energy function, where

V : R −→ R is the potential energy. Compute the Legendre transformation

L(x, v) := sup
p∈R

(v · p − H(x, p))

and clarify the situation with a figure. The function L obtained this way is
the Lagrangean function of the system. Show that Hamilton’s equations (1.7)
turn into (1.6).
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Exercise 1.7. Show that every second order differential equation ẍ = f(x)
in x ∈ R defines a Hamiltonian system. How can this be generalized to higher
dimensions?

1.4 Overview

As we have seen, the Newtonian, Lagrangean and Hamiltonian approaches are
equivalent for the motion of a body with fixed mass in a positional conservative
force field. It turns out that this equivalence extends to all situations in which
at least two of these approaches are applicable. A priori it was not evident
that the causal formulations behind the equations of motion (1.4) and (1.7)
yield the same description of mechanics as the teleological formulation to
minimize (1.5).

Given a mechanical system, it is a non-trivial task to write down the
Lagrangean or the Hamiltonian. In the sequel we concentrate on the case
that the Hamiltonian consists of the (total) energy of the system. Then the
equations of motion (1.7) follow immediately and our aim is to study the
resulting dynamics. To this we adhere to the following outline.

(i) Systems with one degree of freedom.
(ii) Theoretical background.
(iii) Systems with two degrees of freedom.
(iv) General results.
(v) Systems with three degrees of freedom.

Emphasis will be on (iii) and we will see that the complete solution of ar-
bitrary such systems is already beyond our present means. The methods by
which at least something can be said motivate (iv), similarly the first “theo-
retical part”(ii) is motivated by (i). In fact, the theory will always be delayed
until it is actually needed.
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One degree of freedom

A particle/mass point has one degree of freedom if it can only move in one
direction, the x–direction. In the simplest case, that of (force)-free motion,
the potential energy vanishes and the particle moves subject only to its own
inertia, with kinetic energy

H(x, p) =
p2

2m

(with momentum p = mv, so this rephrases indeed T = 1
2mv

2). Hamilton’s
equations (1.7) then read

ẋ =
∂H

∂p
=

1

m
p (so indeed ẋ = v)

ṗ = −∂H
∂x

= 0

with the second equation expressing conservation of linear momentum — in
the absence of force. For given initial conditions (x0, p0) these equations can
easily be solved,

x(t) = x0 +
p0

m
t , p(t) ≡ p0 ,

the particle moves with constant speed on a straight line.
From now on we change notation and use y instead of p, this enables us

to work with co-ordinate changes (x, y) 7→ (q, p).

Exercise 2.1. Show that x 7→ x + ξ is a symmetry of the free linear motion
and explain that the corresponding group action coincides with the flow of
Hamilton’s equations.

Exercise 2.2. Give a necessary condition for the dynamical system

ẋ = f(x, y)

ẏ = g(x, y)

on the open set U ⊆ R2 to be Hamiltonian. Is the condition also sufficient?
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2.1 The harmonic oscillator

Let the particle now move in a quadratic potential with minimum at x = 0.
Putting the mass m = 1 the Hamiltonian takes the form

H(x, y) =
1

2
y2 +

ω2

2
x2

with equations of motion

ẋ = y

ẏ = −ω2x .

For initial conditions (x0, y0) the solution reads

x(t) = x0 cosωt +
y0
ω

sinωt

y(t) = −ωx0 sinωt + y0 cosωt .

These are ellipses in the (x, y)–plane, changing co-ordinates to

q =
√
ωx and p =

y√
ω

we obtain the circular solutions of the system

d

dt

(
q
p

)
=

(
0 ω
−ω 0

)(
q
p

)
.

This second example is more “typical” for the systems we are going to study
than the free particle was, since the motion is bounded.

Exercise 2.3. Let

q̇ = ωp

ṗ = −ωq , ω > 0

be a harmonic oscillator. Transform the system to “action angle variables”
ϕ, I according to

q =

√
I

π
cos 2πϕ , p =

√
I

π
sin 2πϕ

and conclude that the flows with different ω are equivalent to each other,
having the same orbits.

Exercise 2.4. What are the possible types of linear Hamiltonian systems with
one degree of freedom? How do the corresponding Hamiltonian functions look
like? Which of the occurring equilibria are structurally stable — and in what
sense?
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2.2 An anharmonic oscillator

For a fourth order potential, still with a minimum at x = 0, the Hamiltonian
reads

H(x, y) =
1

2
y2 +

1

24
x4

with equations of motion

ẋ = y (2.1a)

ẏ = −1

6
x3 . (2.1b)

The phase portrait can be obtained from the graph of the potential energy, see
Fig. ?. Since energy is conserved, the potential energy at y = 0 is transformed
into kinetic energy at x = 0 and vice versa.

Exercise 2.5. Determine the phase portrait for a 1–dimensional particle mov-
ing in the potential

V (x) = −x2 · e−x .

Exercise 2.6. Consider a function H : R2 −→ R, of the form H(x, y) =
1
2y

2 + V (x). For several shapes of the graph of V , sketch the phase portrait
of XH . How do the integral curves intersect the x-axis? In particular consider
cases where V has maxima, minima or a horizontal asymptote.

Perturb now to H(x, y) =
1

2
y2 +

1

24
x4 +

λ

2
x2 with equations of motion

ẋ = y

ẏ = −1

6
x3 − λx

and phase portraits given in Fig. ?. Under variation of λ a Hamiltonian pitch-
fork bifurcation takes place. Correspondingly, the linearization of the anhar-
monic oscillator (2.1) in the origin is given by the matrix

(
0 1
0 0

)

whence this equilibrium is parabolic.

Exercise 2.7. Let a0 be a minimum of the energy, whence(?!) the motion for
slightly larger energy values E is periodic with period T (E). Determine the
limit

T0 := lim
E→E(a0)

T (E) .
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The typical way in which a parabolic equilibrium bifurcates is the centre-
saddle bifurcation. Here the Hamiltonian reads

H(x, y) =
a

2
y2 +

b

6
x3 + cλx

where a, b, c ∈ R are nonzero constants. For instance, when a = b = c = 1 this
leads to the phase portraits given in Fig. ?.

Note that this is a completely different unfolding of the parabolic equilib-
rium at the origin. A closer look at the phase portraits and in particular at
the Hamiltonian function of the Hamiltonian pitchfork bifurcation reveals the
symmetry x 7→ −x. This suggests to add the non-symmetric term µx.

Exercise 2.8. Determine the bifurcation diagram of the family

Hλ,µ(x, y) =
1

2
y2 +

1

24
x4 +

λ

2
x2 + µx

of Hamiltonian systems.

Singularity theory allows to prove that upon adding further “small” terms
to Hλ,µ no additional phase portraits are generated. Up to equivalence (i.e.
qualitatively) Hλ,µ contains all possible unfoldings of the anharmonic oscil-
lator (2.1), one also speaks of a versal unfolding. Similarly, the centre-saddle
bifurcation is stable 1–parameter family.

Exercise 2.9. Analyse the family

Hλ(x, y) =
1

2
y2 +

1

6
x3 +

λ

2
x2

of Hamiltonian systems.

Up to now all Hamiltonians were invariant with respect to y 7→ −y. This
reversibility (reflecting the phase portrait about the x–axis and simultaneously
reversing the flow of time leaves the system invariant) is built into simple
mechanical systems with positional potential energy V = V (x) and kinetic
energy T = 1

2y
2. Note that adding an unfolding term νy does not lead to

qualitatively new phenomena since one may simply apply the co-ordinate
transformation (x, y) 7→ (x, y − ν) to the perturbed system.

Exercise 2.10. Consider the Hamiltonian H(x, y) = xy2− 1
3x

3. Use monomi-
als like x, 1

2x
2 or 1

2y
2 to unfold preserving the reversibility and monomials like

y or xy to break the reversibility. Conclude that the latter does lead to qual-
itatively new phenomena. Can you guess the minimal number of parameters
of a versal unfolding?
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2.3 The mathematical pendulum

The mathematical idealization of a pendulum is a mass point fixed to a mass-
less rod (not a string, so the pendulum can also “turn over the top”). We use
the positional variable x ∈ R to measure the angle from the vertical, whence
the height of the pendulum (i.e. of the mass point) is given by V (x) = − cosx
and the energy reads

H(x, y) =
1

2
y2 − cosx .

From the graph of the potential energy we obtain the phase portraits in Fig. ?
while the equations of motion obtained from H are given by

ẋ = y

ẏ = − sinx .

The equilibria are (x, y) = (kπ, 0) , k ∈ Z and have linearization

(
0 1

− coskπ 0

)
=

(
0 1

−(−1)k 0

)

with determinant (−1)k, whence equilibria with even k are centres and equi-
libria with odd k are saddles. Note that phase portrait, Hamiltonian function,
equations of motion, . . . are 2π–periodic in x — the pendulum does not know
the difference between the position of the mass point at an angle x and “that
same angle” x+ 2kπ after several full rotations. It is therefore helpful to take
the co-ordinate x mod 2π and pass to the phase space S1 × R, see Fig. ?. On
the resulting cylinder the “rotating motions” over the top are periodic.

For any potential energy V : S1 −→ R the Hamiltonian H = T + V with
kinetic energy T = 1

2y
2 defines equations of motion

ẋ = y

ẏ = −V ′(x)

on S1 × R ; the corresponding flow may be computed directly on the phase
space or first on R2 and then projected mod 2π in the first component.

Exercise 2.11. Consider the Hamiltonian function H(x, y) = 1
2y

2 − cosx of
the pendulum. For |z| < 1 we consider the level set H−1(z). What is the
amplitude of oscillation in this level? If T (z) denotes the period of oscilla-
tion in this level, then give an explicit integral expression for this. Determine
lim

z→−1
T (z) and lim

z→+1
T (z).

Exercise 2.12. Analyse the dynamics of the rotating pendulum ẍ = M−sinx
in dependence of M .
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Exercise 2.13. Let H(x, y) = 1
2y

2 − V (x) be the Hamiltonian of a 1–
dimensional particle with mass m = 1 moving in the potential V . Describe
the time parametrisations of the trajectories H = h in terms of the indefinite
integral ∫

dx√
2(h− V (x))

. (2.2)

Exercise 2.14. Let H ∈ C∞(P) be a Hamiltonian and β : P −→ ]0,∞[
a smooth function. Define another Hamiltonian K ∈ C∞(P) by K(z) :=
β(z) · (H(z) − h) for all z ∈ P . Show that the trajectories of XK on K−1(0)
are related to the trajectories of XH on H−1(0) by means of the orientation

preserving re-parametrisation
dτ

dt
=

1

β
of time.



3

Hamiltonian systems on the sphere S2

Next to x mod 2π we could also work with y mod 2π and study Hamiltonian
systems on the 2–torus S1 × S1. For such a one-degree-of-freedom system
there is no kinetic energy T = 1

2y
2 and the variable y loses its interpretation

of being the velocity or momentum of the particle with position x.
This is even more true for Hamiltonian systems on S2 which have the ad-

ditional problem that it is impossible to globally define a co-ordinate system,
at least one point has to be discarded.

Discarding two points on S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}, e.g.
the north pole z = 1 and the south pole z = −1, one can define cylindrical
co-ordinates p = z and q ∈ S1 by means of

cos q =
x√

1 − z2
, sin q =

y√
1 − z2

.

The equations of motion still read

q̇ =
∂H

∂p

ṗ = −∂H
∂q

as we have in fact brought the situation back to S1 × R.
While it is possible to treat Hamiltonian dynamical systems on S2 in this

way, switching to cylindrical co-ordinates along e.g. the y–axis when motions
passing through north or south pole are encountered, this approach is less
satisfactory.

1. The truly global questions are difficult to attack.
2. Also for local problems this is impractical.

We therefore prefer to work globally on phase spaces that are manifolds.



14 3 Hamiltonian systems on the sphere S2

Exercise 3.1. For H ∈ C∞(R3) define the equations of motion

d

dt




x
y
z



 =




∂H
∂x

∂H
∂y

∂H
∂z


 ×




x
y
z



 .

Show that H is a constant of motion. Find a second constant of motion. What
can be said about those points where both functions have linear dependent
gradients?

Definition 3.1. Let M be a metric space. A chart on M is a homeomorphism
ϕ : U −→ V between an open set U ⊆ M and an open set V ⊆ Rm. A set of
charts on M forms an atlas if

(i) every point x ∈M lies in the source of at least one chart in the atlas;
(ii) the chart changes ϕ2 ◦ϕ−1

1 : ϕ1(U1 ∩U2) ⊆ V1 −→ ϕ2(U1 ∩U2) ⊆ V2 are
differentiable.

Singling out an atlas A makes M a differentiable manifold. We then say that
a function f : M −→ R is differentiable if

∧

ϕ∈A

f ◦ ϕ−1 : V −→ R is differentiable.

Two atlasses are called compatible if their union is again an atlas. The union
of all atlasses compatible with A is the maximal atlas of the differentiable
manifold M .

Examples are Rm itself, the cylinder S1×R, the spheres Sm and the tori Tm =
Rm/Zm . We like our manifolds to be as smooth as needed, i.e. Ck with k ∈ N

sufficiently high, and work from now on for simplicity with C∞ manifolds.

Exercise 3.2. Show that Tm is diffeomorphic with S1 × . . .× S1.

The atlas allows to transport a concept from open subsets V ⊆ Rm to a man-
ifold P if the concept is local in nature and not depending on a special choice
of co-ordinates. For a dynamical system the notions of (local) group action
and of a derivation C∞(P) −→ C∞(P) are already globally defined. In every
chart the considerations from the introduction remain valid, in particular

ḟ =
m∑

i=1

żi

∂f

∂zi

for the directional derivative. The corresponding locally defined (and co-
ordinate depending) vector fields can be given a global meaning. To this end
call two curves γ, η : I −→ P with γ(0) = η(0) =: z0 equivalent (at z0) if
the time derivatives of γ and η at 0 coincide in one (and hence every) chart
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around z0. The equivalence classes of this equivalence relation are the tan-
gent vectors (at z0), and a vector field assigns to each z0 ∈ P a tangent vector
at z0. In each chart this amounts to a system of differential equations, and the
solution curves have at each point a time derivative coinciding with the pre-
scribed tangent vector (i.e. the time derivative lies in this equivalence class).
The resulting flow is (again) a local group action.

Exercise 3.3. Show that on a compact manifold P each vector field deter-
mines a group action (of all of R) on P . Hint: consider the maximal time
interval I ⊆ R of a given solution curve.

To define the Lie bracket [X,Y ] of two vector fields consider these as deriva-
tions X,Y : C∞(P) −→ C∞(P) and put

[X,Y ](f) := X(Y (f)) − Y (X(f)) .

Exercise 3.4. Compute the Lie bracket [
∂

∂zi

,
∂

∂zj

] of two partial derivatives

along the co-ordinate axes in Rm.

Exercise 3.5. Let ϕ, ψ be the (globally defined) flows of two vector fields
X,Y on a manifold P and assume that

∧

s,t∈R

ϕt ◦ ψs = ψs ◦ ϕt ,

i.e. the flows commute. Conclude that then the Lie bracket [X,Y ] vanishes
identically. Can you also prove the converse?

In this sense the Lie bracket of two vector fields measures to what extent the
corresponding flows commute.

Exercise 3.6. Show that the “natural mechanical system” H = 1
2y

2 + V (x)
has a globally defined flow in the following cases.

1. The potential energie V is everywhere positive.
2. The phase space is S1 × R.

In how far is the first condition physically relevant?

3.1 The Poisson bracket

To write down the equations of motion without resorting to (canonical) co-
ordinates we work with Poisson brackets.

Definition 3.2. Let P be a differentiable manifold. A mapping

{ , } : C∞(P) × C∞(P) −→ C∞(P)

is called a Poisson bracket if it satisfies the following conditions.
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(i) { , } is bilinear, i.e. linear in both arguments.

(ii) { , } is alternating, i.e.
∧

f∈C∞(P)

{f, f} = 0.

(iii) { , } satisfies the Leibniz rule
∧

f,g,h∈C∞(P)

{f · g, h} = f · {g, h} + {f, h} · g .

(iv) { , } satisfies the Jacobi identity
∧

f,g,h∈C∞(P)

{{f, g}, h} = {f, {g, h}} + {{f, h}, g} .

We then call (P , { , }) a Poisson manifold.

The Leibniz rule gives { , } the character of a derivative (if one fixes one of
the arguments, see below) and correspondingly Hamilton’s equations become
d
dt
f = ḟ = {f,H} on a Poisson manifold.

Exercise 3.7. Show that a Poisson bracket is anti-symmetric, i.e.
∧

f,g∈C∞(P)

{g, f} = −{f, g}

and yields the vanishing sum of cyclic permutations
∧

f,g,h∈C∞(P)

{{f, g}, h} + {{g, h}, f} + {{h, f}, g} = 0

(this is often the form in which Jacobi’s identity is stated).

The Leibniz rule expresses that the mapping f 7→ {f,H} is a derivation, as the

partial derivative
∂

∂z
along the co-ordinate axis in a chart of P is a derivation,

a linear mapping satisfying the Leibniz rule. This makes f 7→ {f,H} a vector
field on P whence

{f,H}(z) =

m∑

i=1

ηi(z)
∂f

∂zi

in local co-ordinates; in a chart the partial derivatives
∂

∂zi

along the co-

ordinate axes form a basis of each tangent space. Applying this to the co-
ordinate function zj yields

{zj , H}(z) =
m∑

i=1

ηi(z)
∂zj

∂zi

=
m∑

i=1

ηi(z)δij = ηj(z)

whence the above expansion reads

{f,H} =

m∑

i=1

{zi, H} ∂f
∂zi

. (3.1)
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Example 3.3. On R2 a Poisson bracket is determined by the value of {x, y}
(why?) and the simplest non-trivial possibility is {x, y} = 1. We then obtain

ẋ = {x,H} = −{H, x} = −
(
{x, x}∂H

∂x
+ {y, x}∂H

∂y

)
=

∂H

∂y

ẏ = {y,H} = −{H, y} = −
(
{x, y}∂H

∂x
+ {y, y}∂H

∂y

)
= −∂H

∂x

and the Poisson bracket reads

{f, g} =
∂f

∂x
{x, g} +

∂f

∂y
{y, g} =

∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
.

ut

Exercise 3.8. Show that there is exactly one Poisson bracket on R2n with

{xi, xj} = 0

{yi, yj} = 0

{xi, yj} = δij , i, j = 1, . . . , n .

Such co-ordinates are called canonical co-ordinates. Write down the equations
of motion to find out why.

Exercise 3.9. Define a Poisson bracket on R2n+` with co-ordinates x1, . . . , xn,
y1, . . . , yn, z1, . . . , z` by means of

{xi, xj} = 0 , {yi, yj} = 0 , {xi, yj} = δij ,
{xi, zj} = 0 , {yi, zj} = 0 , {zi, zj} = 0 .

(3.2a)

Show that

∧

f,g∈C∞(R2n+`)

{f, g} =

n∑

i=1

∂f

∂xi

∂g

∂yi

− ∂f

∂yi

∂g

∂xi

. (3.2b)

Exercise 3.10. Determine all Poisson structures on R2.

Exercise 3.11. Let P be a Poisson manifold. Show that the Lie bracket of
two Hamiltonian vector fields XH and XK , with H,K ∈ C∞(P), satisfies

[XH , XK ] = −X{H,K} .

3.2 Examples on S
2

Using the co-ordinates (x, y, z) on R3 allows us to work globally on S2 =
{x2 + y2 + z2 = 1}. Exercise 3.1 suggests to work with
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{x, y} = z , {y, z} = x , {z, x} = y , (3.3)

as does the SO(3)–invariance of S2 ⊆ R3. Since

{cos q, p} =

{
x√

1 − z2
, z

}
=

−y√
1 − z2

= − sin q

{sin q, p} =

{
y√

1 − z2
, z

}
=

x√
1 − z2

= cos q ,

cylindrical co-ordinates are canonical co-ordinats for this Poisson structure,
i.e. satisfy {q, p} = 1.

For the Hamiltonian function H(x, y, z) = z (measuring the height on the
sphere) the equations of motion are

ẋ = {x,H} = −y
ẏ = {y,H} = x

ż = {z,H} = 0

and easily solved ; the flow is given by

ϕt(x, y, z) = (x cos t− y sin t, x sin t+ y cos t, z)

and the orbits coincide with the intersections S2∩{H = h} of the phase space
with the energy level sets, see Fig. ?.

Definition 3.4. Let P be a Poisson manifold. A function f ∈ C∞(P) is called
a Casimir function if ∧

g∈C∞(P)

{f, g} = 0 .

For the above Poisson structure f(x, y, z) = x2 +y2 +z2 is a Casimir function
and therefore invariant under every Hamiltonian flow on R3 ⊇ S2. Every
Hamiltonian function H ∈ C∞(R3) defines a whole family of Hamiltonian
systems on the spheres S2

r = f−1(r2) — or a single Hamiltonian system
on R3. Note that the gradient of the Casimir is given by

∇f(x, y, z) = 2



x
y
z




whence the tangent plane at the point (x, y, z) ∈ S2
r ⊆ R3 is embedded in the

Euclidean space R3 as

T(x,y,z)S
2
r =



x
y
z


 +



x
y
z




⊥

and consists of all possible vectors XH(x, y, z) where H runs through all
of C∞(R3).
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Example 3.5. Consider on S2 (or, in fact, on R3) the Hamiltonian function

H(x, y, z) =
ax2

2
+

by2

2
+

cz2

2
(3.4)

where 0 < a ≤ b ≤ c are three real parameters. (This models part of the
dynamics of a free rigid body with a fixed point, subject only to its own
inertia.) The equations of motion

ẋ = {x,H} = (b− c)yz

ẏ = {y,H} = (c− a)xz

ż = {z,H} = (a− b)xy

are non-linear but can still be explicitly solved, using elliptic functions. Since
the orbits coincide with the intersections S2 ∩ {H = h} of the phase space
with the energy level sets one can alternatively obtain the phase portrait
intersecting the sphere S2 ⊆ R3 with the ellipsoid {H = h} see Fig. ?. ut

Exercise 3.12. Analyse the dynamics defined by (3.4) on S2 in the limiting
cases a→ b and b→ c.

Exercise 3.13. Study the dynamics of “Colombo’s top” on S2 with Poisson
structure (3.3), the 2–parameter family with Hamiltonian functions

Hλ,µ(x, y, z) = −1

2
(z − λ)2 + µ y .

(This models the (averaged) influence of the sun on the motion of a planet
revolving around its axis.) Hints: try to answer the following questions. How
do the phase portraits look like? (How can they be obtained without lengthy
computations?) What is the minimal number of equilibria? How many are
there at most? Which bifurcation do you expect where the number of equilibria
changes? Can you confirm this numerically? How do the bifurcation curves in
the (λ, µ)–plane look like?

Exercise 3.14. Let K ∈ C∞(R3). Show that the triple product

{f, g}K := 〈∇f ×∇g | ∇K〉

(combining the inner product 〈 | 〉 and the cross product .. × ..) defines a
Poisson bracket { , }K on R3. Let furthermore H ∈ C∞(R3). How are the
flows of XH on (R3, { , }K) and XK on (R3, { , }H) related to each other?





4

Theoretical background

The Poisson bracket is our basic structure, so a few general statements should
be made.

Exercise 4.1. Let P be a Poisson manifold and F,G ∈ C∞(P) two constants
of motion of the Hamiltonian system defined by H ∈ C∞(P), i.e. the flow of
XH leaves F and G invariant. Show that the function {F,G} ∈ C∞(P) is a
constant of motion as well.

Exercise 4.2. A Lie algebra is a (real) vector space g together with an alter-
nating bilinear form

[ , ] : g × g −→ g

that satisfies the Jacobi identity. Let v1, . . . , v` be a basis of g. The real num-
bers Ck

ij in the representation

[vi, vj ] =
∑̀

k=1

Ck
ijvk

are called the structure constants of the Lie algebra. Show that

{f, g} :=
∑̀

i,j,k=1

Ck
ij zk

∂f

∂zi

∂g

∂zj

defines a Poisson bracket on R`. How do Hamilton’s equations look like?

Exercise 4.3. Let P be a Poisson manifold and H ∈ C∞(R ×P) be a time-
dependent Hamiltonian function. Rewrite the time-dependent Hamiltonian
system defined by H as an autonomous Hamiltonian system on P × R2 :
construct a Poisson structure on P × R2 and define a suitable Hamiltonian
function H̃ ∈ C∞(P × R2).
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4.1 The structure matrix

As for all structures in mathematics, the mappings that preserve the structure
are (at least) as important as the structure itself.

Definition 4.1. Let P1 and P2 be two Poisson spaces. A mapping ϕ : P1 −→ P2

is called a Poisson mapping if

∧

f,g∈C∞(P2)

{f ◦ ϕ, g ◦ ϕ}1 = {f, g}2 ◦ ϕ .

In particular, a Poisson mapping turns canonical co-ordinates into canonical
co-ordinates.

Exercise 4.4. Let H ∈ C∞(P2) be a Hamiltonian function. Show that a
Poisson mapping ϕ : P1 −→ P2 maps the trajectories of the Hamiltonian
system defined by the Hamiltonian function H ◦ϕ on P1 into the trajectories
of the Hamiltonian system XH on P2.

If a Poisson mapping ϕ is a diffeomorphism, then the inverse ϕ−1 : P2 −→ P1

is also a Poisson mapping and all questions about Hamiltonian systems that
one can ask in P1 may be studied in P2.

Theorem 4.2. Let ϕ denote the global flow of a Hamiltonian vector field XH
defined by H ∈ C∞(P). Then the time–t–mapping ϕt : P −→ P is a Poisson
mapping.

Proof. Given f, g ∈ C∞(P), we aim to thow that

∧

t∈R

{f ◦ ϕt, g ◦ ϕt} ◦ ϕ−t = {f, g} . (4.1)

Differentiating the left hand side of (4.1) with respect to time yields the ex-
pression

{XH(f ◦ ϕt), g ◦ ϕt} + {f ◦ ϕt, XH (g ◦ ϕt)} − XH ({f ◦ ϕt, g ◦ ϕt}) (4.2)

transformed by ϕ−t, where we used trilinearity and

XH (f) ◦ ϕt0 =
d

dt
(f ◦ ϕt0 ◦ ϕt−t0)

∣∣∣∣
t=t0

= XH (f ◦ ϕt0) .

The Jacobi identity in F = f ◦ ϕt, G = g ◦ ϕt and H implies that the
expression (4.2) vanishes. Since (4.1) is true for the “initial condition” ϕ0 = id
we conclude that this equation remains true for all times. ut

In local co-ordinates (z1, . . . , zm) the Poisson structure is completely deter-
mined by the Poisson brackets {zi, zj} between the co-ordinate functions.
Indeed, iterating the expansion (3.1) yields
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{f, g} =
m∑

i=1

∂f

∂zi

{zi, g} =
m∑

i,j=1

∂f

∂zi

{zi, zj}
∂g

∂zj

whence prescribing the structure matrix




0 · · · {z1, zj} · · · · · · {z1, zm}
{z2, z1}

. . .
...

...
. . .

...
... {zi, zj}

. . .
...

...
. . .

...
{zm, z1} · · · · · · · · · · · · 0




is equivalent to defining a Poisson structure (provided that the Jacobi identity
is fulfilled). The structure matrix is anti-symmetric and hence the rank is even
in every point.

Definition 4.3. We say that a Hamiltonian system on a Poisson manifold P
has n degrees of freedom if 2n is the maximal rank of the structure matrix
({zi, zj})ij

on P .

The subset of P on which the Poisson structure has maximal rank is open
(and in non-pathological cases also dense). The origin of R3 with the Poisson
brackets (3.3) is an example of a point where the rank of the Poisson structure
is not maximal.

Exercise 4.5. Let (P , { , }) be a Poisson manifold of even dimension. Show
that the structure matrix is invertible for every point in a suitable chart around
a ∈ P if and only if for every function f ∈ C∞(P) for which a is not a critical
point there is another function g ∈ C∞(P) such that {f, g}(a) 6= 0.

On the open subset where the Poisson structure has maximal rank we can
obtain a particularly simple form for the structure matrix. The proof of this
result uses Frobenius’ theorem.

The linear independent set {Y1, . . . , Y`} of vector fields on the m–dimen-
sional manifold P is said to be involutive if there are coefficient functions
hk

ij ∈ C∞(P) with

[Yi, Yj ] =
∑̀

k=1

hk
ij · Yk .

More generally a distribution Ez < TzP of `–dimensional subspaces of the
tangent spaces of P is called involutive if for any two vector fields X,Y with
values Xz, Yz ∈ Ez also [X,Y ]z ∈ Ez for all z.
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Theorem 4.4. (Frobenius). Let (Ez)z∈P be an involutive `–dimensional distri-
bution on them–dimensional manifold P . Then around each point z ∈ P there

are local co-ordinates {z1, . . . , zm} such that the first ` partial derivatives
∂

∂zi

,

i = 1, . . . , ` span Ez.

The resulting co-ordinate systems {z1, . . . , z`} match up to form `–dimensional
manifolds M for which the tangent spaces TzM at each point z ∈M coincide
with Ez. These immersed submanifolds form the leaves of a foliation and a
distribution is called integrable if it consists of the tangent spaces of a foliation.
Thus Frobenius’ theorem states that every involutive distribution is integrable
(the converse is trivially true).

Exercise 4.6. Prove Frobenius’ theorem for ` = 1.

Thus, for a single vector field Y without equilibria there exist local co-

ordinates such that Y =
∂

∂z1
, locally the vector field can be straightened

out.

Exercise 4.7. Let {Y1, . . . , Y`} be an involutive set of linear independent vec-
tor fields. Is it possible to locally straighten out all ` vector fields simultane-
ously?

Theorem 4.5. (Darboux). Let P be a Poisson manifold and assume that the
structure matrix has maximal rank 2n in a ∈ P . Then there are local co-
ordinates x1, . . . , xn, y1, . . . , yn, z1, . . . , z` (with 2n + ` = m := dimP)
around a in which the structure matrix is given by (3.2a).

Proof. We work by induction on the number n of degrees of freedom. For
n = 0 the structure matrix vanishes in every co-ordinate system and there is
nothing to prove (as ` = m).

When n ≥ 1 there exists a Hamiltonian H ∈ C∞(P) with XH (a) 6= 0.
Take x := t for the time along the trajectories of XH and put y := H . Then

1 =
dt

dt
= ṫ = {t,H} = {x, y} = {y,−x}

and we can also interprete y as the time along the (locally defined) Hamilto-
nian vector field X−x. For f, g ∈ C∞(P) the Poisson bracket {f, g} ∈ C∞(P)
does not depend on x :

∂{f, g}
∂x

=
d{f, g}

dt
= {{f, g}, H} = {{f, g}, y}

= {f, {g, y}} + {{f, y}, g} = 0

and similarly {f, g} does not depend on y. Therefore, the structure matix is
of the form
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


0 1 0
−1 0 0

0 0 ∗




where ∗ contains Poisson brackets from co-ordinates in

Z :=

{
f ∈ C∞(P)

∣∣∣∣ {x, f} = 0 = {y, f}
}

.

To show that the functions in Z can indeed be used to complete x and y to
a local co-ordinate system we can use Frobenius’ theorem as {Xy, X−x} is
involutive. Hence ∗ is itself the structure matrix of a Poisson bracket, of rank
2(n− 1), so applying the induction hypothesis yields the desired result. ut

We have proven a bit more than stated in the theorem, the condition that the
rank of the Poisson structure be maximal in a was nowhere used.

Corollary 4.6. (Weinstein). Under the conditions of Theorem 4.5, if the
rank 2n of the structure matrix in a is not maximal, then there are local
co-ordinates x1, . . . , xn, y1, . . . , yn, z1, . . . , z` around a in which the structure
matrix is given by

{xi, xj} = 0 , {yi, yj} = 0 , {xi, yj} = δij ,
{xi, zj} = 0 , {yi, zj} = 0 , {zi, zj} = S(z)

with S(0) = 0.

Exercise 3.11 shows that the space of all Hamiltonian vector fields is involu-
tive, so the theorem of Frobenius provides integral manifolds — the integral
manifold through a point a ∈ P consists of all points z ∈ P that can be
reached from a by a concatenation of trajectories of (various) Hamiltonian
vector fields. The dimension of the integral manifold through a is equal to the
rank of the Poisson structure in a, one speaks of symplectic leaves. Where this
dimension drops one has to use a generalization of Frobenius’ theorem due to
Stefan and Sussmann.

4.2 The theorem of Liouville

Hamiltonian systems conserve the Hamiltonian function, i.e. (for simple me-
chanical systems) the energy. However, the reason that one often speaks of
‘conservative systems’ is the conservation of phase space volume.

Theorem 4.7. (Liouville). Hamiltonian systems are volume-preserving.

Proof. The time–t–mapping ϕt of the Hamiltonian vector field XH transforms
a region Ω into ϕt(Ω) with volume
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∫

ϕt(Ω)

dx1 · · · dxn dy1 · · · dyn dz1 · · ·dz`

=

∫

Ω

det(Dϕt) dx1 · · · dxn dy1 · · ·dyn dz1 · · · dz`

(4.3)

where we work in co-ordinates provided by Darboux’s theorem. How does this
quantity change in time, say at t = 0 ? Expanding

Dϕt = Dϕ0 + t
d

dt
Dϕt

∣∣∣∣
t=0

+ O(t2) = id + t A + O(t2)

and using

det(λid −A) = λn − trace(A)λn−1 + . . . ± detA

in the form
det(id + tA) = 1 + t trace(A) + O(t2)

we obtain

d

dt
det(Dϕt)

∣∣∣∣
t=0

= trace(A) = trace(DXH )

=

n∑

i=1

∂

∂xi

∂H

∂yi

− ∂

∂yi

∂H

∂xi

+
∑̀

k=1

∂

∂zk

0 = 0 .

ut

For a vector field Y one calls div(Y ) = trace(DY ) the divergence of Y .

Corollary 4.8. The flow of a divergence-free vector field is volume-preserving.

The phase space volume is contracted near an attractor of a dynamical system.

Exercise 4.8. Show that in a Hamiltonian system no asymptotically stable
equilibria or periodic solutions occur.

Exercise 4.9. Show that a planar dynamical system, defined on R2, is Hamil-
tonian if and only if it is area-preserving.

Exercise 4.10. Let H ∈ C∞(R2) be a Hamiltonian function and assume that
for h0 ∈ R the motion in the level curve H−1(h0) is periodic. Show that for
energy values h near h0 the motion is periodic as well. Let A(h) denote the
area enclosed by the level H−1(h), while T (h) denotes the period of oscillation

in this level set. Show that T =
dA

dh
.

The proof of the next corollary consists of “a walk in the park” covered by
(fresh) snow: however small my shoes are, if I walk long enough through the
park then I end up stepping on my own trail.



4.2 The theorem of Liouville 27

Corollary 4.9. (Poincaré’s recurrence theorem). If Ω ⊆ P has finite non-zero
volume and is invariant under the flow, then every neighbourhood U of every
point a ∈ Ω intersects a trajectory that returns to U .

Thus, after dropping milk into a cup of coffee, one just has to wait and even-
tually the fluids are separated again (and the coffee is cold). The solution to
this counter-intuitive riddle is that the recurrence time is easily longer than
the age of the universe.

Exercise 4.11. Give an explicit proof of Corollary 4.9.

While the volume of Rm is infinite, so one would have to find an appropriate
invariant subset Ω, the energy level sets are often compact. The Lebesgue
measure of a co-dimension–1 manifold like {H = h} vanishes, but it is possible
to define an induced volume on {H = h} and then one can apply Poincaré’s
recurrence theorem.

Obviously the notion of “phase space volume” has to be clarified a bit. In
Rm with Poisson structure (3.2) it coincides with the Lebesgue measure. For
the more general situation that the phase space is a manifold the phase space
volume should be a measure that in Darboux co-ordinates coincides with the
Lebesgue measure, i.e. may be patched together from such local expressions
(one always can resort to dividing a subset Ω ⊆ P into small subsets Ωi that
fit into the charts of an atlas and then compute the volume of Ω as the sum
of the volumes of the Ωi).

A global definition of the volume on a manifold uses differentiable forms,
Θ ∈ Γ (P , ΛmT ∗P) is called a volume form in much the same way that the
Jacobi determinant describes the infinitesimal change of volume in (4.3). The
situation is particularly simple if the structure matrix of the Poisson structure
on P is invertible. Then m = 2n and the Poisson structure can be defined
in terms of a so-called symplectic form ω ∈ Γ (P , Λ2T ∗P), locally given by

ω =
∑

dxi ∧ dyi, whence Θ = ω ∧ . . . ∧ ω is the (Liouville) volume form

on P . See Appendix A for a few more details and the modern literature on
mechanics for much more details on symplectic forms.
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The planar Kepler system

Kepler1 described the planetary motion in terms of three laws.

1. The planetary orbit is an ellipse with the sun at one of the two focal
points.

2. The planetary speed varies in such a way that the line joining the sun and
the planet sweeps out equal areas of the ellipse in equal times.

3. The square of the planet’s period is proportional to the cube of the semi-
major axis of its orbit.

As Newton2 showed, these laws can be derived from a gravitational force
proportional to the inverse square of the distance. The potential of this force
is proportional to the inverse of the distance.

Denoting the vector from the sun to the planet by x ∈ R3 and their relative
speed by v ∈ R3 the motion is confined to the plane spanned by x and v, the
plane perpendicular to the angular momentum vector x × v ∈ R3. We may
choose this plane to be R2. Furthermore placing the centre of the two masses
at 0 ∈ R2 we can reduce the problem to that of the motion in a central force
field.

Exercise 5.1. Fill in details to explicitly reduce the two body problem to
(two times) the problem of the motion of one body in a central force field.

For U : ]0,∞[−→ R we define the Hamiltonian function

H(x, y) =
y2
1 + y2

2

2
+ U(x2

1 + x2
2) (5.1a)

on R2\{0}×R2 (with canonical Poisson bracket), in case of the Kepler system

U(z) = − γ√
z
. (5.1b)

1 Astronomia Nova (1609) and Harmonice Mundi (1619).
2 Philosophiae Naturalis Principia Mathematica (1687).
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We first concentrate on properties that hold true for all central force field mo-
tions and then consider the special case of the gravitational potential (5.1b).

Exercise 5.2. Draw a potential V (x) with V (0) = +∞ and analyse the
Hamiltonian system defined by H(x, y) = 1

2y
2 + V (x) on ]0,∞[×R.

Exercise 5.3. Determine the phase portraits of the family of Hamiltonian

systems defined on ]0,∞[×R by H(q, p) =
p2

2
− 1

q
+

µ2

2q2
for a significant

choice of values of the parameter µ ∈ R.

5.1 Central force fields

The potential energy in the Hamiltonian (5.1) is invariant under rotations in
the x–plane and the kinetic energy is invariant under rotations in the y–plane.
The combined group action

ψ : S1 × R4 −→ R4

(ρ,




x1

x2

y1
y2


) 7→




cos ρ − sin ρ 0 0
sin ρ cos ρ 0 0

0 0 cos ρ − sin ρ
0 0 sin ρ cos ρ







x1

x2

y1
y2




(5.2)

furthermore preserves the Poisson structure, i.e. the mapping ψρ on the phase
space is for every ρ ∈ S1 a Poisson mapping. Consequently, the Hamiltonian
vector field is equivariant with respect to ψ and the flow ϕ commutes with
this group action — ϕt ◦ ψρ = ψρ ◦ ϕt for all (t, ρ) ∈ R × S1. Our aim is to
use this to reduce the system to one degree of freedom.

Exercise 5.4. Let ψ : P −→ P be a Poisson mapping and H ∈ C∞(P) be a
Hamiltonian function satisfying H ◦ ψ = H . Explain why ψ is a symmetry of
the Hamiltonian system XH .

Declaring two points to be equivalent if there is a rotation ψρ that turns one
into the other we are led to the equivalence classes

[
x
y

]
=

{(
ξ
η

)
∈ R4

∣∣∣∣
_

ρ∈S1

„

ξ

η

«

= ψρ

„

x

y

«

}

and the quotient space

R4

/S1 =

{ [
x
y

] ∣∣∣∣
(
x
y

)
∈ R4

}
. (5.3)

To be able to define the equations of motion on the abstract quotient space we
want to find a concrete realization. The key to this are the invariant functions
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τ1 =
x2

1 + x2
2

2

τ2 =
y2
1 + y2

2

2
τ3 = x1y1 + x2y2

τ4 = x1y2 − x2y1

(the fourth quantity is the component of x with respect to the vector y⊥

perpendicular to y).

Theorem 5.1. The ring (C∞(R4))S1

of S1–invariant functions on R4 is gener-
ated by τ1, . . . , τ4, i.e. every S1–invariant function f ∈ C∞(R4) can be written

f(x, y) = F (τ(x, y))

as a function F in the variables τ1, . . . , τ4.

Proof. In complex co-ordinates u = x1 +ix2, v = y1 +iy2 the S1–action reads

ψρ(u, v) =
(
eiρu, eiρv

)

and leaves the monomial ukūlvmv̄n invariant if and only if l − k = m− n. In
this case we can write the monomial in the form

ukūlvmv̄n = (uū)k(vv̄)n(uv̄)l−k = τk
1 τ

n
2 (τ3 − iτ4)

l−k

proving the theorem for the ring (R[x1, x2, y1, y2])
S1

of S1–symmetric poly-
nomials. The extension from polynomials to all smooth functions works for
every compact group, see [25, 23]. ut

In the same way that x1, x2, y1, y2 are (global) variables on R4 in that ev-
ery function f ∈ C∞(R4) can be written as f ◦ (x1, x2, y1, y2), the four S1-
symmetric functions τ1, τ2, τ3, τ4 serve as global variables on R4/S1 , which are
restricted by the relations

τ1 ≥ 0 , τ2 ≥ 0 and
τ2
3 + τ2

4

2
= 2τ1τ2 . (5.4)

This last equality is the syzygy of the Hilbert mapping

τ : R4 −→ R4

and we have realized R4/S1
∼= im τ as a subset of R4 defined by the rela-

tions (5.4). Since the defining constraints (5.4) combine polynomial equations
with polynomial inequalities one speaks of a semi-algebraic variety. The Pois-
son bracket relations yield the structure matrix




0 τ3 2τ1 0
−τ3 0 −2τ2 0
−2τ1 2τ2 0 0

0 0 0 0



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whence in

{f, g}(τ) =

3∑

i,j=1

∂f

∂τi
(τ){τi, τj}

∂g

∂τj
(τ) (5.5)

the summation only has to go to 3 instead of 4. The rank of this matrix
equals 2, so we have reduced from two to one degree of freedom. The Casimir
function τ4 = x1y2 −x2y1 is the angular momentum which is therefore invari-
ant under the flow of every S1–invariant Hamiltonian.

Exercise 5.5. Show that Kepler’s second law holds true for all central force
fields.

Using τ4 as Hamiltonian function (before the reduction) yields the vector field

Xτ4 :






ẋ1 = {x1, τ4} = −x2

ẋ2 = x1

ẏ1 = −y2
ẏ2 = y1

for which the flow is given by (5.2). In particular, the angle ρ can be interpreted
as the time variable for this vector field, whence {ρ, τ4} = 1.

Mimicking the proof of Darboux’s Theorem 4.5 one can obtain canonical
co-ordinates (q, ρ, p, τ4) with q =

√
2τ1, i.e. (q, ρ) are polar co-ordinates on the

configuration space R2\{0}. Invariance under (5.2) makes the Hamiltonian in
these variables independent of ρ whence τ̇4 = 0 again follows. A (canonical)
co-ordinate is called cyclic if it does not enter the Hamiltonian (whence its
conjugate co-ordinate is a conserved quantity). In exercises 5.3 and 5.8 the
(planar) Kepler problem is treated in terms of (q, ρ, p, τ4).

It follows from Darboux’s Theorem 4.5 that the Poisson structure (5.5)
admits local co-ordinates (X,Y, Z, S) with {X,Y } = 1 for which Z and S are
local Casimir functions. One can take Z = τ4, and also S turns out to be
globally defined, given by

S(τ) =
τ2
3 + τ2

4

2
− 2τ1τ2 (5.6)

whence the syzygy S ≡ 0 is preserved for every Hamiltonian system. The
zero level set S−1(0) = {S = 0} ⊆ R4 is a double cone, with vertex at the
origin τ = 0. At this point the rank of the Poisson structure drops from 2
to 0, whence it is an equilibrium for all Hamiltonian systems.

Exercise 5.6. How is the above reduction of the symmetry (5.2) related to
the group SO(2, 1) of linear mappings on R3 that preserve the quadratic form
z2
1 + z2

2 − z2
3 ?

Exercise 5.7. Reduce the S1–action
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φ : S1 × R4 −→ R4

(t,




x1

x2

y1
y2


) 7→




cos t 0 − sin t 0
0 cos t 0 − sin t

sin t 0 cos t 0
0 sin t 0 cos t







x1

x2

y1
y2




(5.7)

on R4 and compute the Poisson bracket on R4/S1 induced by the canonical
Poisson structure on R4.

The Hamiltonian function (5.1) induces a Hamiltonian system on the realiza-
tion

(
R2\{0} × R2

)
/S1 =

{
τ ∈ R4

∣∣∣∣ τ1 > 0 , τ2 ≥ 0 , S(τ) = 0

}

of the quotient (5.3) with Hamiltonian function

H(τ) = τ2 + U(2τ1) (5.8)

that extends to {τ ∈ R4 | τ1 6= 0} . Since furthermore τ4 = µ is conserved,
the reduced dynamics takes place on the embedded surfaces

Pµ =

{
(τ1, τ2, τ3) ∈ R3

∣∣∣∣ τ1 > 0 , τ2 ≥ 0 , Sµ(τ1, τ2, τ3) = 0

}

where

Sµ(τ1, τ2, τ3) =
τ2
3

2
− 2τ1τ2 +

µ

2
.

The conic sections Sµ = 0 defined by this quadratic function are two-sheeted
hyperboloids for µ 6= 0 and a double cone (now in R3) for µ = 0. The in-
equality τ2 ≥ 0 selects one sheet of the hyperboloid, and since τ1 > 0 the
remaining part of the cone is lacking the τ2–axis. In particular, all surfaces Pµ

are diffeomorphic to the plane R2, see Fig. ?.

Exercise 5.8. Put q :=
√

2τ1 and compute the conjugate co-ordinate p, i.e.
the function p = p(τ) with {q, p} = 1 and {ρ, p} = 0. Show that the Hamilto-
nian function (5.1) turns into

Hµ(q, p) =
p2

2
− 1

q
+

µ2

2q2
(5.9)

on ]0,∞[×R.

The phase portraits of the one-degree-of-freedom problem on Pµ with Hamil-
tonian function Hµ(τ1, τ2, τ3) = H(τ1, τ2, τ3, µ) defined by (5.8) are given by
the intersections of the energy level sets {Hµ = h} ⊆ R3 with the phase space
Pµ ⊆ R3. The latter is a surface of revolution (around the axis τ1 = τ2) and
the former is a ‘cylinder’, a direct product Bh × R on the basis
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Bh =

{
(τ1, τ2) ∈ R2

∣∣∣∣ τ2 = h− U(2τ1)

}

in R2. Thus, we can obtain the orbits from the relative position of the two
curves Pµ ∩ {τ3 = 0} and {Hµ(τ1, τ2, 0) = h} = Bh within R2. For µ = 0
the former is the positive τ1–axis {τ1 > 0, τ2 = 0} and for µ 6= 0 it is the
hyperbola

τ2 =
µ2

4τ1
. (5.10)

Fixing µ and varying the energy value h results in “moving the basis Bh up
or down” and yields Fig. ?. From this one easily obtains the phase portraits.

The reduced flows are organized by the (relative) equilibria, where the two
surfaces touch each other. This can only happen in the (τ1, τ2)–plane as the
surface of revolution Pµ has nowhere else tangent planes that contain the τ3–
axis. Equilibria are therefore given by the points where the two planar curves
Pµ ∩ {τ3 = 0} and Bh touch. For µ = 0 the strictly monotonous functions

τ2 = h +
γ√
2τ1

(5.11)

can intersect the τ1–axis only transversely, whence there are no equilibria in
this case. For µ 6= 0 the hyperbola (5.10) touches the graph of (5.11) if and
only if the difference function

Vµ(τ1) = U(2τ1) +
µ2

4τ1
− h (5.12)

has a double zero. The equation Vµ(τ1) = 0 can always be fulfilled by adjusting
the value h of the energy accordingly. The remaining equation

V ′
µ(τ1) = 2U ′(2τ1) − µ2

4τ2
1

!
= 0

is for each µ an equation in τ1 with solution

τ1 =
µ4

2γ2
(5.13a)

whence

τ2 =
γ2

2µ2
and h =

−γ2

2µ2
. (5.13b)

Thus, as h passes through this value, the motion changes from “no motion
possible” to periodic orbits around this equilibrium. For h = 0 one calls (5.12)
the effective potential; in exercise 5.8 the co-ordinates (q, ρ, p, τ4) allow to
reduce to the 1–dimensional particle moving in the potential Vµ analysed in
exercise 5.3.
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Another qualitative change occurs as h passes through 0. The right turning
point of the periodic orbits (i.e. the right intersection point of the two planar
curves) diverges to infinity as h↗ 0. Since

τ̇1 = {τ1, Hµ} = τ3 =
√

4τ1τ2 − µ2 ≤ Aτ1 + B

the solutions with energy h ≥ 0 are defined for all times, the flow is complete
for all µ 6= 0. For µ = 0 the energy level curves {H0 = h ≥ 0} on the lower
and upper part of the cone become separated and form two orbits. As τ1 → 0
the τ2–component accelerates according to

τ̇2 = {τ2, H0} = −∂H0

∂τ1
τ3 =

γτ3

2(2τ1)
3
2

=
γ(2τ2)

3
2

2τ2
3

and reaches infinity in finite time (the curve on the upper part of the cone took
finite time to leave infinity). The orbits on P0 with negative energy combine
this behaviour and collide for both positive and negative finite time with the
singularity at τ1 = 0.

Exercise 5.9. Two particles with mass m1,m2 attract each other with grav-
itational force proportional to the inverse square of the distance. In the initial
position, they are at rest and their distance is d. When do they meet?

The reduced orbits with angular momentum µ = 0 correspond to motion along

straight lines in the configuration space Rs\{0}. Reducing the symmetry (5.2)
identified all these directions, whence reconstructing the full flow in two de-
grees of freedom merely yields a whole circle S1 of identical trajectories for
each energy value. If the kinetic energy is smaller than the potential energy,
then the trajectory collides with the origin in finite time, both in the future
and in the past. For h ≥ 0 the trajectory can escape (in positive or negative
time, respectively), when h = 0 the escape velocity at infinity vanishes.

For angular momenta µ 6= 0 the circle S1 attached to each point of
the hyperboloid Pµ does carry dynamics. Thus, from the equilibrium τ =
(τ1, τ2, 0, µ) given by (5.13) we reconstruct a periodic orbit. In configuration

space R2\{0} this phase space orbit projects to a circle

x2
1 + x2

2 = 2τ1 =
µ4

γ2

on which the equation of motion derives from (5.9) as

ρ̇ =
∂Hµ

∂τ4
=

τ4
2τ1

=
γ2

µ3
.

In particular, the equation

(
2πµ3

γ2

)2

=
4π2

γ

(
µ2

γ

)3

relates period and radius as predicted by Kepler’s third law.
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Exercise 5.10. Derive the 1
d
–form of the gravitational potential from Ke-

pler’s third law.

For periodic orbits on Pµ the two intersection points of the hyperbola (5.10)
and the graph of (5.11) yield an inner and an outer radius in configuration

space R2\{0} between which (the projection of) the reconstructed trajectory
is captured. Passing on phase space to co-ordinates (x1, x2, τ3, τ4), with inverse
given by

y1 =
x1τ3 − x2τ4
x2

1 + x2
2

y2 =
x2τ3 + x1τ4
x2

1 + x2
2

allows us to fix the fourth co-ordinate τ4 and identify the torus

{
(x1, x2, τ3, τ4) ∈ R4

∣∣∣∣ τ4 = µ , H = h

}
(5.14)

in Fig. ?. The motion on this invariant manifold is conditionally periodic,
superposing the periodic motion on Pµ with the periodic motion in ρ along

the attached circles. In the limit h → −γ2

2µ2
the torus shrinks down to the

periodic orbit in the x–plane {τ3 = 0}. As h passes to positive values, the
outer radius goes to infinity (and beyond) whence the torus turns into a
cylinder. The flow on (5.14) commutes with the S1–action (5.2) which turns
trajectories into trajectories, only rotating in x and leaving the co-ordinates
τ3 and τ4 fixed.

Exercise 5.11. Analyse the behaviour of an orbit in a (planar) central force
field that has total energy equal to the effective potential energy at a local
maximum.

Exercise 5.12. What do the results on planar central force fields imply for
the free particle?

5.2 The eccentricity vector

The energy-momentum mapping

EM : R4 −→ R2

(x, y) 7→ (τ4(x, y), H(x, y))
(5.15)

allows to collect the information on the global dynamics that we obtained so
far, see Fig. ?. Shown are the bifurcation values of EM, the remaining open
parts consist of regular values.
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For values (µ, h) ∈ R2 satisfying h <
−γ2

2µ2
the inverse image EM−1(µ, h) is

empty. It is only by convention that these are called regular values; with this
definition the statement of Sard’s Lemma is simply that the regular values of a
smooth mapping form an open and dense set of full measure – the complement
(the critical values) has Lebesgue measure zero. The regular values in

{
(µ, h) ∈ R2

∣∣∣∣ µ 6= 0 ,
−γ2

2µ2
< h < 0

}

have invariant tori as inverse images, on which the periodic orbit Pµ∩H−1
µ (h)

is superposed with the periodic motion in the ρ–variable that has been sup-
pressed when reducing the symmetry (5.2).

For a general central force field this conditionally periodic motion alter-
nates between quasi-periodic – the trajectory lies dense on the torus – and
periodic – the trajectory returns exactly to its initial state after having super-
posed the two periodic motions for a finite number of periods. Furthermore, it
will in general depend on the initial condition, and thus on the values µ of τ4
and h of H , which of these two alternatives applies. A torus EM−1(µ, h) that
consists of periodic orbits is also called resonant, since the frequencies ω1, ω2

satisfy a resonance relation

k1ω1 + k2ω2 = 0 (5.16)

with an integer vector k ∈ Z2\{0} that one may choose to have relative prime
components. The periodic motion then consists of k2 periods on the reduced
phase space superposed with k1 full rotations about the origin x = 0.

According to Kepler’s first law, all invariant 2–tori have to be resonant,
with k1 = k2 = 1 in (5.16). While following an ellipse in configuration

space R2\{0}, the trajectory moves along the “lower” part of the torus when
approching the origin and along the “upper” part when elongating (indeed,
τ̇1 = τ3), see Fig. ?. Such a uniform resonance, valid for all invariant tori,
hints to the existence of an additional conserved quantity (and hence to an
extra symmetry).

Theorem 5.2. (Noether). Let (ψs)s∈R be the flow of a Hamiltonian vector field
defined by F ∈ C∞(P) for which every ψs : P −→ P is a symmetry of the
Hamiltonian system XH . Then F is a conserved quantity (or first integral)
of XH .

Exercise 5.13. Prove Noether’s theorem. Is the converse true as well?

The vector

τ4
γ
y⊥ − 1√

2τ1
x =

τ4
γ

(
y2
−y1

)
− 1√

2τ1

(
x1

x2

)
(5.17)

is called the eccentricity vector of the planar Kepler system. The first compo-
nent is conserved since
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d

dt

[
τ4y2
γ

− x1√
2τ1

]
=

τ4ẏ2
γ

− ẋ1√
2τ1

+
x1τ̇1

(2τ1)
3
2

=
τ4
γ

−γx2

(x2
1 + x2

2)
3
2

− y1√
2τ1

+
x1τ3

(2τ1)
3
2

=
−τ4x2 − 2τ1y1 + x1τ3

(x2
1 + x2

2)
3
2

= 0 .

The second component differs from the first only by interchanging x1 ↔ x2

and y1 ↔ y2, the minus sign in y⊥ is compensated by the resulting minus sign
in τ4 = x1y2 − x2y1. Thus, the second component is conserved as well.

Four independent constants of motion would make every point an equilib-
rium. For the length of (5.17) we obtain

∥∥∥∥
τ4
γ
y⊥ − 1√

2τ1
x

∥∥∥∥
2

=
τ2
4 · 2τ2
γ

− 2
τ4

γ
√

2τ1
〈y⊥ | x〉 + 1

=
2 τ2

4

γ2

(
τ2 − γ√

2τ1

)
+ 1

=
2τ2

4H

γ2
+ 1 .

The direction of the eccentricity vector (5.17) cannot be invariant under the
rotation (5.2), so we have found a third independent constant of motion. As

x ‖ τ4
γ
y⊥ − 1√

2τ1
x ⇐⇒ x ‖ y⊥ ⇐⇒ x ⊥ y

this direction points to one of the two turning points of the ellipse where τ1
is extremal (and τ3 vanishes).

To confirm that the projection of the orbit to the configuration plane R2\{0}
is indeed an ellipse, with focal points at the origin and at

f =
1

H

(
τ4
γ
y⊥ − 1√

2τ1
x

)

we consider the sum of the distance to the two focal points. Since the time
derivative

d

dt
[‖x‖ + ‖x− f‖] =

d

dt

[
√

2τ1 +

√
2τ1 − 2

H
(τ2

4 −
√

2τ1) +
2τ 2

4H + 1

H2

]

=
τ3√
2τ1

(
1 +

√
2τ1 + H−1

√
2τ1 + 2H−1

√
2τ1 + H−2

)

vanishes (check!), this sum remains constant along the orbit which is therefore
an ellipse.
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Exercise 5.14. Show that the eccentricity vector points away from the centre
of the ellipse.

For h→ 0 the second focus point wanders off to infinity and the ellipses limit
a parabola, turning into a hyperbola for positive energies. Thus, the cylinders
EM−1(µ, h), h > 0, are foliated (and even fibrated) by curves that make less
than a full rotation in the x–plane when passing from τ3 = −∞ to τ3 = +∞.

Exercise 5.15. The correction of the gravitational law in general relativity
leads in first order to the Hamiltonian function

H(x, y) =
y2
1 + y2

2

2m
− γ√

x2
1 + x2

2

+
ε τ2

4

x2
1 + x2

2

, 0 < ε =
γ

m2c2
� 1 .

What happens to “Kepler’s ellipses” under the influence of this perturbation?
Is this also true for the other conic sections?

The bifurcation set of the energy-momentum mapping contains next to the
µ–axis also the h–axis, i.e. the values for which the orbit can disappear into
the origin. Another special property of the Kepler system, compared to other
central force fields, is that this collision singularity can be regularized. We
concentrate on the bounded orbits.

Exercise 5.16. Consider the energy level set {H = − 1

2λ2
} and apply the

co-ordinate transformation (x, y) 7→ (q, p) defined by

x1 =
λ

2
(q21 − q22) , y1 =

λ

4

q1p1 − q2p2

q21 + q22
,

x2 = λ q1q2 , y2 =
λ

4

q1p2 + q2p1

q21 + q22

(5.18a)

together with the scaling

ds

dt
=

1

2λ
√
q21 + q22

(5.18b)

of time. Show that this regularizes the singularity at the origin. Can you give
an interpretation of the part q 7→ x of the transformation?

The third part of the bifurcation set of the energy-momentum mapping
parametrises the circular orbits with minimal effective potential energy. When
considering the fibration of the invariant tori EM−1(µ, h), h < 0 by ellipses
the circular orbits “fit in” to make {H < 0} an S1–bundle, i.e. every peri-
odic orbit of the Kepler system has a neighbourhood that is diffeomorphic
to S1 × R3. Let us compute the base space {H = h}/S1 of this bundle for
fixed negative energy. Writing the expression for the length of the eccentricity
vector as
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‖τ4y
⊥

γ
− x√

2τ1
‖2

−2H
+

τ2
4

γ2
=

1

−2H

suggests to work with the invariants

σ1 =

τ4y2

γ
− x1√

2τ1√
−2H

σ2 =
−τ4y1

γ
− x2√

2τ1√
−2H

σ3 =
τ4
γ

σ4 =
1√
−2H

which indeed generate the ring of XH–invariant functions.

Exercise 5.17. Apply the transformation (5.18) to σ1, σ2, σ3, σ4 and conclude
that every polynomial (smooth) conserved quantity can be written as a poly-
nomial (smooth function) in these variables.

The Poisson bracket relations between these variables yield the structure ma-
trix

1

γ




0 σ3 −σ2 0
−σ3 0 σ1 0
σ2 −σ1 0 0
0 0 0 0




and we recover (3.3). Hence, the two Casimirs are given by σ4 and σ2
1+σ2

2+σ2
3 .

In particular, the Kepler system admits for negative energy the symmetry
group SO(3) and the base space {H = h}/S1 of the S1–bundle can be identi-

fied with the 2–sphere of radius σ4 =
1√
−2h

.

Exercise 5.18. Regularize the singularity at the origin for h > 0 and show
that the Kepler system admits for positive energy the symmetry group SO(2, 1).

Adjusting cylindrical co-ordinates on the sphere σ2
1 + σ2

2 + σ2
3 = σ2

4 to
G = 2πγσ3 = 2πτ4 and conjugate angle g (measuring the direction of the
eccentricity vector) we can mimick the proof of Darboux’s Theorem 4.5 to ob-
tain canonical co-ordinates (g, `, G, L), interpreting L = 2πσ4 as Hamiltonian
and ` as the time along the corresponding flow. In these Delaunay elements

the Hamiltonian of the Kepler system is expressed as H = − 2π2

L2
whence the

flow becomes particularly simple as the equations of motion read

˙̀ =
4π2

L3
, ġ = 0 , Ġ = 0 , L̇ = 0 .
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Hence, (g, `) are T2–valued variables on the invariant tori {G = G0, L = L0}
that are well adapted to the flow. The co-ordinate singularities G = ±L
correspond to the circular orbits.

Exercise 5.19. For a free action G× P −→ P of a compact Lie group G on
the manifold P the quotient P/G is again a smooth manifold and the mapping
τ : P −→ P/G (that sends each point x ∈ P to the G-orbit {g(x) | g ∈ G})
is a submersion (i.e. has in each point a surjective derivative). Let now P be
a Poisson manifold and each g : P −→ P be a Poisson mapping. Show that
there is a unique Poisson structure on P/G that makes τ a Poisson mapping.
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The spherical pendulum

The pendulum with configuration space S1 moves within a vertical plane.
Omitting this constraint, the pendulum is allowed to move on the whole sphere
S2 ⊆ R3, subject only to the constraint x2

1 +x2
2 +x2

3 = 1. Differentiating with
respect to time yields x1ẋ1 + x2ẋ2 + x3ẋ3 = 0, i.e. the velocity vector has
to be perpendicular to the vector of position if the motion is to preserve the
sphere. Defining

R(x, y) =
x2

1 + x2
2 + x2

3

2
Q(x, y) = x1y1 + x2y2 + x3y3

our phase space is given by

P =

{
(x, y) ∈ R3 × R3

∣∣∣∣ R(x, y) =
1

2
, S(x, y) = 0

}
.

The Hamiltonian function is the sum

H(x, y) =
y2
1 + y2

2 + y2
3

2
+ γ x3 (6.1)

of kinetic and potential energy. When working with the canonical Poisson
structure { , } on R6 we find

Ṙ = {R,H} = Q = 0

Q̇ = y2
1 + y2

2 + y2
3 − γx3 6≡ 0

and once the value of Q starts changing and becomes non-zero also the value
of R begins to deviate from 1

2 .

Exercise 6.1. Determine the phase portraits of the family of Hamiltonian

systems defined on ]0, π[×R by H(q, p) =
p2

2
−cos q+

µ2

2 sin2 q
for a significant

choice of values of the parameter µ ∈ R.
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6.1 Dirac brackets

There are two ways to ensure that the trajectories ofXH do not leave the phase
space P , changing the Hamiltonian and changing the Poisson structure. We
pursue the second alternative, this makes P a Poisson submanifold of R6. To
distinguish the new Poisson bracket { , } from the canonical Poisson bracket
we denote the latter by [ , ]. Our aim is to define { , } = [ , ] + . . . in such
a way that the constraining functions R and Q become Casimir functions,
whence the restriction of { , } to P is again a Poisson bracket. To this end
we compute

[R,Q] = x2
1 + x2

2 + x2
3 = 2R

and define the Dirac bracket

{f, g} = [f, g] +
1

2R
[f,R][Q, g] − 1

2R
[f,Q][R, g]

whence {f,R} = 0 and {f,Q} = 0 for all f ∈ C∞(R6). In particular, the
equations R ≡ 1

2 and Q ≡ 0 defining P are conserved for every Hamiltonian
H ∈ C∞(R6).

Exercise 6.2. Given R1, . . . , Rk ∈ C∞(R2n), under what condition is it pos-

sible to define a Poisson structure on R2n with n − dk
2
e degrees of freedom

that makes R1, . . . , Rk Casimir functions ?

The relations

[xi, R] = 0

[yi, R] = −xi

[xi, Q] = xi

[yi, Q] = −yi

allow to compute the structure matrix

1

2R

0

B

B

B

B

B

B

@

0 0 0 x2
2 + x2

3 −x1x2 −x1x3

0 0 0 −x1x2 x2
1 + x2

3 −x2x3

0 0 0 −x1x3 −x2x3 x2
1 + x2

2

−x2
2 − x2

3 x1x2 x1x3 0 −x1y2 + x2y1 x3y1 − x1y3
x1x2 −x2

1 − x2
3 x2x3 x1y2 − x2y1 0 −x2y3 + x3y2

x1x3 x2x3 −x2
1 − x2

2 −x3y1 + x1y3 x2y3 − x3y2 0

1

C

C

C

C

C

C

A

whence the equations of motion

ẋi = {xi, H} = yi −
3∑

j=1

xixjyj

2R
= yi − Q

2R
xi

ẏi = {yi, H} = −γδi3 +
γx3 − y2

1 − y2
2 − y2

3

2R
xi +

Q

2R
yi
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turn on P into

ẋ = y and ẏ = −




0
0
γ


 +

(
γx3 − (y2

1 + y2
2 + y2

3)
)
· x

after using R ≡ 1
2 and Q ≡ 0. The number of degrees of freedom is now two,

coincidings with the number of directions in which the pendulum can move.
The second term in the ẏ–equation is the constraining force that keeps the
pendulum on the configuration space S2.

Exercise 6.3. Show that the subset {x2 = y2 = 0} of P is diffeomorphic to
S1 ×R. Check that the equations of motion defined by (6.1) on this subman-
ifold describe the (planar) mathematical pendulum.

6.2 Symmetry reduction

The kinetic energy 1
2 (y2

1 + y2
2 + y2

3) of the spherical pendulum is invariant
under the whole group SO(3) of 3–dimensional rotations and the potential
energy γx3 is invariant under rotations about the x3–axis. The simultaneous
rotation

ψ : S1 × R6 −→ R6

(ρ,

(
x
y

)
) 7→




cos ρ − sin ρ 0
sin ρ cos ρ 0

0 0 1
0

0
cos ρ − sin ρ 0
sin ρ cos ρ 0

0 0 1




(
x
y

)
(6.2)

furthermore preserves the Poisson structure whence the Hamiltonian vector
field XH is equivariant with respect to the Poisson mapping ψρ for every
ρ ∈ S1. Again we use invariants to reduce to one degree of freedom and take

τ1 =
x2

1 + x2
2

2

τ2 =
y2
1 + y2

2

2
τ3 = x1y1 + x2y2

τ4 = x1y2 − x2y1

τ5 = x3

τ6 = y3

as variables on the reduced phase space.
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Theorem 6.1. The ring (C∞(R6))S1

of S1–invariant functions on R6 is gener-
ated by τ1, . . . , τ6, i.e. every S1–invariant function f ∈ C∞(R6) can be written
as a function in the variables τ1, . . . , τ6.

Proof. We can consider a given a polynomial f ∈ R[x1, x2, x3, y1, y2, y3] with
real coefficients as a polynomial f ∈ R[x1, x2, y1, y2][τ5, τ6] in the two variables
x3 = τ5 and y3 = τ6 with coefficients that are itself (real) polynomials g ∈
R[x1, x2, y1, y2] in four variables. For such g invariance under (6.2) is the
same as invariance under (5.2) whence the ring of all invariant coefficient
polynomials g is generated by τ1, . . . , τ4, see Theorem 5.1. Therefore

(R[x1, x2, x3, y1, y2, y3])
S1

= (R[x1, x2, y1, y2])
S1

[τ5, τ6]

= R[τ1, τ2, τ3, τ4][τ5, τ6]

= R[τ1, τ2, τ3, τ4, τ5, τ6] .

Again we extend from polynomials to all smooth functions as in [25, 23]. ut

While τ5 and τ6 are free variables, the four S1-symmetric functions τ1, τ2, τ3
and τ4 are still restricted by the relations

τ1 ≥ 0 , τ2 ≥ 0 and S(τ) = 0

with (5.6), now defining a function S : R6 −→ R, entering the syzygy of the
Hilbert mapping

τ : R6 −→ R6 . (6.3)

We have realized R6/S1
∼= im τ as a semi-algebraic subset of R6.

Exercise 6.4. Determine the structure matrix ({τi, τj})ij
and show that 2τ1+

τ2
5 , τ3 + τ5τ6, 4τ1τ2 − τ2

3 and τ4 define Casimir functions.

The structure matrix has rank 2 (we reduced from two to one degree of free-
dom) and correspondingly there are four Casimir functions. From the Dirac
bracket we inherit

R(τ) = τ1 +
τ2
5

2

!
=

1

2

Q(τ) = τ3 + τ5τ6
!
= 0

and S is a Casimir function as well. The fourth Casimir function is the vari-
able τ4, the angular momentum about the vertical axis. The values of Casimir
functions remain fixed for every Hamiltonian system and we can use this to
eliminate the variables

τ1 =
1 − τ2

5

2
, τ3 = −τ5τ6 and τ4 = µ

where µ ∈ R is a parameter with values determined by the initial condition
of the spherical pendulum. We transform the remaining variables to
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u := τ5 = x3 , v := τ6 = y3 and w := τ2 +
τ2
6

2
=

y2
1 + y2

2 + y2
3

2

which are constrained by the relations

|u| ≤ 1 ,
v2

2
≤ w and Sµ(x, y, z) = 0

with the remaining Casimir taking the form

Sµ(x, y, z) =
v2

2
− (1 − u2)w +

µ2

2
.

The structure matrix reads



0 1 − u2 v
−1 + u2 0 −2uw

−v 2uw 0




and defines the Poisson bracket

{f, g} = −〈∇f ×∇g | ∇Sµ〉 (6.4)

on R3.

Exercise 6.5. Analyse the force free spherical pendulum.

For the reduced phase space

Pµ =

{
(u, v, w) ∈ R3

∣∣∣∣ |u| ≤ 1 , w ≥ 0 , Sµ(x, y, z) = 0

}

the inequality 1
2v

2 ≤ w is a consequence of the Sµ = 0, except when u = 0,
which only can happen when µ = 0 and in which case necessarily v = 0 as
well. Thus, even the seemingly weaker inequality w ≥ 0 is an extra constraint
only if µ = 0. The Hamiltonian function

Hµ(u, v, w) = w + γ u (6.5)

reduced from (6.1) is independent of v and µ, the energy level sets {Hµ = h}
are the planes perpendicular to the vector




1
0
γ


 (6.6)

and contain for every energy value h ∈ R the v–axis. From (6.4) and (6.5) we
obtain the equations of motion

u̇ = {u,Hµ} = v

v̇ = {v,Hµ} = u2 − 1 − 2γuw

ẇ = {w,Hµ} = −γv
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which are defined on R3 but leave Pµ invariant, and also conserve energy.
Hence, the trajectories of XHµ

are the intersections of Pµ with the planes

{Hµ = h}.
In case µ 6= 0 the equation Sµ = 0 implies that u 6= ±1 and we can divide

this equation by 1 − u2 to obtain the explicit expression

w = w(u, v) =
1

2

v2 − µ2

1 − u2
. (6.7)

This makes P a graph over the (u, v)–space ]−1, 1[×R, see Fig. ?. Intersec-
tions with planes perpendicular to (6.6) are closed curves that shrink down
to a point (u, v, w) = (u∗, 0, w∗) where the two surfaces touch. Here the re-
duced flow has its unique equilibrium. Note that the tangent planes of P at
(u∗, v∗, w∗) contain the v–axis if and only if v∗ vanishes, whence we can com-
pute u∗ (and hence w∗ = w(u∗, 0) and the energy h∗ = w∗ − γu∗) equating
the derivatives of

1

2

−µ2

1− u2
= h − γ u (6.8)

with respect to u. This yields

γu4 − 2γu2 + µ2u + γ = 0

and the 4th order polynomial has a unique root u∗ ∈ ]−1, 1[ .

Exercise 6.6. Find an explicit expression of u∗ and draw the resulting graph
as a function of µ. What are the asymptotic values for µ → 0 and for µ →
±∞ ?

For µ = 0 we first have to generalize Definition 3.2 to allow for singular points.

Definition 6.2. Let P ⊆ Rm be a closed subset and A ⊆ C(P) a Poisson
algebra. Then we call (P , { , }) a Poisson space.

For Pµ we work with the Poisson algebra

A =




 Fµ ∈ C(Pµ)

∣∣∣∣
_

f∈(C∞(P))S1

Fµ(x,y)(u(x, y), v(x, y), w(x, y)) = f(x, y)






which yields C∞(Pµ) for µ 6= 0. However, when µ = 0 the reduced phase
space P0 no longer is a smooth manifold. The defining equation

v2

2
= (1 − u2)w (6.9)

has for v = 0 the solution lines

(u, v, w) = (±1, 0, w) (6.10)

(u, v, w) = (u, 0, 0) (6.11)
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with free parameters w ≥ 0 and u ∈ [−1, 1], respectively. Where v 6= 0 we
have again u 6= ±1 and divide by 1 − u2 to obtain the explicit expression

w = w(u, v) =
1

2

v2

1 − u2
.

Fixing u makes this a parabola, with minimum attained at (6.11). For a better
understanding of the singular points at the intersection of (6.10) and (6.11)
we rewrite (6.9) as

(u+ 1)(u− 1)w +
v2

2
= 0

and recognize for u ≈ 1 as well as for u ≈ −1 the equation for a double cone,
which is in both cases restriced to a cone when taking |u| ≤ 1 into account.

Theorem 6.3. The singular points (u, v, w) = (±1, 0, 0) are equilibria for every
Hamiltonian system on P0.

Proof. The Poisson bracket vanishes at these points and hence also the Hamil-
tonian vector field. ut

Intersecting P0 with the planes perpendicular to (6.6) yields the trajectories
of XH0

whence these can be constructed from Fig. ?. For µ = 0 the angular
momentum about the vertical axis vanishes. This confines the motion of the
spherical pendulum to the plane generated by the initial position x and the
initial momentum y. The S1–action (6.2) turns such initial conditions into
initial conditions for oscillations in a different plane, and reducing the S1–
symmetry identifies all these planes with each other. Taking ρ = π in (6.2)
shows that the (planar) mathematical pendulum has a Z2–symmetry.

Exercise 6.7. Reduce the Z2–symmetry of the mathematical pendulum.

Exercise 6.8. Construct for µ 6= 0 a diffeomorphism Pµ −→ ]0, π[×R that
turns the Hamiltonian system defined by XHµ

into the system considered in
exercise 6.1.

Exercise 6.9. Reformulate Definition 6.2 in such a way that the phase space
need not be given as a subset of some Rm, still covering all the examples met
so far.

6.3 Reconstruction

To reconstruct the flow of the spherical pendulum from the reduced phase
portraits on Pµ we have to “undo” the identifications of elements of P that
are turned into each other by a rotation ψρ of the S1–action (6.2). The two
singular points on P0 correspond to the two points of P where (6.2) has
non-trivial isotropy. Indeed, for x1 = x2 = y1 = y2 = 0 the point (x, y) ∈
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P is a fixed point of every ψρ, ρ ∈ [0, 2π]. Hence, the two points (x, y) =
(0, 0,±1, 0, 0, 0) are not identified with any other point when reducing (6.2).
These are the two equilibria of the spherical pendulum, the stable position
“hanging down” and the unstable position “standing up”.

Exercise 6.10. Compute the eigenvalues of the linearization of the Hamilto-
nian vector field in the two equilibria.

For regular points on the reduced phase space the inverse image under the
Hilbert mapping (6.3) is a circle parametrised by the angle ρ that measures
the simultaneous rotation (6.2) about the vertical axis. For regular equilibria
on Pµ this circle is an invariant manifold and since ρ̇ 6= 0 we obtain the
periodic solutions found by Huygens1 – the spherical pendulum rotates about
the vertical axis, at a fixed height x3 = u∗ that keeps the gravitational and
centrifugal forces in equilibrium.

Exercise 6.11. Compute the frequency of the periodic solution for given u∗.

Where this rotational motion is superposed with a (relative) periodic orbit of
the reduced system the motion becomes conditionally periodic, taking place
on an invariant 2–torus. For µ 6= 0 the configuration x(t) ∈ S2 of such a
conditionally periodic trajectory (x(t), y(t)) remains confined between the two
circles of height x3 = u· and x3 = u·. Here u·, u

· are the two solutions of (6.8)
with h = H(x(0), y(0)) that lie in the interval [−1, 1]. Both periodic and quasi-
periodic trajectories occur, with the orbit closing or spinning densely around
the 2–torus, respectively.

For µ = 0 the circles attached to each regular point of Pµ carry no dy-
namics and all invariant tori {τ4 = 0, H = h} are resonant. When h < γ the
resulting periodic orbits are planar oscillations around the stable equilibrium
point and when h > γ we recover the rotating motions over the top of the
mathematical pendulum. The invariant set {τ4 = 0, H = γ} can be thought of
as a torus with the “inner” ρ–fibre pinched to the unstable equilibrium point
(x, y) = (0, 0, 1, 0, 0, 0). The stable and unstable manifolds coincide and form
together with the equilibrium the pinched torus.

Exercise 6.12. Analyse the spherical pendulum with potential energy x2
1+x2

2

instead of γx3.

The energy-momentum mapping

EM = (τ4, H) : P −→ R2

allows to collect the information on the global dynamics. For regular values
(µ, h) ∈ im EM the inverse image EM−1(µ, h) is an invariant 2–torus while a
critical value with µ 6= 0 has a periodic orbit as inverse image. The inverse

1 De Vi Centrifuga (1659) and Horologium Oscillatorium (1673).
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image EM−1(0,−γ) is the stable equilibrium and the inverse image EM−1(0, γ)
is the pinched torus.

For critical values (µ, h) the reduced phase space Pµ touches the energy
plane {Hµ = h} whence the polynomial

Pµ,h(u) := γu3 − hu2 − γu + h − µ2

2
(6.12)

has a double root. Note that for µ = 0 this implies u = ±1, while for µ 6= 0
the roots of Pµ,h coincide with the roots of (6.8).

Theorem 6.4. The subset

∆ :=

{
(µ, h) ∈ R2

∣∣∣∣ Pµ,h has multiple roots in [−1, 1]

}

of the discriminant locus admits the parametrisation

h =
3γ

2
s − γ

2s
(6.13a)

µ = ±√
γ

1 − s2√
−s (6.13b)

with parameter s ∈ [−1, 0[∪{+1}.

Proof. Factorise

Pµ,h(u) = γ(u− s)2(u− t)

= γu3 − γ(2s+ t)u2 + γ(2st+ s2)u − γs2t

and compare coefficients, this yields 2st+s2 = −1 whence s 6= 0 for the double
root s ∈ [−1, 1]. Substituting

t = −1 + s2

2s

in h = γ(2s+ t) and 1
2µ

2 − h = γs2t yields (6.13a) and

µ2 = −γ
s
(1 − s2)2

with negative right hand side for s ∈ ]0, 1[ . ut

As shown in Fig. ?, the bifurcation set ∆ of EM is formed by the two arcs
corresponding to the stable periodic orbits, both parametrised by s ∈ ]−1, 0[ ,
the meeting point (µ, h) = (0,−γ) of these two arcs, corresponding to the
stable equilibrium and given by s = −1 in (6.13), and the isolated point
(µ, h) = (0, γ) corresponding to the pinched torus and given by s = +1.
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Exercise 6.13. Compute the hook formed by the two arcs of ∆ where they
meet.

Exercise 6.14. To model the influence of a magnetic monopole at the origin

on the motion of an electrically charged particle in R3\{0} one adjusts the
canonical Poisson bracket from {yi, yj} = 0 to

{yi, yj} = εijk

axk

|x|3 ,

where εijk := sgn(123
ijk ) denotes the alternating Levi-Civita symbol. One speaks

of a magnetic spherical pendulum if furthermore the constraints x2
1+x2

2+x2
3 =

1 and x1y1 + x2y2 + x3y3 = 0 are fulfilled. The Hamiltonian function is still
given by (6.1).

(i) Determine the corresponding Dirac bracket.
(ii) Reduce the axial S1–symmetry.

(iii) Give the phase portraits of the reduced magnetic spherical pendulum.
(iv) Determine the critical values of the energy-momentum mapping.

6.4 Action angle variables

A co-ordinate I on P is called an action if all orbits of the flow of XI are
periodic. Where one can determine a transverse section of initial conditions
the time parametrisation of the periodic flow allows to define a conjugate
angle, i.e. a function ϕ : P −→ T1 satisfying {ϕ, I} = 1. One speaks of
action angle variables for a system in n degrees of freedom if the Hamiltonian
H = H(I) depends only on the actions I1, . . . , In and not on the angles
ϕ1, . . . , ϕn, whence the equations of motion read

ϕ̇ = DIH(ϕ, I) =: ω(I)

İ = −DϕH(ϕ, I) = 0

with frequency vector ω(I) ∈ Rn. The trajectory with initial condition
(ϕ(0), I(0)) = (ϕ0, I0) is conditionally periodic and spins densely around the
torus Tn × {I0} if the frequencies do not satisfy a resonance relation

k1ω1 + . . . + knωn = 0 (6.14)

with an integer vector k ∈ Zn\{0}. The Delaunay elements are action angle
variables for the Kepler system and action angle variables for the harmonic
oscillator were constructed in exercise 2.3.

Exercise 6.15. Show that every Hamiltonian system on R2 that has only
periodic orbits admits action angle variables. Hint: use exercise 4.10.
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Let R = EM−1(C) be the inverse image of the set C ⊆ R2 of regular val-
ues of the energy-momentum mapping of the spherical pendulum. The third
component of the angular momentum is an action I1 := 2πτ4 with conjugate
angle ϕ1 :=

ρ

2π
. The reduced motion on Pµ is periodic, and normalizing the

period T to 1 allows to define the second angle ϕ2. For the conjugate action I2
this amounts to

XI2 = T (µ, h)XH − ν(µ, h)XI1

where ν(µ, h) is the frequency ratio of the conditionally periodic flow on the
invariant torus EM−1(µ, h).

Constructing action angle variables in the neighbourhood of each torus
yields local diffeomorphisms

(ϕ, I) : U −→ T2 × V (6.15)

with open subsets U ⊆ R and V ⊆ R2. These are semi-local variables, while
the angles ϕ ∈ T2 are defined globally on every torus contained in U , the
actions I are only locally defined (and also the angles are not globally defined
on all of R). The local diffeomorphisms (6.15) make R a 2–torus bundle, every
point has a neighbourhood U that is “trivial” – looking like a direct product.
One speaks of global action angle variables if one can put U = R in (6.15),
whence the torus bundle itself is trivial.

Theorem 6.5. The spherical pendulum does not admit global action angle vari-
ables

Proof. For h near −γ the Hamiltonian system admits local co-ordinates (q, p)
on P in which the Hamiltonian function can be developed into a Taylor series

H(q, p) = −γ +
√
γ
p2
1 + p2

2 + q21 + q22
2

+ O(3)

whence the energy level set H−1(h) is diffeomorphic to the 3–sphere p2
1 +p2

2 +
q21 + q22 = 1.

When h > γ the equation H = h determines for fixed x3 ∈ [−1, 1] a y–
sphere of radius 2h−2γx3, and intersecting with the tangent plane 〈x | y〉 = 0
yields a circle. Hence, the energy level set H−1(h) is diffeomorphic to the unit
tangent bundle

T1S
2 =

{
(x, y) ∈ R6

∣∣∣∣ ‖x‖ = 1 , 〈x | y〉 = 0 , ‖y‖ = 1

}
.

Completing the vectors x and y by x×y yields an orthonormal frame, showing
that T1S

2 ∼= SO(3), the group of 3–dimensional rotations.
Except for the identity every rotation has a unique rotation axis, the

eigenspace to the eigenvalue 1. In this way every point in the closed subset

B =

{
z ∈ R3

∣∣∣∣ ‖z‖ ≤ 2π

}
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represents a rotation, with all points on the boundary ∂B representing the
identity. The quotient space B/∂B is diffeomorphic to S3. However, each el-
ement of SO(3) corresponds to two points in this quotient space. Indeed,
rotating an angle ψ about the vector z defines the same rotation as rotating
the angle 2π − ψ about the opposite vector −z.

Thus, S3 is a 2:1 covering of SO(3) and the energy level sets for low and
high values of h are not diffeomorphic to each other. As shown in [7] this
contradicts the assumption that the 2–torus bundle R is trivial. ut

Depending on the initial condition the quasi-periodic motions of the spherical
pendulum favour an interpretation of rotating oscillation or oscillating rota-
tion or rotating rotation. The non-existence of global action angle variables
reflects that these points of view cannot be reconciled.

Exercise 6.16. Construct action angle variables for the planar motion in a
central force field.



7

Coupled oscillators

Let z ∈ P be a regular point of a Poisson manifold P with even dimension 2n,
where the rank of the Poisson structure in z assumes the maximal possible
value 2n. For local questions (around z) we may work in canonical co-ordinates
x1, . . . , xn, y1, . . . , yn and thus restrict ourselves to the case z = 0 ∈ R2n with
canonical Poisson bracket. However, where the co-ordinates x1, . . . , . . . , yn be-
come distinguished if 0 ∈ R2n is the starting point, the seemingly more general
starting point above makes it clear that canonical co-ordinate changes do not
lead to a different problem but on the contrary may serve to simplify a given
problem.

Exercise 7.1. Assume that the derivative of H ∈ C∞(R2n) does not vanish
at the origin. Show that locally around the origin there are canonical co-
ordinates q1, . . . , qn, p1, . . . , pn in which H(q, p) = p1 and solve the resulting
equations of motion. Can you give a physical interpretation?

Thus, within a sufficiently small neighbourhood the Hamiltonian flows near
all points that are not equilibria look alike, leaving only the case DH(0) = 0
for further local study. The value H(0) having no dynamical meaning we may
substract it from the Hamiltonian and assume that H(0) = 0 whence the
Taylor series

H(z) =
∞∑

k=2

DkH(0) · z
k

k!

starts at order k = 2. Truncating the higher order terms we obtain a quadratic
Hamiltonian function, i.e. we linearize

ż = DXH (0) · z

the vector field at the equilibrium. Our aim is to find canonical co-ordinates
in which the quadratic part H2 of H (and hence DXH (0) = XH2

) looks
particularly simple.
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Theorem 7.1. LetH2 ∈ C∞(R2n) be a quadratic Hamiltonian. Then the eigen-
values of the linear vector field XH2

can be grouped into complex quartets
±<± i=, purely imaginary pairs ±i=, symmetric real pairs ±< and the eigen-
value 0 with even multiplicity.

Proof. Let the matrix Ω ∈ M2n×2n(R) represent the linear mapping z 7→
XH2

(z) in canonical co-ordinates. Then1

ΩT = IΩI

where I ∈ M2n×2n(R) is given by

I =

(
0 idn

−idn 0

)

with idn ∈ Mn×n(R) denoting the identity matrix. Since I2 = −id2n the
characteristic polynomial χ

Ω
∈ R[λ] of Ω satisfies

χ
Ω
(λ) = det(λid2n −Ω) = det(λid2n −ΩT )

= det(−λI2 − IΩI)

= det(−λid2n −Ω) = χ
Ω
(−λ) .

Hence, for every eigenvalue λ ∈ C the complex number −λ is an eigenvalue
as well, as are λ̄ and −λ̄ (because χ

Ω
has real coefficients). The quartet ±λ,

±λ̄ shrinks to pairs if λ̄ = λ or λ̄ = −λ and if both these equations hold true
then λ = 0. Denoting by k, l,m the number of distinct quartets, symmetric
real pairs and purely imaginary pairs, respectively, the algebraic multiplicity
of the eigenvalue zero is equal to 2n− 4k − 2l − 2m. ut

Two linear Hamiltonian systems with different eigenvalues can not be trans-
formed into each other by means of a Poisson transformation; this differ-
entiable mapping would induce a linear transformation between the linear
systems. Preservation of the Poisson structure leads to further signs distin-
guishing different types.

Exercise 7.2. Classify all linear Hamiltonian systems in two degrees of free-
dom that have no multiple eigenvalues. Hint: consider the Hessian matrix
D2H2 = I−1XH2

.

Multiplying the Hamiltonian by −1 amounts to reversing the time direction
and allows to reduce the number of cases, e.g. identifying minima with maxima
of the Hamiltonian. However, the relative sign cannot be removed, leaving us
for two pairs ±iα1, ±iα2 of imaginary eigenvalues with the definite type

H2(q, p) = α1
p2
1 + q21

2
+ α2

p2
2 + q22

2
(7.1)

1 The matrix DH2 = I−1Ω is symmetric.
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and the indefinite type

H2(q, p) = α1
p2
1 + q21

2
− α2

p2
2 + q22

2

of coupled oscillators. The linear flow defined by the superposition of two
oscillators depends on number-theoretic properties of α1, α2 > 0. Next to the
equilibrium (q, p) = 0 there are periodic orbits

(q(t), p(t)) =

(
q01 cosα1t +

p0
1

α1
sinα1t, 0,−α1q

0
1 sinα1t + p0

1 cosα1t, 0

)

and

(q(t), p(t)) =

(
0, q02 cosα2t +

p0
2

α2
sinα2t, 0,−α2q

0
2 sinα2t + p0

2 cosα2t

)

for special choices of the initial conditions. All other trajectories lie on invari-
ant tori

Tc =
{

1
2 (p2

1 + q21) = c1 ,
1
2 (p2

2 + q22) = c2
}

with positive constants c1, c2 ∈ R. If the quotient
α1

α2
is irrational, then every

trajectory on every torus Tc lies dense. In the resonant case
α1

α2
∈ Q we write

α1

α2
=

k

`
with k, ` ∈ N relative prime. All orbits on Tc are periodic, rotating

k times in the (q1, p1)–plane and ` times in the (q2, p2)–plane before closing.
Dividing the Hamiltonian by the common multiple k−1α1 = `−1α2 we can
achieve the standard form

H2(q, p) = k
p2
1 + q21

2
± `

p2
2 + q22

2

of the (linear) k:±` resonance.
This standard form carries over to the 1:1 resonance, where the definite-

ness of D2H2 prevents the occurrence of a nilpotent part in XH2
. An example

of an equilibrium with linear part in 1:1 resonance is the stable rest posi-
tion (x, y) = (0, 0,−1, 0, 0, 0) of the spherical pendulum. Also the equilibrium
(x, y) = 0 of the central force field with potential U(x) = 1

2 (x2
1 + x2

2) is in
1:1 resonance. Note that in both examples the symmetry with respect to an
S1–action prevents a detuning of the frequencies.

Exercise 7.3. What is the simplest form that the linearization of the unstable
rest position (x, y) = (0, 0, 1, 0, 0, 0) of the spherical pendulum can assume in
local co-ordinates of the form (3.2) ?

An equilibrium in 1:−1 resonance is called semi-simple if the quadratic part
of the Hamiltonian can be brought into the standard form

H2(q, p) =
p2
1 + q21

2
− p2

2 + q22
2

.

In general the occurrence of a nilpotent part cannot be prevented.
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7.1 The Krein collision

Bifurcations of equilibria occur where the eigenvalue configuration is changed
to a different type. In one degree of freedom this means that a hyperbolic
equilibrium becomes elliptic (or vice versa) as e.g. in the Hamiltonian pitchfork
bifurcation. Superposing one of the bifurcation scenarios of Section 2.2 with
a saddle H(q, p) = 1

2p
2 − 1

2q
2 yield this bifurcation scenario on a normally

hyperbolic invariant submanifold. A saddle generated in the bifurcation yields
a saddle-saddle equilibrium in two degrees of freedom, and centres lead to
saddle-centre equilibria (with one real pair and one purely imaginary pair
of eigenvalues). Superposition with a centre similarly results in equilibria of
saddle-centre and centre-centre type.

The four types of equilibria in two degrees of freedom that do not have
zero eigenvalues have eigenvalue configurations as depicted in Fig. ?. Pas-
sages from and to the saddle-centre involve zero eigenvalues and “diagonal
passages” would even impose all eigenvalues to vanish at the bifurcation. Both
the saddle-saddle equilibrium and the focus-focus equilibrium are hyperbolic
equilibria, with no eigenvalue on the imaginary axis. From a local dynamical
viewpoint no bifurcation takes place when passing from one to the other since
their flows are topologically conjugate on sufficiently small neighbourhoods.
There is a homeomorphism mapping trajectories to trajectories, preserving
the time parametrisation. This allows to translate possible local questions
from one system to the other and later translating back the answer to that
question.

The remaining possibility is the passage from an elliptic equillibrium of
centre-centre type to a hyperbolic equilibrium of focus-focus type, with inter-
mediate eigenvalue configuration as given in Fig. ?. Both 1:1 resonant equi-
libria and 1:−1 resonant equilibria have such a double purely imaginary pair
of eigenvalues. However, an equilibrium in 1:1 resonance is a local extremum
of the Hamiltonian function whence all small deformations of the system have
a nearby equilibrium that is a local extremum as well. Hence the deformed
Hamiltonian has a quadratic part of the form (7.1), showing that all small
deformations of a 1:1 resonant equilibrium are elliptic.

Thus, a 1–parameter family Hλ of Hamiltonians with an equilibrium
zλ ∈ R4 passing from focus-focus type to centre-centre type has to admit
a parameter value λ0 for which the equilibrium is in 1:−1 resonance.

Exercise 7.4. Use the implicit mapping theorem to change to new co-
ordinates in which zλ = 0 for all parameter values λ ∈ R.

For a better understanding of the situation it is helpful to apply the co-
ordinate transformation




q1
q2
p1

p2


 7→




x1

x2

y1
y2


 =

1√
2




1 0 0 −1
0 1 −1 0
0 1 1 0
1 0 0 1







q1
q2
p1

p2


 .
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The new co-ordinates (x, y) are again canonical and the semi-simple part S
of a quadratic Hamiltonian in 1:−1 resonance becomes

S(x, y) =
(y1 − x2)

2

4
+

(x1 + y2)
2

4
−
(

(y2 − x1)
2

4
+

(x2 + y1)
2

4

)

= x1y2 − x2y1

with linear equations of motion

d

dt




x1

x2

y1
y2


 =




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0







x1

x2

y1
y2


 .

The nilpotent matrix 


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0




has the Hamiltonian function −N where

N(x, y) =
x2

1 + x2
2

2

and the Hamiltonian of the transpose matrix is

M(x, y) =
y2
1 + y2

2

2

whence M and N are also called each others adjoint.

Exercise 7.5. Show that the two Hamiltonians S + aN and S − N can be
obtained from each other by a canonical co-ordinate change if a < 0. Use in
addition reversion of time (i.e. multiply the Hamiltonian by −1) to transform
S +N into S −N .

It is exactly the addition of the adjoint that triggers the Krein collision in the
1-parameter family

Hλ
2 (x, y) = S(x, y) + aN(x, y) + λM(x, y) (7.2)

of quadratic Hamiltonians. Here a is a fixed non-zero coefficient, for example
a = −1, and λ is a parameter passing through 0.

Exercise 7.6. Compute the eigenvalues ±
√
−aλ± i of the linear vector field

defined by Hλ
2 .
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The equilibrium is for aλ < 0 of focus-focus type and hence dynamically
unstable. At λ = 0 the equilibrium is spectrally stable since no eigenvalue has
positive real part. The linear flow is given by

(t,




x1

x2

y1
y2


) 7→




cos t − sin t 0 0
sin t cos t 0 0

−at cos t at sin t cos t − sin t
−at sin t −at cos t sin t cos t







x1

x2

y1
y2




whence the origin is unstable. In Section 7.4 we formulate conditions under
which the nonlinear part of an equilibrium in 1:−1 resonance is able to stabilize
the equilibrium.

7.2 Normalization

We are given a family of Hamiltonian systems for which the origin is an
equilibrium, with Taylor series

Hλ =

∞∑

k=0

H0
k

k!

where we suppress the parameter dependence in the homogeneous polynomials
H0

k of degree k + 2 (the upper index 0 will become clear in a moment). The
quadratic part Hλ

2 = 1
2H

0
0 , given by (7.2), admits the symmetry (5.2) and it

would be helpful if the higher order terms would respect this symmetry as
well. Normal form theory is designed to help in such a situation, pushing a
symmetry generated by the quadratic terms through the whole Taylor series.

From an abstract point of view this is an iterative process where at each
step a co-ordinate transformation ϕW = ϕW

t=1 is generated by a polynomial
Hamiltonian function W ∈ R[x1, x2, y1, y2]. Here W is not given to us (like H
is), quite on the contrary it is our task is to choose W in such a way that the
given Hamiltonian becomes simplified. The effect of ϕW on H is

H ◦ ϕW =

∞∑

k=0

1

k!
H0

k − {W,H0
0} +

∞∑

k=1

1

k!
{H0

k ,W} + . . .

and we concentrate on the effects of lowest order.

Exercise 7.7. Let A ∈ Mn×n(R) be a matrix for which all eigenvalues are
different from each other. Show that the vector space Rn admits the splitting

imA ⊕ kerA = Rn

as a direct sum of two A–invariant subspaces.
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Denoting by Gk+2 the polynomials of degree k + 2, the derivation

X
H0

0
: Gk+2 −→ Gk+2

W 7→ {W,H0
0}

(7.3)

is a linear mapping between finite-dimensional vector spaces. The first step is
to choose W1 ∈ G3 such that

{W1, H
0
0} + H1

0 = H0
1

with H1
0 in normal form. Then choose 1

2W2 ∈ G4 to turn H0
2 into H2

0 and so
on. At each step the homological equation

{Wk, H
0
0} + Hk

0 = H0
k (7.4)

has to be solved where 1
k!Wk ∈ Gk+2 generates the kth co-ordinate transfor-

mation and Hk
0 ∈ Gk+2 is in normal form (i.e. as simple as possible, preferably

zero).

Exercise 7.8. Compute for H0
0 = S the eigenvalues and eigenvectors of the

linear mapping (7.3) and conclude that the splitting

imXS ⊕ kerXS = Gk+2 (7.5)

can be achieved for every k ∈ N.

Using the splitting (7.5) the solution of the homological equation (7.4) is
immediate; for H0

k ∈ Gk+2 we let Hk
0 be the projection to kerXS , and since

H0
k −Hk

0 ∈ imXS there must be Wk ∈ Gk+2 with {Wk,H0
0} = H0

k −Hk
0 . The

infinite composition φ∞ = ϕW1
◦ ϕ 1

2
W2

◦ . . . would turn H into the normal
form expansion

H ◦ φ∞ =
∞∑

k=0

1

k!
Hk

0 .

However, the convergence of this normal form series is problematic, and the
convergence of the infinite composition is even more questionable. Restricting
to a finite composition φ` = ϕW1

◦ . . . ◦ ϕ 1
`!

W`
yields

H ◦ φ` = H̄ + O(`+ 3)

with (truncated) normal form

H̄ =
∑̀

k=0

1

k!
Hk

0 (7.6)

of degree `+ 2 in x, y and higher order terms that are not in normal form.
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Exercise 7.9. Show that the vector space Rn always admits the splitting

imA ⊕ kerAT = Rn

where AT denotes the transpose of the matrix A ∈Mn×n(R).

In the semi-simple case that all eigenvalues have algebraic multiplicity equal to
geometric multiplicity (whence one can diagonalise over the complex numbers)
there is no difference between the kernel and the kernel of the transpose.

Exercise 7.10. Show that for H0
0 = N the linear mapping (7.3) is nilpotent,

i.e. the power (XN )m vanishes for sufficiently high m whence all eigenvalues
are zero.

Since XS ◦XN = XN ◦XS the sum

X
H0

0
= XS + a XN

is the Jordan decomposition of X
H0

0
into semi-simple and nilpotent part. In

an appropriate2 basis XT

H0
0

= XS − aXM and

kerXαS − aM = kerXS ∩ kerXM . (7.7)

This allows to improve upon the normal form that one would obtain in the
semi-simple case XT

H0
0

= XS .

Theorem 5.1 implies that every polynomial in kerXS can be written as a
function of S, N , M and

P (x, y) = x1y1 + x2y2 .

Note that this immediately proves Hk
0 = 0 for all uneven k. To compute (7.7)

it is sufficient to consider the restriction of XM to the kernel of XS and

{f,M} = P
∂f

∂N
+ 2M

∂f

∂P

then shows that polynomials in (7.7) depend only on S and M .
Normalizing Hλ yields (7.6) with H0

0 unchanged, Hk
0 = 0 for all uneven k

and Hk
0 = Hk

0 (S,M) for all even k ∈ N, i.e. the normal form reads

H̄λ(x, y) = S(x, y) + aN(x, y) + λM(x, y) +
b

2
(M(x, y))2 (7.8a)

+ c S(x, y)M(x, y) +
d

2
(S(x, y))2 + . . . (7.8b)

2 Alternatively one can introduce an appropriate inner product on R[x1, x2, y1, y2]
and hence on the vector spaces Gk+2. Every orthonormal basis is then ‘appropri-
ate’.
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truncated after finitely many monomials in ‘. . .’. It turns out that under the
non-degeneracy condition ab 6= 0 the terms in the second line (7.8b) do not
influence the qualitative behaviour of the Hamiltonian system defined by (7.8)
whence we restrict to the normal form H̄λ given by (7.8a).

Using scalings in x and y and rescaling/reversing time one can simplify
the coefficients a and b. However, the relative sign sgn(ab) = ±1 cannot be
removed and indeed distinguishes two qualitatively different cases. Simplifying
to a = 1 we concentrate on the supercritical case

H̄λ = S + N + λM +
1

2
M2 (7.9)

and leave the subcritical case as exercise 7.14.

7.3 Symmetry reduction

The S1–symmetry (5.2) generated by S allows to reduce the Hamiltonian
system defined by (7.9) to one degree of freedom. This makes S a Casimir
function and fixing S = µ we obtain the reduced phase space

Pµ =

{
(N,M,P ) ∈ R3

∣∣∣∣ Rµ(N,M,P ) = 0 , N ≥ 0 , M ≥ 0

}

where

Rµ(N,M,P ) =
1

2
P 2 − 2NM +

µ2

2

with Poisson bracket relations

{N,M} = P , {N,P} = 2N , {M,P} = −2M .

For µ 6= 0 the surface Pµ is one sheet of the two-sheeted hyperboloid R−1
µ (0),

as in the reduced Kepler system. The surface P0 is the positive cone; in the
reduced Kepler system we had to leave out the points reduced from the origin
of the configuration space where the potential was not defined. Omitting the
constant term the reduced Hamiltonian becomes

H̄λ
µ = N + λM +

1

2
M2

whence the energy level sets {H̄λ
µ = h} ⊆ R3 are parabolic cylinders.

Exercise 7.11. Determine the bifurcation diagram of the 3–parameter family

H(x, y) =
1

2
y2 − 1

5!
x5 +

ν1
6
x3 − ν2

2
x2 − ν3x (7.10)

of Hamiltonian systems in one degree of freedom.
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7.4 The Hamiltonian Hopf bifurcation

The trajectories of the reduced system are given by the intersections of the
energy level sets {H̄λ

µ = h} with Pµ. The resulting periodic orbits are orga-
nized by the relative equilibria which all lie in the plane P = 0, cf. Fig. ?.
Within this plane the energy level set is the graph of the parabola

N = h − 1

2
M2 − λM

which moves up or down under variation of h and moves to the left or to the
right under variation of λ. The intersection Pµ ∩ {P = 0} is given by

N =
µ2

4M
if µ 6= 0

N = 0 and M = 0 if µ = 0.

Next to the singular equilibrium (N,M,P ) = 0 this yields for µ = 0 the
regular equilibria (N,M,P ) = (0,−λ, 0) when λ < 0 and for µ 6= 0 (and all
λ) the equilibria

(N,M,P ) =

(
µ2

4M
,M, 0

)

where M is the positive root of the polynomial M 3 + λM2 − 1
4µ

2.
The full dynamics in R4 of (7.9) is reconstructed by superposing the pe-

riodic motion along the angle conjugate to the action S. In this way periodic
orbits give rise to invariant 2–tori and regular equilibria yield periodic orbits.
The singular equilibrium leads for all λ to the equilibrium at the origin which
is therefore (dynamically) stable for λ ≥ 0 and unstable for λ < 0. In partic-
ular, the linearly unstable equilibrium for λ = 0 has been stablilized by the
nonlinear term 1

2M
2. The information on the global dynamics is collected in

the energy-momentum mapping.

Exercise 7.12. Show that the critical points of the energy-momentum map-
ping

EM = (S, H̄λ) : R4 −→ R2

form a subset of the discriminant locus of the polynomial

M3 + 2λM2 − 2hM +
µ2

2
. (7.11)

The discriminant locus of a general polynomial of degree 3 is a cylinder on the
basis of the bifurcation diagram derived in exercise 2.8, two smooth surfaces
meet at one cusp line. We are interested in the way this set gets folded under
the mapping

(λ, µ, h) 7→
(

2λ,
µ2

2
, 2h

)

that assigns to our parameters the coefficients of (7.11).
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Lemma 7.2. The discriminant locus of (7.11) coincides with the discriminant
locus of the polynomial

M4 − 2λM2 +
√

2µM +
h

2
+

λ2

4
. (7.12)

To prove this lemma just compute the two discriminant loci. The more inter-
esting question is how to get the idea to compare these two sets. This is much
easier to answer after solving exercise 7.11. The bifurcation diagram of (7.10)
is the swallow tail surface which lies at the basis of the discriminant locus of
the general polynomial of degree 5 (the leading 5th order term can be scaled
to 1 and a translation removes the 4th order term). With this picture in mind,
draw the set of critical values of EM.

Exercise 7.13. Use the translationM 7→M− 2
3λ to turn (7.11) into standard

form M3 + κ1M + κ2 and study the mapping κ = κ(λ, µ, h) from R3 to R2.

The mapping

(λ, µ, h) 7→
(
λ

6
,

√
2µ2

24
,
2h+ λ2

96

)

that assigns to our parameters the coefficients of the partial derivative of (7.10)
with respect to x is a diffeomorphism whence the discriminant locus of (7.11)
is indeed the swallow tail surface. To obtain the set of critical values of the
energy-momentum mapping we still have to take the inequalities N ≥ 0 and
M ≥ 0 into account. The latter is no restriction since the polynomial (7.12) is
invariant under the simultaneous transformation M 7→ −M , µ 7→ −µ and the
discriminant locus of (7.12) is symmetric with respect to the reflection in µ.
The former inequality yields h − 1

2M
2 − λM ≥ 0 which results in h ≥ 0 for

λ ≤ 0 and in h ≥ − 1
2λ

2 for λ ≥ 0. Thus, we have to “remove the tail” from
the swallow tail, see Fig. ?.

Note that the λ–axis consists of critical values of EM since S and H̄λ

vanish for all λ at the origin. For λ > 0 the critical values form a crease at
this line, corresponding to two families of periodic orbits that shrink down to
the (stable) equilibrium. For λ < 0 the λ–axis {µ = 0, h = 0} detaches from
the swallow tail surface and forms a 1–dimensional thread. The inverse im-
age of these points under the energy-momentum mapping is a pinched torus
formed by the unstable equilibrium and its (coinciding) stable and unstable
manifold. The thread does belong to the real part of the discriminant locus
when interpreting (7.12) as a complex polynomial, but is not part of the (real)
discriminant locus when interpreting (7.12) as a real polynomial. Correspond-
ingly, this thread is not part of the bifurcation diagram of (7.10).

Exercise 7.14. Analyse the normal form of the Hamiltonian Hopf bifurcation
in the subcritical case sgn(ab) = −1.
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To fully understand the dynamics near a resonant equilibrium in 1:−1 reso-
nance we have to take the higher order terms into account. For higher order
terms in normal form one can repeat the above considerations to get precise
formulas, but this does not lead to qualitative changes. Indeed, adding higher
order terms to a parabola yields a polynomial that still has a local extremum
close to the unique extremum of the parabola.

More problematic are higher order terms that are not in normal form.
While it is possible to normalize up to any desired degree ` + 2 this still
leaves us with the remainder term. On an ε–neighbourhood the terms K of
order O(` + 3) satisfy a bound of the form ‖K‖ ≤ ε`+3κ expressing that
these terms can be made arbitrarily small. We will see in Chapter 8 that
the remainder term nevertheless exerts a certain influence on the invariant 2–
tori. For the periodic orbits we have the following result, relating the periodic
orbits of Hλ in a neighbourhood of the origin that have a short period3 to the
periodic orbits of the normal form.

Theorem 7.3. Let Hλ be a family of Hamiltonian systems on R4 such that
for λ = 0 the origin is an equilibrium in 1:−1 resonance, with double eigen-
value ±i. Assume that the normal form H̄λ satisfies

∂H̄0

∂N
= a 6= 0 ,

∂H̄λ

∂M
= λ and

∂2H̄0

∂M2
= b 6= 0

at (S,N,M,P ) = (0). Then there exists a diffeomorphism Φ : U −→ V
between open neighbourhoods U, V ⊆ R4 of the origin that maps the periodic
orbits of X

Hλ with period close to T = 2π to the relative equilibria of X
H̄λ .

For a proof see [16]. When b = 0 both the term cSM in (7.8b) and the cubic
term in M become important.

3 This excludes the periodic orbits on resonant 2–tori.
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Perturbation Theory

The examples of Hamiltonian systems that we considered so far were mostly
integrable. In one degree of freedom this follows from conservation of energy,
and in two degrees of freedom an existing symmetry allows to reduce to one de-
gree of freedom. Such a symmetry is often only approximate. The assumption
of symmetry may be implicitly made when modeling the system, or explicitly
introduced by means of a normalization procedure. This makes the behaviour
with respect to (small) perturbations an important property of an integrable
system.

The recurrent dynamics of an integrable system in two degrees of freedom
consists of equilibria, periodic orbits and invariant 2–tori, the former together
with stable and unstable manifolds. For equilibria one can use the implicit
mapping theorem to prove persistence if the linearization has no zero eigen-
value, and the linear behaviour persists as well if furthermore no eigenvalues
are in 1:−1 resonance. Similar considerations are possible for periodic orbits.

The regular values of the energy-momentum mapping of an integrable
system parametrise invariant tori (and unbounded motions). Expressed in
action-angle variables the Hamiltonian depends only on the actions and this
remains true in n degrees of freedom. On the phase space Tn × Rn with
canonical Poisson structure the integrable1 system defined by N(q, p) = N(p)
has for initial conditions (q0, p0) the conditionally periodic solution

(q(t), p(t)) = (q0 + ω(p0)t, p0) (8.1)

where ω(p) = ∇N(p) is the frequency vector of the family of invariant tori
Tn × {p}. A small perturbation leads to the Hamiltonian function

Hε(q, p) = N(q) + εP (q, p; ε) . (8.2)

By a dictum of Poincaré the study of (8.2) is the fundamental problem of
dynamics.

1 It would be more precise to speak here of an integrated system.
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8.1 The homological equation

The perturbed flow defined by the Hamiltonian (8.2) would be conditionally
periodic as well if it were possible to transform co-ordinates (q, p) 7→ (x, y)
in such a way that the resulting Hε(x, y) = Hε(y) depends again only on
the action variables. We encountered a similar problem when normalizing the
higher order terms of the Hamiltonian Hopf bifurcation, so let us try to find
a suitable Hamiltonian function W for which the co-ordinate transformation
ϕε = ϕW

t=ε makes the transformed Hamiltonian Hε ◦ ϕε independent of the
anglular variables x ∈ Tn. Expanding in ε yields

(Hε ◦ ϕε)(x, y) = N(y) + εP (x, y; 0) + ε{N,W} + O(ε2)

whence the terms of order ε form the homological equation

〈ω(y) | ∇xW (x, y)〉 + P (y) = P (x, y; 0)

where we let P (y) denote the ε–term of the transformed Hamiltonian. To solve
this linear partial differential equation we develop

W (x, y) =
∑

k∈Zn

Wk(y) e2πi〈k|x〉 (8.3)

P (x, y; 0) =
∑

k∈Zn

Pk(y) e2πi〈k|x〉

in Fourier series and are led to P (y) = P0(y) and
∧

k∈Zn\{0}

2πi〈k | ω(y)〉Wk(y) = Pk(y) (8.4)

reflecting the splitting of the function space into C∞(Rn) and functions in
C∞(Tn × Rn) with vanshing average

P0(y) =

∫

Tn

P (x, y; 0) dx .

As the left hand side of (8.4) vanishes at resonances the homological equation
cannot be solved in this generality.

Theorem 8.1. The following properties are incompatible.

(i) The unperturbed Hamiltonian is non-degenerate:

∧

y

detD2N(y) 6= 0 .

(ii) The perturbation P has lots of non-vanishing Fourier coefficients:
∧

y

∧

k∈Zn

∨

`∈Zn

` ‖ k and P`(y) 6= 0 .
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(iii) The co-ordinate change ϕε transforms the pertubed Hamiltonian (8.2)
into

H(x, y) = N(y) + εP0(y) + ε2R(x, y; ε)

with a smaller perturbation term ε2R.

Proof. The first property implies that the frequency mapping y 7→ ω(y) is
locally invertible and the resonant frequency vectors are dense, so there exists

η near y and k ∈ Zn\{0} with 〈k | ω(η)〉 = 0 and hence 〈` | ω(η)〉 = 0 for all
` parallel to k. Solving (8.4) to obtain the third property then requires

∧

`‖k

P`(η) = 0

contradicting the second property. ut

The result goes back to Poincaré, who worked a bit harder and showed that
there is no smooth first integral independent of Hε. For a given “unknown”
perturbation it is unlikely that lots of Fourier coefficients vanish and hence
one should not expect integrability.

8.2 Small denominators

Instead of attacking the homological equation in full generality by solving (8.4)
simultaneously for all frequencies ω(y) one can look for simple solutions of the
unperturbed system XN and how they survive in the perturbed system XHε

.
For the simplest solututions, equilibria and periodic orbits, persistence can
be shown by means of the implicit mapping theorem. For quasi-periodic solu-
tions with n independent frequencies the inner product at the right hand side
of (8.4) does not vanish, allowing to define the Fourier coefficients

∧

k∈Zn\{0}

Wk(y) =
Pk(y)

2πi〈k | ω(y0)〉
(8.5)

of W in terms of a “freezed” frequency vector ω = ω(y0). This yields an exact
solution of the homological equation only at y = y0, so the approximation of
the co-ordinate transformation ϕε is now in terms of both ε and ‖y − y0‖.

From a dynamical point of view it is natural to concentrate on those n–
tori Tn × {y0} with 〈k | ω〉 6= 0 as these have a dense orbit which makes
the torus a dynamically defined object rather than merely an invariant set
consisting of quasi-periodic orbits. On the other hand, it is exactly the dense
orbit that imposes the denominator 2πi〈k | ω〉 to occasionally assume smaller
and smaller values. The higher the differentiability of the perturbation P the
faster the Fourier coefficients Pk converge to zero, and this has to outweigh
occuring small values of the denominator if W and the resulting co-ordinate
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transformation are to retain the same degree of differentiability. Thus, one
needs bounds, and a k–independent bound |〈k | ω〉| > γ is available only in
the periodic case n = 1. A typical means to ensure that |k| = |k1|+ . . .+ |kn|
has to be (very) large when |〈k | ω〉| becomes (very) small are Diophantine
conditions ∧

k∈Zn\{0}

|2π〈k | ω〉| ≥ γ

|k|τ . (8.6)

Exercise 8.1. Sketch the set

Γγ,τ :=

{
ω ∈ R2

∣∣∣∣ |2π〈k | ω〉| ≥ γ

|k|τ for all k ∈ Z2\{0}
}

of (γ, τ)–Diophantine frequencies.

At first sight the set of (γ, τ)–Diophantine frequency vectors seems to be
rather small or even empty, as one removes a full open neighbourhood of a
dense set. However, by choosing τ > n− 1 sufficiently large this set turns out
to be of full relative measure in the limit γ → 0.

Exercise 8.2. In the unit interval [0, 1], for given constants γ > 0 and τ > 2,
consider a subset Dγ,τ of Diophantine numbers, defined as follows. We say

that ρ ∈ Dγ,τ if for all rational numbers
p

q
one has

∣∣∣∣ρ−
p

q

∣∣∣∣ ≥ γ

qτ
.

Show that Dγ,τ is nowhere dense. Also show that the Lebesgue measure of

[0, 1]\Dγ,τ is of order O(γ) as γ → 0.

Our aim is to replace the perturbation P by the Tn–avarage P0. Indeed, the
dense orbit on tori with non-resonant ω is so well distributed that this space
average equals the time average along that orbit over infinite time. To have
a good approximation over finite time we need that the orbit “visits other
parts” of the torus before “coming back” to the starting point.

Apart from this dynamical point of view there is the analytical consid-
eration that the Fourier series (8.3) converges only if the coefficients (8.5)
decrease to zero.

Exercise 8.3. Prove the lemma of Paley–Wiener: a periodic function with
Fourier series

f(x) =
∑

k∈Z

fk eikx

is (real) analytic if and only if the coefficients decay exponentially fast:

∨

M,η>0

∧

k∈Z

|fk| ≤ M · e−|k|·η .
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The set of (γ, τ)–Diophantine frequency vectors is an example o a Cantor set,
intersecting this set e.g. with the sphere {‖ω‖ = 1} transvere to the continuous
radial direction yields Cantor dust, a completely disconnected closed set for
which every point is an accumulation point (except for a countable subset).

Theorem 8.2. (Kolmogorov, Arnol’d and Moser). Let Y ⊆ Rn be an open
neighbourhood of the origin and consider the phase space P = Tn × Y with
canonical Poisson structure. Let the Hamiltonian (8.2) be real analytic with
non-degenerate unperturbed part N . Then there exists ε0 > 0 such that for
all |ε| < ε0 there is a canonical transformation φε near the identity and a
measure-theoretically large Cantor set Y′

ε ⊆ Y with the property that for
y ∈ Y′

ε the transformed Hamiltonian Hε ◦ φε does not depend on x ∈ Tn.

Since

ẋ =
∂

∂y
(Hε ◦ φε) = ω̃(y)

ẏ = − ∂

∂x
(Hε ◦ φε) = 0

the Cantor set Tn×Y′
ε consists of invariant tori with quasi-periodic flow. Note

that no statement is made for y ∈ Y\Y′
ε .

Where the continuous lines of the Cantor set Y′
ε intersect the energy shells

transversely we obtain Cantor dust parametrising surviving tori on every en-
ergy shell. The same result is obtained under the condition of iso-energetic
non-degeneracy

det

(
D2N(y) ∇N(y)
DN(y) 0

)
6= 0 , (8.7)

which is independent of detD2N(y) 6= 0. In two degrees of freedom the energy
shells are 3–dimensional whence invariant 2–tori form a barrier. This allows
to obtain stability of equilibria (in the sense of Lyapunov).

The (planar) Kepler system does not satisfy a non-degeneracy condition.
The same reason that makes the (unperturbed) Keplerian system itself so
easy, all reccurent orbits are on ellipses, makes the perturbed problem more
difficult. As a remedy one can compute a preliminary normal form

N = K + εP0

by averaging the perturbation along the Keplerian flow generated byXK . This
breaks both the rotational S1–symmetry (of any central force field) and the
S1–symmetry generated by (the direction of) the eccentricity vector. By con-
struction {N,K} = 0, the “Kepler symmetry” makes N integrable, allowing
to pass to action angle variables (ϑ, ϕ,K, I). The iso-energetic non-degeneracy
condition

det




ε∂2N
∂K2 ε ∂2N

∂K∂I
1 + ε∂N

∂K

ε ∂2N
∂K∂I

ε∂2N
∂I2 ε∂N

∂I

1 + ε∂N
∂K

ε∂N
∂I

0


 6= 0
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is fulfilled if the O(ε)–term ε
∂2N

∂I2
does not vanish, in which case the perturbed

system has “many” quasi-periodic tori. The two frequencies of these are of
order one and of order ε, whence resonances only occur with large values of k.
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