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Definition (Continuous-time dynamical system )

A continuous-time dynamical system consists of a one-parameter
family of maps ¢; : R™ — R", where ¢t € R that form a one-parameter
group. That is, ¢ 0 ¢y = @s1¢ and g = Idrn. We call the map ¢y
the flow.

Theorem (Hartman-Grobman Theorem)

Let U C R™ be open, f: U — R™ be continuously differentiable, and
xo € U be a hyperbolic fixed point of f. Then there exists
neigbourhoods Uy, Uy, V1, Vo of zg and a homeomorphism

h: Uy UUy; — Vi UV, such that the following diagram commutes.

U1L>U2

h h

See [KH95] on page 261.



Hopf Bifurcation
Consider the smooth system
T = axy — 29 — x1 (22 4 3)
Ty = 21 + axo — To(2 + 23)

or in polar coordinates

p=pla—p?)
p=1
Then « = 0 is a critical value.

Lemma ([Kuz04], Lemma 3.2)
The system

(@) =(5 (@) - () + ot

18 locally topologically equivalent to the system

@) -(7 (@) -wean ()



Proof 1

We only prove the existence and uniqueness of the cycle. We follow
[Kuz04] and the rest of the proof can be found therein. First write the
system in polar coordinates as

p=pla—p*)+2(p, )
¢=1+¥(p,p).

Now reparametrize time so that the time it takes for an orbit starting
at ¢ = 0 to return is set to 1. Then any orbit starting at

(p,¢) = (po,0) has p satisfying

dp _ pla—p*)+2(p,9)
dp 1+ ¥(p,¢)

+ R(p, ).

Because p(p,0) = 0 we can write the Taylor expansion of p(p, pg) as

p = u1(p)po + u2(p)pg + us()ph + . ...



Proof 11

Now substitute this into the above and solve the linear differential
equation at each order or py with initial condition
u1(0) = 1,u2(0) = 0,u3(0) = 0. The result is

_ p2ap
owl e

ul(gp) = eomp’ UQ((,D) = Oa u3(<)0) =e 2

Since these expressions are independent of R(p, ), the Poincaré
return map has the form

prL = ™% po — 7 2 4 O(a)] o} + O(p}).

Now this map can be easily analyzed for sufficiently small pg and «.
For o < 0 it only has a trivial fixed point and for small a > 0 there is
another fixed point, indicating the existence of a cycle.



Definition (Smooth equivalence)

Let ¢ : R® — R™ and 1, : R — R"™ be two flows. Then we call ¢y
and ; smoothly equivalent if there exists a diffeomorphism
h : R™ — R"™ such that the following diagram commutes.

R» — R”

o o

R® — " R®

See Definition 2.2.1, [KH95] on page 64.
Remark

> Note that smooth equivalence is a equivalence relation and the
goal is to find the simplest representative.

» Near identity transformations are local diffeomorphisms by the
inverse function theorem.



Classical Normal Form

Any smooth system
(2)=0 ) ()
can be formally transformed to
(-6 DE)-Eearlo ) on ()]
To 1 0 To Pt To T
or in polar coordinates

AL 0 Ckp2k+1
(')_<1)+Z<ka2k ,Cr, Dy € R.

g k=1



Theorem
Denote by Vi, the span of the set of homogeneous polynomials of degree
k+ 1. The coordinate change x =y + hi(y) will take the system

& =wg(x) +vi(x) +ve(x)+..., vp(x) €V
into the system
y=vo(y) +vi(y) +v2(y) + - +ve—1(y) + bey) + -+,

where

br(y) = vi(y) + Dvo(y)he(y) — Dhi(y) vk (y)-



Definition

We define an operator, called the homological operator, as the map
k.
Lvo Ve — Vk, hp — D’Uo(l‘)hk(l') — th(ib‘)’l)()(x)7

where V}, is the vector space spanned by the homogeneous
polynomials of degree k + 1.



Proof 1

We follow the analysis in [Kuz04] on page 108. By the Inverse
Function Theorem the function x = y + hy(y) is invertible on a small
neighourhood of the origin. Now differentiating the change of
coordinates with respect to time yields

@ =9+ Dhy(y)9.
The inverse can be written and expanded as
y = (I = Dhi(y) + O(llyl* ™),

which is also smooth. Here I denotes the identity on R™.



Proof 11

Plugging the definitions in and rewriting then yields

9 = (I = Dhi(y) + O(llyl™ ) (voly + by ))+v1(y+hk( )+-)

= (I — Dhi(y) + O(yl**)) (wolw) + vo(hi(y +sz

sz ) + vk (y) + vo(hi(y)) = Dhi(y)vo(y) + O(|lyl* ™).

This proves the result.



Theorem (Poincaré 1879)

There is a polynomial change of coordinates
r=y+hi(y) +ha(y) +- -+ hm(y), hieVi
that transforms the smooth system
T =wvo(x) +vi(x) Fve(x)+..., vp(x) €V
mto
g =vo(y) +r1(y) +r2(y) + -+ rly) + Oy, i € Vi

where each Ty contains only resonant terms of degree k + 1. The
resonant terms are the terms that lie in the complement of the image
of the homological operator.



Example

Consider a general system governed by

()¢ ) omir me

First apply a near identity transformation
xr=y+hi(y), hi €V,
or explicitly written
T1\ _ () 12023 + c1112122 + 10223
= + 2 2 -
) Y2 C220%7 + C211T1T2 + C202%5
The first number in the index denotes either the first or second

component, the second number the exponent in x; and the third
number the exponent in xs.



Apply the general quadratic transformation and gather all quadratic
terms. This yields

0 -1 0 -1 0 O €120 a120 — b120
2 0 -2 0 -1 0 c111 ainn — b1
0 1 0 0 0 -1 C102 o aip2 — b102
10 0 0 -1 0 c220 | | a220 — ba2o
0 1 0 2 0o -2 C211 a11 — ba11
00 1 0 1 o0 €202 az02 — bao2

» The terms ¢y« are the terms we transform with,
» a... are the original terms,

» b,.. are the remaining terms.

As the matrix is invertible, the quadratic terms can be removed.



Now apply a third order transformation
x=y+ha(y), he€Vs.

The equation now becomes

0 -1 0 0 -1 0 0 0 €103
3 0 =2 0 0 -1 0 0 C112
0 2 0 -3 0 0 -1 O c121
0 0 1 0 0 0 0 -1 €130
1 0 0 0 0 -1 0 0 €203
0 1 0 0 3 0 —2 0 C212
0 0 1 0 0 2 0 -3 c221
0 0 0 1 0 0 1 0 C230

a103 — b1o3
a112 — b112
a121 — b121
a130 — b13o
G203 — ba2o3
G212 — bo12
G221 — ba21
az30 — baso

This matrix is not invertible, so some cubic terms will remain.




The kernel of this operator is spanned by the vectors

1 0
0 1
1 0
0 -1
01’11
1 0
0 1
1 0

As the choice of basis is not unique, different choices will result in
different but equivalent normal forms.



Thus, the normal form up to third order is

(2) = ((1) —01> (i;) + (af 4 23) [Cl <2) + D, (;xf)] +O(||z|*).

The real constants C; and D7 are in terms of the original coefficients.



Definition (Semisimple Operator)

Let V be a finite dimensional vector space and let A € End V. Then
A is said to be semisimple if the matrix associated to the operator is
diagonalisable over the complex numbers.

Lemma (Semisimple splitting)
Let V be a real finite dimensional vector space. If the operator
L:V =V is semi-stimple, then V' can be decomposed into:

V=imL®kerL

Proof.

First choose a basis in which L is diagonal. Then the image of L
consists of the span of the nonzero eigenvalues. The kernel now
consists of those eigenvectors who’s corresponding eigenvalue is zero.
The Lemma is now immeadiate. O



Lemma (Splitting of L)
Let A € EndV be semi-simple, then the homological operator

Ly:Vip— Vg, hk(l') — Ahk(l') — th((E)A(E

is semi-simple for every k € N. Moreover, if the A is diagonal, then
the homological operator is diagonal as well.

Remark
A monomial x{" x5 ... 2" is denoted by x™, where x € R"™ and
m € Nj.

For more details, see [Mur06].



Proof 1

The strategy is to compute the eigenvalues, thereby showing
diagonalizability and hence semi-simplicity. Let A = T~'AT be the
diagonalization and consider 2™ e;. Now we consider the
transformation x = T'y. When applying such a transformation, notice
that for a general vector field & = a(z), the transformation yields

y =T ta(Ty) = b(y). Plugging this in yields

T 'Laa(Ty) = T Aa(Ty) — T~ ' (Ty) ATy
=T rATT a(Ty) — T~ d'(Ty)ATy
= AT 'a(Ty) — T~ 1d (Ty)T Ay
= Ab(y) — (T 'a(Ty)) Ay
= Ab(y) — V' (y)Ay
= Lb(y)



Proof 11

This shows the second claim. Now choose b(y) = y™e®. Then it
follows that

Lay™e; = Ay™e; — Dy™e;Ay
= ()‘i - <m7)‘>)7

where A denotes the vector with the eigenvalues as entries. Hence we
found k eigenvalues of the transformed operator. Then by inverting
the transformation and setting a(y) = Tbh(T~'y), we find the
eigenvectors of the original problem with the same eigenvalues. Hence
we obtain k eigenvalue eigenvector pairs, which equals the dimension
of V,, and it follows that the homological operator is diagonalisable.



In light of the previous lemma, the strategy is to first diagonalize the
linear part of the vector field as this guarantees that the monomials
are eigenvectors and then find the zero eigenvalues. The zero
eigenvalues are found by solving

<m7>‘> 7>\1 :Oa
<m,/\> —/\2 =0.

In the case of the Hopf singularity we set \; =4 and Ay = —i. For the
first equation, we then obtain

ma+1_mao
21 29 )
0

The second yields the monomials

( O )
mi  mi+1 .
21 R



It follows that the description of the classical normal form up to any
degree is given by

(2)-0 %) () gt o) = ()

where Cj, € C. The transformation
21\ _ l i —1 X1
z) 20\t 1 2]’
transforms the system back into
1y _ (0 =1\ (= — 5 2\k 1 —x2
(96.2) = (1 0 ) <x2> + ;(xl + z3) [Re(C’k) <x2> + Im(C%) < ) ﬂ .

And this is exactly the result we got using the ad hoc methods, but to
all orders.



Hypernormalisation

Consider the system in classical normal form

(=6 %) E)gear[a () )

and apply the transformation

()= () o () e )

k

—k
+Z(C15 k) (k)W 5 kw%>

Co(5—k) (k)W

Note that the third order terms lie do not modify the third order
terms, as they span the kernel of L%O



The resulting equation is

4i0150
2i0132
0
—2icoy
—4icoo3
—6ico05
6icaso
dicazn
2ico14
0
—2icy23
—4icyos5

b1s0
bia1
b132 + b121 c212 — b212 C121
b123
b114
b1os
baso
bas1
ba32
bao3 — b121 €212 + bo212 C121
bo14
baos

Hence the cubic terms have to be balanced so that

_‘b121
bl21

b212
“b212

c212) _ (biz2) _ (0
C121 baos 0

)



Note that the coefficients by € C, while the coefficients cy.« € R.
Now it is evident that this equation has no solution. Hence either the
real or imaginary part can be removed, and we choose the latter. In
order to do so we first fill in the relations, which yields

(i ()~
b121 —bi21 C121 big2 )’

Then by choosing the coefficients to be

Im(blgg) Im(blgg)

B 2 % Im(blzl) c212 = 2 % Im(b121)

Ci21 =

we accomplish the task of removing the imaginary part of the
equation.



The resulting normal form up to fifth order now becomes

251 _ 7 0 z1 + b1212%2’2 + Re(blgg)Z%Z% +
2’.2 - 0 —i z9 bglgzlzg Re(bggg)Z%Z% e

Applying the same strategy, we use a transformation of the form

(5) = () o e () v 1)

7 T—k, k
k)€ n )
+ E _ .
P <02(7—k)(k)57 Fk



Applying this transformation and gathering the seventh order terms

yields the following equation in matrix form.

bi7o

blGl

b1s2
bias
b134
bi2s
bi1e
bio7
ba70
bag1
bas2
ba43
basa
ba2s

ba16

€170
C161
C152
€143
C134
C125
C116
c107
C270
C261
C252
C243
C234
C225
C216
€207

o=
[clelslslolslolelololelelolole] JU

ocoooo o 00000000% (e}

[oleleleloie] OOOOOOOJHO (=]

[elelolololelele)elelelelololeNo)
[ololololefololelololol celefelol
[elalololofofofofoR{olololofok)

o=
ocoococo o 00_00000000 (e}

[eleleleleke) %00000000 [}

00000%0000000000

OOOOn/ﬂO [=leloleleleloloie)o]

[elolololelefele)elelololeloloNo)
&00000 [elelolelelelololeie)]

b2o7



It is noted though that the coefficients in the kernel of the seventh
order terms on the right hand side are linear in the coefficients c;32
and cg93, with matrix

—bi21 — 2b212 bi21
ba12 —2big1 — b2z )’

This matrix is nonsingular because we assumed that the third order
terms had nonzero coefficients. Hence both coefficients ¢130 and co93
can be chosen so that the seventh order terms in the kernel of the
seventh order homological operator can be completely removed.



Theorem
When C1 # 0, the normal form up to all orders is given by:

()e=( )G etado (@) o (37))
+ Cola? + 22)? (9“)

T2

See [Yu99] for a more detailed treatment and proof of the theorem.



Theorem (Theorem 3, [YLO02])

The simplest normal form of
= flz,p), zeR’ueR, f:R>— R?
given in polar coordinates is

p = plav + C1p?)
=14 D>+ Dyp* + ...

up to any order, where C1 # 0.
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