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Abstract: In this paper, the dynamics of a 3D autonomous dissipative nonlinear system of ODEs-
Rössler prototype-4 system, was investigated. Using Lyapunov-Andronov theory, we obtain a
new analytical formula for the first Lyapunov’s (focal) value at the boundary of stability of the
corresponding equilibrium state. On the other hand, the global analysis reveals that the system
may exhibit the phenomena of Shilnikov chaos. Further, it is shown via analytical calculations
that the considered system can be presented in the form of a linear oscillator with one nonlinear
automatic regulator. Finally, it is found that for some new combinations of parameters, the system
demonstrates chaotic behavior and transition from chaos to regular behavior is realized through
inverse period-doubling bifurcations.
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1. Introduction

In the last thirty years, many authors have been aroused by the search for the mathe-
matically simplest systems of various species that can exhibit chaos [1–7]. A good example
is the book of J. Sprott [4] in which he discovered: (1) some new systems that are simpler
than those previously know; (2) these new systems are otherwise more “elegant” on the
part of the number of system parameters-their values, special symmetry and economy
of notation.

The theory of dynamical systems which describes the qualitative changes in phase
spaces at a variation of one or several parameters is called bifurcation theory [7–11]. Gen-
erally, all bifurcations can be separated (classed) into two main kinds: local and global.
Although it is difficult to make a precise distinction between them, the dynamics of lo-
cal bifurcations is determined by information contained in the terms of Taylor series or
Poincarѐmap at a point, and the dynamics of global bifurcations requires information about
the vector field along an entire (non-periodic) orbit [8–10]. With respect to dynamical
systems theory [9,10,12], the Hopf bifurcation theorem [13], and some other elements of the
local bifurcation theory (e.g., the first Lyapunov value—L1(λ0)) are basic analytical instru-
ments to investigate the transition between different dynamical states in a neighborhood of
equilibrium states (fixed points). The (in) stability of these transitions may have essential
consequences on the dynamics of the system. Practically, the complete investigation of
complex phenomena in a dynamical system is impossible without a thorough study of
both bifurcations-local and global.

An important element towards the understanding of the global behavior of a dy-
namical system of nonlinear differential equations is the analysis of the existence of ho-
moclinic/heteroclinic trajectories (cycles) [14–17]. Note that a classical homoclinic cycle
Γ0 is a loop that consists of a saddle equilibrium state, i.e., this as a trajectory which is
bi-asymptotical to a saddle periodic orbit as time t→ ±∞ . According to Peixoto’s theo-
rem [18,19], homoclinic bifurcations are structurally unstable, i.e., they can be destroyed by
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small perturbations. Therefore, they are more difficult to identify than a local bifurcation,
because knowledge of the global properties of the phase space trajectories is required. Ac-
cording to [11,20], the bifurcations in the dynamical systems can be divided into three types:
(1) bifurcations not originating from the Morse-Smale class of systems; (2) bifurcations in
a class of systems with non-trivial hyperbolicity; and (3) bifurcations associated with the
transition from Morse-Smale to systems with non-trivial hyperbolicity. The last bifurcations
are of particular interest because they can explain the mechanisms of emergence of chaotic
properties in deterministic dynamical systems.

It is well-known that chaos cannot occur in dissipative two-dimensional systems (one
degree of freedom) of ordinary differential equations (ODEs). Chaos requires systems with
at least one and a half degrees of freedom. Such systems have so-called strange attractors
(the trajectory winds around forever, never repeating) with non-integer dimension. In a
three-dimensional continuous dissipative dynamical systems, the only possible spectra,
and the attractors, are as follows: a strange attractor, a two-torus, a limit cycle, a fixed
point [21–23]. Mathematical representation of a spatial order and chaos are saddle equilib-
ria, saddle periodic movements or complex saddle invariant set. According to [24], around
a saddle-focus equilibrium a systematic characterization of homoclinicity can be provided.
It is well-known that, if the Shilnikov condition is satisfied, i.e., the saddle-focus index
δ = |Re(χ2/χ1)| < 1 (where χ1 (or χs) and χ2 (or χu) are the leading stable and unstable
eigenvalues (manifolds)), then an infinite number of non-periodic trajectories coexist in the
vicinity of a homoclinic trajectory (orbit) Γ0 bi-asymptotic to the saddle-focus. For more
details see [19,24,25]. In other words, if exactly one of the leading eigenvalues is complex
(i.e., χs ∈ C and χu ∈ R), then the homoclinic orbit is called unifocal and according to
the Shilnikov condition close to it: (1) there exist horseshoes in every neighborhood of
Γ0-when δ > 1; and (2) there is a neighborhood of Γ0 which contains no periodic orbits-
when δ < 1. Here we note that Shilnikov condition δ 6= 1 is also called non-resonance
condition [15,16,26]. If we look at further conditions on the eigenvalues we can determine
a second genericity requirement: δ 6= 2. If 1 < δ < 2, then the linear flow at the equilibrium
state(s) is contracting and the horseshoes are attracting, while for δ > 2 the linear flow at
the origin is expanding [16].

The generic homoclinic orbit with complex principal eigenvalues (bifocal homoclinic
orbit) has been studied by numerous researchers [25,27–29]. In a theorem they prove that
horseshoes exist in every neighborhood of a generic bifocal homoclinic orbit.

For a long period of time the Lorenz and Rössler systems [30,31] were regarded as the
simplest chaotic autonomous dissipative systems of ODEs. In this paper we consider the
so-called Rössler prototype-4 system given by

.
x = −y− z,
.
y = x,
.
z = −bz + a

(
y− y2), (1)

where (x, y, z) ∈ R3 are the state variables [1]. Originally, Rössler in [1] has proposed a
few abstract three-component chemical models (systems) which have chaotic solutions.
Latter, Olsen and Degn [32,33] showed that these systems (including system (1)) are an
example of chaos in experimental (real) chemical (enzyme) reaction systems. It is seen
that system (1) has only two parameters, six terms and a single quadratic nonlinearity.
To the best of our knowledge, the system was only numerically studied in [1,3,4,34]. It
was shown that for a = b = 0.5 the system (1) has chaotic behavior (see for more details
Figure A3 in Appendix C), and for a ∈ (0, 1], b ∈ (0, 1] has different dynamics-unbounded,
periodic and chaotic solutions. In recent years, some interesting results about stability of
periodic orbit and possible modifications of Rössler prototype-4 system (1) have emerged.
In Garcia et al. [35] existence and stability of periodic orbits of system (1) are proved.
The work described in Sprott and Linz [36] is another example where for some values
of the parameters the dynamics of the system (1) is quasiperiodic and a trajectory lies
on an invariant torus. In [37,38] the authors: (1) studied the condition and type of Hopf
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bifurcation in system (1) based on normal form; (2) investigated the amplitude control of
limit cycle; (3) modified system (1) based on Chua’s diode nonlinearity; and (4) studied
multistability and multiscroll generation of system (1). However, a detailed analysis of
the transitory phenomena leading to irregular (chaotic) dynamics of system (1) is missing,
which prompted our interest.

In this paper, using analytical and numerical tools, we investigate the dynamical
behavior of system (1). The plan is as follows: in Sections 2 and 3 we present analytical
and numerical results concerning the system (1) for different values of bifurcation (control)
parameters a and b. In Section 4 we summarize our results.

2. Analytical Investigation
2.1. Local Analysis and First Lyapunov Value-L1

In this section, we are going to consider the system (1) which presents an autonomous
dynamical model. Clearly, the equilibrium (steady state) points of system (1) are: O1(0, 0, 0)
and O2

(
0, 1 + b

a ,−1− b
a

)
.

The divergence of the flow (1) is:

D3(t) =
∂

.
x

∂x
+

∂
.
y

∂y
+

∂
.
z

∂z
= D3(t0)× e−bt = −b, (2)

where D3(t0) is a volume element. The system (1) is dissipative and has an attractor, when
D3(t) < 0, i.e., b > 0.

The system (1) can be presented in the form of a (non)-linear oscillator with one
automatic regulator. In general form we have

..
y = −∂V

∂y
,

.
z = −ε[z− g(y)], (3)

where ε is a small parameter, g(y) is a nonlinear polynomial function and V is the potential

in the form V = α0y4

2 −
2
∑

i=1
(αi − βiz)

yi

i [39]. For system (1) we have: α0 = α1 = β2 = 0,

α2 = −1 and β1 = 1. Hence, for the system (1) we can write

..
y = − ∂V

∂y = −y− z,
.
z = −b[z− kg(y)] = −bz + a

(
y− y2), (4)

where k = a/b, and the potential of the system is V = y2

2 + yz. The energy of the system (1)

is E = V +
.
y2

2 . Here we note that Lorenz system also can be presented in the form (3) as
α0 = 1, α1 = α2 = β1 = 0, β2 = 1 and g(y) = y2 [39].

To determine analytically first Lyapunov value (L1) and Routh-Hurwitz conditions
for stability of fixed points, we must accomplish some transformations of system (1). Hence,
we obtain ...

y = −b
..
y− .

y− (a + b)y + ay2. (5)

Let us denote
w = y− y0. (6)

After substitution of (6) into (5), Equation (5) takes the form

...
w = −b

..
w− .

w + cw + aw2, (7)

where c = a(2y0 − 1)− b and y0 is the equilibrium states O1(y = 0) or O2

(
y = 1 + b

a

)
.

On the other hand, let
..
w = y1,

.
w = y2, w = y3. (8)
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Substituting (8) in (7), we obtain a system of three first-order differential equations in
the form .

y1 = −by1 − y2 + cy3 + ay2
3,

.
y2 = y1,
.
y3 = y2.

(9)

The Routh-Hurwitz conditions for stability of O1 and O2 can be written in the
form [12]:

p = b > 0,
q = 1 > 0,
r = −c = −a(2y0 − 1) + b > 0,
R = pq− r = b + c = a(2y0 − 1) > 0.

(10)

The notations p, q, r and R are taken from [12]. The characteristic equation of the
system (9) (which is equivalent to system (1)) has the form

χ3 + pχ2 + qχ + r = 0. (11)

According to [9,12], the boundaries of the stability region for three-dimensional sys-
tems, are two surfaces: Ψ1(R = 0, p > 0, q > 0) and Ψ2(r = 0, p > 0, q > 0). On the first
surface R = 0, the characteristic equation (11) has a pair of purely imaginary roots as in
this case an Andronov-Hopf (AH) bifurcation takes place, and at least one zero root on the
surface r = 0. It is well-known that Andronov-Hopf bifurcation can be: (i) supercritical
(soft loss of stability) and (ii) subcritical (hard loss of stability) [9,12,13,23,40]. In the bifur-
cation points (where R = 0), a positive first Lyapunov value represents a subcritical (hard
or irreversible) bifurcation and determines that the system possesses unstable solutions
but may fold back and exhibit unstable periodic solutions (oscillations) (unstable limit
cycle) coexisting with stable steady state. In this case the boundary of stability is called
“dangerous”. Inversely, a negative value for L1 predicts a supercritical (soft or reversible)
Andronov-Hopf bifurcation. Thus, the loss of stability takes place when stable periodic so-
lutions (self-oscillations/stable limit cycle) emerge from a transition through the bifurcation
point. Now, the boundary of stability is called ‘safe’.

It is seen that for first and second fixed points we have: r(1) = a+ b, R(1) = −a; r(2) =
−a− b; R(2) = a + 2b. According to [12,23,40,41], we obtain the formula describing the
first Lyapunov value for our system and calculate its value in the calculated bifurcation
points (for more details, see Appendix A). Thus, for L1, we write:

L1(λ0) =
πa2

2b(b2 + 4)∆2
0

[
bc
(

b2 + 6
)
− 3b2 − 8

]
, (12)

where ∆0 = 1− bc, and λ0 is defined as a value of a and b for which the relation R = 0
takes place. It is clear that: (i) for a = 0, b > 0, then R(1) = 0 and L1 = 0, i.e., the
first fixed point O1 is structurally unstable; (ii) for a = −2b, b > 0, then R(2) = 0 and
L1 = − 2πb

(b2+4)(1+b2)
2

(
b4 + 9b2 + 8

)
< 0. Hence, according to [9,10,12], a soft stability loss

takes place, i.e., in the case of transition through the AH boundary (R = 0) from positive
values to negative ones, a stable limit cycle (self-oscillations) emerges. Conversely, in the
case of a transition from negative values to positive ones the stable limit cycle disappears,
i.e., the self-oscillations cease. In the following Section 3, we demonstrate numerically this
type of behavior.

2.2. Special Cases
2.2.1. Conservative Case

It is well-known that conservative systems play an important role in many mathemat-
ical and mechanical problems [11,42,43]. The equations of motion of such systems can be
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obtained from their Hamiltonian. A one-dimension system, with position coordinate y,
momentum x and Hamiltonian H(x, y) has equations of motion

.
y =

∂H(x, y)
∂x

,
.
x = −∂H(x, y)

∂y
. (13)

Here H(x, y) is a first integral because

.
x

∂H
∂x

+
.
y

∂H
∂y

=
d
dt

H ≡ 0, (14)

i.e., H remains constant along the trajectories. In other words, H is a conserved quantity
(constant of the motion). It is important to note that the existence of a first integral is useful
because of the connection between its level curves and the trajectories of the system.

For a = b = 0, the system (1) reduces to a planar
(

R2) Hamiltonian system with
Hamiltonian (first integral)

H(x, y) =
x2

2
+

y2

2
− Cy = h, (15)

where C is a real constant. This integrable system has a fixed point O(0,−C) of center
type, i.e., the trajectories in a neighborhood of fixed point are periodic (if C = 0), or of
saddle type (if C 6= 0). Note here that, the following center forms exist: linear type center,
nilpotent center and degenerate center. If the fixed point is of a focus or a center type, we
say that it is monodromic singular point [44]. When C = 1, the equilibrium state O is a
saddle at the level H = 3

2 . It is easy to see that, in this case, the general solution reeds

x(t) = c1 cos(t)− c2 sin(t),
y(t) = c2 cos(t) + c1 sin(t)− c3,
z(t) = c3,

(16)

where c1, c2, and c3 are real constants.

2.2.2. Dissipative Case

Let us view the situation when a = 0 and b > 0. Then for system (1) we have

.
x = −y− z,
.
y = x,
.
z = −bz,

(17)

i.e., we obtain a linear 3D autonomous system. It is seen that the last equation into (17)
contains only the variable z. Thus, after a direct calculation, we derive from the third
equation of system (17) that for z 6= 0,

|z| = c3e−bt, (18)

where |−bt| < +∞. On the other hand, the differential equation

dx
dy

=
−y− z

x
, x 6= 0 (19)

has solutions on the plane
x2

2
+

y2

2
+ yc3e−bt = h1, (20)

where h1 is a real constant. Note that the module of z is strictly bounded below by b > 0
and t→ +∞ , i.e., z(t) satisfies |z| → 0 .



Mathematics 2021, 9, 352 6 of 17

A noteworthy, easily derivable analytical solution is this:

x(t) = c1 cos(t)− c2 sin(t)− c3
1

1+b2 (b cos(t) + sin(t)− b exp(−bt)),
y(t) = c2 cos(t) + c1 sin(t)− c3

1
1+b2 (b sin(t)− cos(t) + b exp(−bt)),

z(t) = c3 exp(−bt),
(21)

where similar to the previous case c1, c2, and c3 are real constants.

2.3. Global Analysis

These bifurcations for which it is insufficient to consider small local surroundings
near the equilibrium states or the limit cycles are called global. They lead to qualitative
change in the stable and the unstable manifolds of the states of equilibrium and/or the
limit cycles. One of these situations is the occurrence of a loop of the separatrices of
one and the same saddle (steady state) [14,45]. For a ∈ [−1.51, 1] and b ∈ (0.29, 0.8] we
obtain [34] that the two fixed points O1 and O2 at bifurcation parameters a and/or b are
of saddle-focus type: (i) unstable focus-negative real eigenvalue and complex eigenvalues
with positive real part (see Figure 1 left panel); (ii) stable focus-positive real eigenvalue
and complex eigenvalues with negative real part (see Figure 1 right panel). Note that for
some subintervals the fixed point O2 can be of stable focus type. These two fixed points
can be included in homoclinic/heteroclinic structures of Shilnikov type, where their stable
and unstable invariant manifolds (Ws and Wu), are meeting each other in a most intricate
manner. The structure of phase space near homoclinic loop essentially depends on the
saddle index δ, i.e., when δ > 1, a simple dynamics takes place, and when δ < 1, a complex
dynamics can be seen.
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It is well-known that the existence of a homoclinic/heteroclinic cycle is one of the com-
mon manners of the formation or disappearance of a limit cycle, when the limit cycle em-
anates from, or approaches the heteroclinic cycle as a singular limit, respectively [14,45,46].
There are known situations in which a unique limit cycle is born, and certain criteria can be
used to determine if this limit cycle must be stable or unstable. As we mentioned above,
the system (1) has steady states of saddle-focus type. Therefore, in our case the Shilnikov
theory for analyzing of bifurcations of homoclinic/heteroclinic trajectories and existence
of complex dynamics (chaos) in flow in R3 can be used [24]. In this connection, in the
Appendix B, we explain shortly the general results obtained by Shilnikov. On the other
hand, historically, the four-dimensional case was considered in 1967 [47], and the general
case-three years later in [25].

For the system (1), if: (1) a = −1.5, b = 0.6, (2) a = −1, b = 0.35 and (3) a = b = 0.5
the equilibriums (fixed points) and their eigenvalues are given by:

Case 1. O1(0, 0, 0), then (χ1, χ2, χ3) = (0.5508,−0.5754± 1.1414i), 0.5 < δ = 0.957 < 1;

O2(0, 0.6,−0.6), then (χ1, χ2, χ3) = (−0.7855, 0.0928± 1.0664i), δ = 0.1181 < 0.5.

Hannah van der Zande
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Case 2. O1(0, 0, 0), then (χ1, χ2, χ3) = (0.4694,−0.4097± 1.1031i), δ = 1.146 > 1;

O2(0, 0.65,−0.65), then (χ1, χ2, χ3) = (−0.5754, 0.1127± 1.0569i), δ = 0.196 < 0.5.

Case 3. O1(0, 0, 0), then (χ1, χ2, χ3) = (−0.8038, 0.1519± 1.105i), δ = 0.189 < 0.5;

O2(0, 2,−2), then (χ1, χ2, χ3) = (0.6015,−0.5507± 1.1659i), δ = 1.092 > 1.

Since the complex exponents χ2,3 for the saddle-foci O2 (in Cases 1 and 2) and O1 (in
Case 3) are nearest to the imaginary axis, the homoclinic loop implies the emergence of
infinitely many periodic orbits of saddle type. Moreover, since the second saddle value
σ1 (see Appendix B) is negative, then near the homoclinic loop may exist stable periodic
orbits along with saddle ones. Note that these stable orbits are with long periods and have
weak attraction basins, i.e., they are practically invisible in numerical experiments.

Interestingly, when the equilibrium states O1 (in Cases 1 and 2) and O2 (in Case 3)
have exponents (dimWu = 1, dimWs = 2), the second saddle value σ1 is also negative and
therefore in a small neighborhood of the homoclinic loop there are stable periodic orbits.
Moreover, the condition 0.5 < δ < 1 in this case is necessary to exclude the transition to
complex dynamics via codimension-two bifurcations of homoclinic loop(s) [9,14,48]. Note
here that these bifurcations of homoclinic loops are essential for bifurcation behavior in the
Lorenz system [30].

Finally, we will remark the following fact: at the non-trivial equilibrium O2, the
homoclinic bifurcations always started/finished from the super-critical Andronov-Hopf
bifurcation (the first Lyapunov value is negative).

3. Numerical Investigation

In the considered case here, some of the known analytical techniques and results
are not applicable [16,49,50], and we are forced to use numerical calculations and specific
features of system (1). Hence, in this section we find some new results for its bifurcation
behavior and route to chaos. In order to compare the analytical predictions with numerical
results, the governing equations of system (1) were solved numerically using MATLAB
(The MathWorks, Inc., Natick, MA, USA). Consider the numerical technique (based on the
initial value problem) used here, we note that it does not allow to detect and numerically
trace periodic orbits and predict their bifurcations. In this case, a possibility is to use the
systematic numerical approach presented in [51].

Figure 2 shows bifurcation diagrams for the system (1): (a) and (c) values of y coor-
dinate versus b; and (b) and (d) values of z coordinate are plotted against b regarded as a
continuously varying control (bifurcation) parameter, when the parameter a = −1.51 is
fixed. It is seen that for b ∈ [0.495, 0.524] the system is chaotic. On a further increase of
the bifurcation parameter b, the system (1) exhibits inverse period-doubling bifurcations
leading to a periodic motion.

A more detailed investigation of the system (1) in the region b ∈ [0.52, 0.6] is shown in
Figure 2c,d, i.e., when the bifurcation parameter b varies in narrower ranges. Practically,
we observe in this interval a cascade of inverse period-doubling bifurcations when the
fixed points O1 and O2 are of saddle-focus type, i.e., O1 possesses a 2-dimensional stable
manifold and a 1-dimensional unstable manifold, and O2 possesses a 2-dimensional unsta-
ble manifold and a 1-dimensional stable manifold. It is interesting to note that O2 becomes
stable focus (dimWs = 3, dimWu = 0) after b = 0.75 and remains stable till the end of the
interval b ∈ (0.75, 0.8]. In other words, as a result of the evidences shown in Figure 2a,b,
we can conclude that a stable limit cycle (small amplitude attenuation oscillations) with
period one occurs when O2 becomes stable focus-see for details Figure 3. Denote here that
for b ∈ [0.77, 0.8] the system (1) has only stable solutions-the self-oscillations cease. These
numerical results (calculations) are in exact accordance with the corresponding analytical
results obtained for first Lyapunov value in previous Section 2.1.

Hannah van der Zande
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Figure 2. Bifurcation diagrams: (a,c) y(t) versus b; and (b,d) z(t) versus b, generated by computer solution of the system
(1) at a = −1.51. The initial conditions are x(0) = y(0) = z(0) = 0.1. Note that b ∈ [0.495, 0.77] in (a,b); and b ∈ [0.52, 0.6]
in (c,d).

In Figure 4 the bifurcation diagrams of the system (1) when a = −1 are shown. It can
be seen that at b ∈ [0.315, 0.32] chaotic solution occurs. In analogy with the previous case,
the system passes from chaos to regular motion after inverse period-doubling bifurcations.
In this case the fixed points O1 and O2 are also of saddle-focus type, i.e., O1 possesses a
2-dimensional stable manifold and a 1-dimensional unstable manifold, and O2 possesses a
2-dimensional unstable manifold and a 1-dimensional stable manifold. Here O2 becomes
stable focus after b = 0.5 and remains stable till the end of the interval b ∈ (0.75, 0.65]. It is
interesting to note that here the system (1) has regular solutions at the beginning and in the
end of the interval for the control parameter b. Comparing Figures 2 and 4 we conclude
that in the case, when a = −1.51 the chaotic zone is longer than those obtained in Figure 4
for a = −1. It is interesting to note that inverse period-doubling bifurcations can be seen in
many experimental systems, for example triple physical pendulum [52]. Thus, it is possible
to detect the hysteresis phenomena, i.e., it is expected that bifurcation diagrams presented
in Figure 4 will be different with increase and decrease of the parameter b.

Figure 5 shows bifurcation diagrams for the system (1): (a) and (c) values of y coor-
dinate versus a; and (b) and (d) values of z coordinate are plotted against a regarded as
a continuously varying control (bifurcation) parameter, when the parameter b = 0.5 is
fixed. Similar to the previous case for a = −1.51 (see Figure 2), initially the system (1) is
chaotic. On a further increase of the bifurcation parameter a, the system (1) exhibits inverse
period-doubling bifurcations leading to a periodic motion-stable limit cycle according to
analytical results obtained for first Lyapunov value in Section 2.1. The white zones, seen in
Figure 5a,b, correspond to very fast inverse period-doubling bifurcations-see Figure 5c,d.
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Figure 4. Bifurcation diagrams: (a) y(t) versus b; and (b) z(t) versus b, generated by computer solution of the system (1) at
a = −1. The initial conditions are x(0) = y(0) = z(0) = 0.1. Note that b ∈ [0.29, 0.65].

In Figure 6, the Andronov-Hopf bifurcation curve (boundary of stability loss R = 0)
of the fixed point O2 is shown for different values of the bifurcation parameters a and
b. Following [9,10,12,23] and results obtained in previous Section 2.1 for first Lyapunov
value, we conclude that this boundary of stability is “safe”, and a soft stability loss occurs.
Therefore, the transformation into/from chaos is related to a soft loss of stability, i.e., the
fixed point O2 is a stable weak focus on the stability boundary.
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Figure 6. Bifurcation diagram of system (1) at fixed point O2, when and b ∈ [0.05, 0.755]. Here we
note that R = 0 is boundary for Andronov-Hopf bifurcation (AH).

In Figure 7 we show the bifurcation diagrams of the system (1) when a ∈ [0.1, 0.51]
and b = 0.5. In this case the system (1) demonstrates a period-doubling route to chaos-a
steady state loses its stability and simultaneously a new orbit of doubled period is created.
Here the fixed points O1 and O2 are of saddle-focus type in all interval for bifurcation
parameter a, i.e., O1 possesses a 2-dimensional unstable manifold and a 1-dimensional
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stable manifold, and O2 possesses a 2-dimensional stable manifold and a 1-dimensional
unstable manifold. It is interesting to note that when a = 0.51 and b = 0.5, the system has
pseudo-chaotic (order in chaos) behavior for very short intervals of time-see for details
Figure A4.
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at b = 0.5. The initial conditions are x(0) = y(0) = z(0) = 0.1. Note that a ∈ [0.1, 0.51].

Finally, discussing the results shown in Figure 5c,d, Figure 7c,d, it is seen that an
apparent sudden collapse/appearance in the chaotic attractor size occurs at a value of
control parameter a ≈ −1.464 (or a ≈ 0.465). According to [53–56], such a sudden
qualitative change in a chaotic attractor is called interior crisis. It is in a good agreement
with our analytical results obtained in Section 2, the Theorem explained in Appendix B
and the numerical results in the Appendix C—see Figures A1 and A2.

4. Conclusions

The paper presents a study of the dynamic behavior of the so-called Rössler prototype-4
system, using analytical and numerical tools. The governing differential equations of system
(1) were solved numerically using MATLAB (The MathWorks, Inc., Natick, MA, USA). For
all simulations the initial conditions were x(0) = y(0) = z(0) = 0.1. The analytical and
numerical results lead to the following comments: (1) the system (1) has two fixed points
of saddle-focus type, and therefore homoclinic/heteroclinic structures of Shilnikov type
take place; (2) for values of the coefficients a and b different from these in [4], the system (1)
has chaotic solutions; (3) the original system (1) can be presented in the form of a linear
oscillator with one nonlinear automatic regulator; (4) the route chaos starts/finishes from a
soft (reversible) loss of stability; (5) for a = 0.51 and b = 0.5, the system has pseudo-chaotic
(order in chaos) behavior for very short intervals.

Hannah van der Zande

Hannah van der Zande
the parts regardig saddle-focus type and link to chaos.
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Generalizing the numerical results shown in Figures 2–7 and those in Appendix C for
Rössler prototype-4 system (1), we can conclude that: (i) for values of bifurcation parameter
b ∈ [0.495, 0.524] (for a = −1.51), the system is in a chaotic regime. In result of inverse
period-doubling bifurcations, for values of b > 0.54, the system has only regular solutions
with different period; (ii) for values b ∈ [0.315, 0.32] (when a = −1), the system (1) is in a
chaotic state, as for b ∈ (0.32, 0.65] period-doubling bifurcations take place. For b = 0.5,
a stable limit cycle emerges whose period is one; iii) for values of bifurcation parameter
a ∈ [−1.51,−1.4] or a ∈ [0.41, 0.51] (for b = 0.5), the system (1) has chaotic/regular
solutions. In these intervals for a, very fast inverse period-doubling bifurcations and
so-called interior crisis take place.
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Appendix A

Analytical calculation of first Lyapunov value—L1(λ0)

In the case of three nonlinear ODEs, the first Lyapunov value can be determined
analytically by the formula in [12]:

L1(λ0) =
π
4q

[
2
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33 A(3)
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(A1)

where ∆0 = 1− bc, and λ0 is defined as a value of a and b for which the relation R = 0
takes place. The coefficients An

ij and An
ijk (i, j, k, n = 1, 2, 3) are defined by corresponding

formulas presented in [12].
After accomplishing some transformations and algebraic operations for the coefficients

An
ij and An

ijk, we obtain:

A(1)
22 = 1

∆0
α′11a, A(2)

22 = A(2)
12 = 1

∆0
α′21a, A(3)

22 = A′31 = 1
∆0

α′31a,

A(1)
33 = A(2)

33 = A(3)
33 = A(1)

23 = A(2)
23 = A(2)

13 = A(3)
13 = A(2)

222 = A(3)
333 = A(2)

233 = A(3)
223 = 0.

(A2)

https://www.scopus.com/search/form.uri?display=basic#basic
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https://apps.webofknowledge.com/WOS_GeneralSearch_input.do?product=WOS&search_mode=GeneralSearch&SID=D5mCh5CCu8VaTeN1Hdr&preferencesSaved=
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Here, we note that

∆0 = det

∣∣∣∣∣∣
α11 α12 α13
α21 α22 α23
α31 α32 α33

∣∣∣∣∣∣ = 1− bc, (A3)

where
α11 = −bc, α21 = c, α31 = α32 = 1,
α12 = α23 = −1, α22 = α13 = α33 = 0.

(A4)

From the previous formula (A3), we obtain that

α′11 = α22α33 − α23α32 = 1, α′21 = α21α33 − α23α31 = −1, α′31 = α21α32 − α22α31 = c (A5)

Hence, after substitution of (A2) and (A5) into (A1), for first Lyapunov value we have:

L1(λ0) =
πa2

2b(b2 + 4)∆2
0

[
bc
(

b2 + 6
)
− 3b2 − 8

]
. (A6)

Appendix B

Shilnikov criteria for chaos

We consider here a three dimensional autonomous system

.
x =

dx
dt

= f (x, µ), x ∈ R3, µ ∈ R1 (A7)

where the nonlinearity f is sufficiently smooth for the results to hold. It is well-known
that if the system (A7) has fixed points of saddle-focus type, then the Shilnikov theory for
analyzing of bifurcations of homoclinic/heterclinic orbits and existence of chaos can be
used [11,24,25,57,58]. The Shilnikov criteria for saddle-focus equilibria can be summarized
in the following theorem [20,58,59]:

Theorem A1. Suppose that system (A7) has at µ = 0 a saddle-focus equilibrium point x0 = 0
with eigenvalues χ1(0) > 0 > Reχ2,3(0) and a homoclinic orbit Γ0. Assume the following
genericity conditions:

Hypothesis 1 (H1). σ0 = χ1(0) + Reχ2,3(0) < 0;

Hypothesis 2 (H2). χ2(0) 6= χ3(0);

Hypothesis 3 (H3). β′(0) 6= 0, whereβ(µ) is the split function;

Hypothesis 4 (H4). σ0 = χ1(0) + Reχ2,3(0) > 0.

Hence, (i) if the conditions (H1–H3) are valid then system (A7) has a unique and stable limit
cycle Lβ in a neighborhood U0 of Γ0 ∪ x0 for all sufficiently small β > 0; (ii) if the conditions H2
and H4 are valid then system (A7) has an infinite number of saddle limit cycles in a neighborhood
U0 of Γ0 ∪ x0 for all sufficiently small |β|.

Remark (about part (i) of Theorem A1). 1. For all sufficiently small β ≤ 0 (where the split
function is a functional defined on the original and perturbed systems), the system (A7) has no
periodic orbits in U0 and the unstable manifold Wu(x0) tends to the cycle Lβ;

2. For β = 0, the cycle period tends to infinity.

Remarks (about part (ii) of Theorem A1). 1. For β taking positive or negative values, an
infinite number of bifurcations occur. Some of these bifurcations are related to a “basic” limit cycle;
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2. The “basic” cycle disappears and appears via tangent/fold bifurcation infinity many times.
Moreover, the cycle also exhibits an infinite number of period-doubling bifurcations;
3. The “basic” cycle and the secondary cycles generated by period-doublings can be stable or
repelling, depending on the sign of the divergence of (A7) at the saddle-focus, i.e.,

σ1 = (div f )(x0, 0) = χ1 + 2Reχ2,3. (A8)

If σ1 < 0 the “basic” cycle near the bifurcation is stable only in short intervals of β. If σ1 > 0
there are intervals where the “basic” cycle is absolutely unstable (repelling);
4. For βi → 0(βi > 0) , the system (A7) has double homoclinic loops with different (increasing)
number of rotations near the saddle-focus.

Initially it was assumed that n− = dimWs = 2 and n+ = dimWu = 1. To apply the
above results in the opposite case—n− = 1, n+ = 2, we have to reverse the direction
of time. Thus, the following substitutions are valid: χj → −χj, σi → −σi and “stable”
→ “repelling”.

Appendix C
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