RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE INSTITUT FÜR GEOMETRIE UND PRAKTISCHE MATHEMATIK

Störungstheorie dynamischer Systeme

Heinz Hanßmann

4. Übungsblatt

Aachen, den 29.4.2008

Sommersemester 2008

7. Sei $(x_1(t), y_1(t))$ eine Lösung des reversiblen Systems

$$\dot{x} = g(x, y)$$

$$\dot{y} = h(x, y)$$

auf \mathbb{R}^{2p} . Zeige, daß $(x_2(t), y_2(t))$ mit $x_2(t) = x_1(-t)$ und $y_2(t) = -y_1(-t)$ ebenfalls eine Lösung ist.

8. Sei $T \in GL_n(\mathbb{R})$ gegeben. Zeige, daß T genau dann einen reellen Logarithmus hat, d.h. $T = \exp A$ mit $A \in M_{n \times n}(\mathbb{R})$, wenn es $S \in GL_n(\mathbb{R})$ mit $S^2 = T$ gibt. Hinweis: Fasse erst $T \in GL_n(\mathbb{C})$ auf und berechne den komplexen Logarithmus. Nimm (wenn nötig) an, daß T halbeinfach ist.