RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE INSTITUT FÜR GEOMETRIE UND PRAKTISCHE MATHEMATIK

Störungstheorie dynamischer Systeme

Heinz Hanßmann

5. Übungsblatt

Aachen, den 6.5.2008

Sommersemester 2008

- 9. Sei $\dot{x} = f(x)$ eine Differentialgleichung auf \mathbb{R}^4 mit f(0) = 0 und Linearteil A = Df(0) in diesem Gleichgewichtspunkt. Die Eigenwerte von A liegen alle auf der imaginären Achse und werden durch $\pm i\omega$ und $\pm 2i\omega$ gegeben. Wie sieht die Normalform von f aus ? Was für eine Symmetrie hat diese ?
- 10. Definiere auf $\mathbb{T} := \mathbb{R}/\mathbb{Z}$ (ein Kreis mit Radius $\frac{1}{2\pi}$) zu gegebener Rotationszahl $\rho \in \mathbb{R}$ die Drehung $R : x \mapsto x + \rho \pmod{1}$. Zeige, daß für $\rho \notin \mathbb{Q}$ jede Bahn $\{x, R(x), R^2(x), \ldots\}$ in \mathbb{T} dicht liegt. Was gilt für $\rho \in \mathbb{Q}$?

Sei nun $\dot{x}_1 = 1$, $\dot{x}_2 = \omega$ eine Differentialgleichung auf $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$. Zeige, daß für $\omega = \frac{p}{q} \in \mathbb{Q}$ (vollständig gekürzt) alle Bahnen periodisch sind, und zwar mit (minimaler) Periode q. Zeige weiter, daß für $\omega \notin \mathbb{Q}$ jede Trajektorie den Torus \mathbb{T}^2 dicht umspinnt. *Hinweis:* Definiere eine Poincaréabbildung auf $\{x = 1\}$ und verwende den ersten Teil der Aufgabe. Wie kann man die Bahn im Quadrat $[0,1]^2 \subseteq \mathbb{R}^2$ darstellen ?