RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE INSTITUT FÜR GEOMETRIE UND PRAKTISCHE MATHEMATIK

Störungstheorie dynamischer Systeme

Heinz Hanßmann

10. Übungsblatt

Aachen, den 17.6.2008

Sommersemester 2008

- 19. Führe das KAM-Theorem auf den Fall $\gamma=1$ zurück. Hinweis: Skaliere die Zeit. Was passiert dabei mit dem Frequenzbereich Σ ?
- 20. Das Vektorfeld Yauf $T^n\times \mathbb{R}^n$ sei affin in y, d.h.

$$Y(x,y) = u(x)\frac{\partial}{\partial x} + (v(x) + w(x) \cdot y)\frac{\partial}{\partial y} .$$

Zeige, daß dann auch die Zeit-1-Abbildung ψ von Y affin in y ist, d.h. $\psi(x,y) = (x+a(x),y+b(x)+c(x)\cdot y)$. Zeige weiter, daß affine Koordinatenwechsel mit a'(x), $c(x) \neq -1$ $\forall_{x \in \mathbb{T}^n}$ eine Gruppe bilden.