RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE INSTITUT FÜR GEOMETRIE UND PRAKTISCHE MATHEMATIK

Störungstheorie dynamischer Systeme

Heinz Hanßmann

11. Übungsblatt

Aachen, den 1.7.2008

Sommersemester 2008

21. Definiere auf $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ (ein Kreis mit Radius $\frac{1}{2\pi}$) die zweiparametrige Familie

$$R_{\rho,\varepsilon}: x \mapsto x + \rho + \varepsilon f(x) \pmod{1}$$

von gestörten Drehungen. Formuliere ein Iterationsschema von Koordinatentransformationen, welches versucht, $R_{\rho,\varepsilon}$ zu starren Drehungen zu konjugieren. Skizziere für "allgemeine Störungen f" die Menge von Parameterwerten in der (ρ,ε) -Ebene, in welcher dies Aussicht auf Erfolg hat.

22. Definiere auf $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ die zweiparametrige Familie

$$R_{\rho,\varepsilon}: x \mapsto x + \rho + \varepsilon \sin(x) \pmod{1}$$

von gestörten Drehungen. Berechne die Teilmenge in der (ρ, ε) -Ebene auf welcher $R_{\rho,\varepsilon}$ einen Fixpunkt hat. Welche Verzweigung findet auf den Randkurven statt? Zusatzaufgabe: Dasselbe für Bahnen der Periode 2 (sowie 3, 4, . . .).