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1 Generalised equivariant elliptic cohomology

Elliptic cohomology is a familiy of cohomology theories. There is one ellip-
tic cohomology for every elliptic curve E, subject to a certain condition called
Landweber exactness. When working over rings of characteristic zero the Landwe-
ber exactness condition is trivially satisfied, and every elliptic curve E (over any
Q-algebra k) has an associated elliptic cohomology theory. We denote it £04%;.
Its ring of coefficients is given by

Ly (pt) = k[w*] = @w@’",

nez

where w is the k-module of invariant differentials on F.

Given a bicommutant category T, we have reasons to believe that there exists
such a thing as T -equivariant elliptic cohomology. In this article, we construct
such a theory when the ring of definition of the elliptic curve has characteristic
zero and when the bicommutant category satisfies a certain finiteness condition.
The corresponding theory is denoted &40 7. Even though we call this an
‘equivariant’ cohomology theory, it is a just a cohomology theory in the usual
sense: the spaces on which this cohomology theory is defined are not equipped
with any kind of action.

We will not enter into the details of the finiteness assumptions that 7 should
satisfy. All that we’ll need is the assumption that the Drinfel’d center of T is
a modular tensor category. The T-equivariant elliptic cohomology £00g 7 is a
module over the non-equivariant elliptic cohomology £¢¢%;, and satisfies

EUy 7 (X) = EL0y 7 (pt) g H'(X,Q)  and
EL, 1 (pt) = EUG 7(pt) Deg (o) EU(pt) = ECLY (pt) [w™]
By the above formulae, in order to define the cohomology theory E€03; 1, it is

enough to describe the k-module 566%7T(pt). We will define the latter so as to
only depends on the elliptic curve E and the modular tensor category Z(T).



2 Reshetikhin-Turaev state spaces for elliptic curves
over rings

Another way of describing the goal of this paper is that it produces a general-
ization of Reshetikhin-Turaev state spaces.

Given a modular tensor category C over C and a compact oriented surface
>, the Reshetikhin-Turaev construction associates to the above data a complex
vector space RT¢(X). We generalize this to a setup where the surface X is
replaced by an elliptic curve E over some ring k of characteristic zero. When
k = C, our construction recovers the usual Reshetikhin-Turaev state space. This
new Reshetikhin-Turaev state space RT¢(F) is a k-module, it is one and the
same thing as the generalized equivariant elliptic cohomology discussed in the

previous section:
RTy(7(E) = £l 7(pt).

Overall goal: Given a modular tensor category C over the complex numbers,
and an elliptic curve E over a ring k of characteristic zero, we want to construct
a k-module

RT:(E).

Construction: Let r be the rank of C (the number of simple objects). Let n
be an integer such that the representation SL(2,Z) — GL(r,Q,p) given by the
(normalised) modular S and T matrices factors as

SL(2,7Z) —— GL(r,Qu)

| 1

SL(2,Z/nZ) — GL(r,Q[C.)).
Ar——— M(4)

Here, ¢, is a primitive nth root of unity, and Qu, = (U,, Q[¢]

Let E[n| be the group scheme of n-torsion points of E. By étale descent,
it is enough to define RT¢(E) when the étale map E[n] — Spec(k) is trivial
(isomorphic to Spec(k) x Z/nZ). If E[n] is not trivial, we let Spec(k)[™ be the
scheme whose S-points consist of a point x : S — Spec(k) and an isomorphism
(Z/n7Z)? = E[n)., where E[n], is the set of lifts S — E[n] of z. We then define

GL(2,Z/nZ)
RTC(E) = RTC (E XSpec(k) Spec(k)["]) .

We have therefore reduced the problem of defining RT¢(F) to the special case
when FE[n| — Spec(k) is a trivial bundle (this implies in particular that k& has
enough nth roots of unity).

This is where the construction really starts:



Pick a trivialisation ¢ : (Z/nZ)? — E[n], and define
RT:(E) := k.

Given two trivialisations @1, @9 : (Z/nZ)? — E[n], we need to provide an iso-
morphism

f12 kT — kT
Let

A12 = (p;l(pl and A12 = (det(6412) (1))_1 A12 € SL(2,Z/’I’LZ)

The map
det(v1) : Z/nZ — det Eln] = uy,

(where the isomorphism det E[n] & p,, comes from the Weil pairing) induces a
field homomorphism

a1 : Q] — k.

We define B
f12 = Ozl(M(Alg)) S GL(T‘, k)

For the above definition to be consistent, we need to verify that given three
isomorphisms 1, 2, @3 : (Z/nZ)* — E[n] the cocycle condition fa3 0 fi2 = fi3
holds.

We have

fa3 0 fi2 = caa(M(Azs))ar (M (A1)
{5 ) 47 1)

and
fis = (M( (detlchia) 0y~ )Alg) € GLa(r, k).
Apply a7 ' to both expressions:
o7 (fas f12) = a7 M (M( (40610 0) 7 Agg ) ) M (A1)
ar'(fis) = M( ((detletia) (1))71 A13)
= ([ (et §) 7T () §) 7 Agy (G 0) A, )
() Ty () ()
So we are reduced to checking the following equation:
(4 () 2 20900 2) g (230 ).

Recall that o] *ay = det(¢; *ws) : Z/nZ — Z/nZ is multiplication by det(A;2)~".
The above equation follows from a general fact about modular S and T matrices:



Lemma 1. If u € (Z/nZ)* (i.e. u € Z/nZ is coprime to n) and M is the
representation of SL(2,7Z/nZ) coming from a modular category, then we have

ou(M(4) =M (5D AN ™).

Here, o, € Gal(Q[¢,]/Q) = (Z/nZ)* denotes the Galois automorphism associ-
ated to w € (Z/nZ)*.

Proof. Both sides are multiplicative in A, since o, (M (AB)) = 0, (M (A))o,(M(B))
and

M((DABGED ™) =M (GDAGH T GHBGEN ™)
M (DA )M (EHBED ™)

(even though (¥ 9) & SL(2,Z/nZ)).

So we only need to verify the identity on the generators s = ? _01) and
t = (1) of SL(2,Z/nZ). We write S = M(s) and T = M(t). These then
reduce to a couple of known facts about modular data.

For A = s, we note that

_ —1 0 —u u —
EDEEDT =00 = (6.2 0%,
and that both of these matrices are in SL(2,Z/nZ). Let Gy := M (§ u91 ) (the
matrices Gy for £ € (Z/nZ)* are the signed permutation matrices realizing the

action of the Galois group on the simple objects of the modular category). We
have

og

u 0 —
M((5,%) (170)) = GuS,
and as the Galois group actions on the simple objects and on the field are related

by the formula G¢S = 04(S) [1, Prop 2.2], we have the desired result.
For A =t, the computation is simpler:

BNGHEH T =Gy =t

so M((g9)¢( 9)71) = T, Since T is diagonal with diagonal entries which
are n-th roots of unity, we also have o, (T') = T". O

Questions:

e If one takes T = Vec[G] for the finite group G = Z/mZ, in other words, if
one takes C = Vecg[G], then the resulting RT k-module should be Ogyy,).

o If one takes S = (1) and T = ((3), then the resulting RT k-module should
be w®? (recall that w®!2 is canonically trivial over MY ).

e Fix the elliptic curve E. Show that the construction 7 +— RTz ) (E)
extends to a functor. Given a bimodule category 7, Mr,, there should be an
associated linear map RT(7;)(E) — RTz7;)(E).

e Fix C. And look at E +— RT¢(E): this is a rank r vector bundle over the
moduli stack of elliptic curves M%l. One can try to compute its global sections.
That’s a module over the ring Q[gz, g3] of modular forms. What is that module?
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