** The main papers on automorphisms of manifolds:**

-M. Weiss and B. Williams *Automorphisms of manifolds* Surveys on Surgery Theory vol. 2, 2001 (the "big picture").

-M. Weiss and B. Williams *Automorphisms of manifolds and algebraic K-theory I* K-theory 1, 1988, no. 6, 575--626.

-M. Weiss and B. Williams *Automorphisms of manifolds and algebraic K-theory II* JPAA vol 62, 1989, 47--107.

-M. Weiss and B. Williams *Automorphisms of manifolds and algebraic K-theory III* finished *very* recently (beware of typos!).

-W. Dwyer, M. Weiss and B. Williams.
*A parametrized index theorem for the algebraic K-theory Euler class*
Acta Math. 190, 2003, no. 1, 1--104.

** Other sources on automorphisms of manifolds:**

-J. Rognes Lectures on the stable parametrized *h*-cobordism theorem introductory lectures given in Bonn.

-J. Rognes Two-primary algebraic *K*-theory of spaces, and related spaces of symmetries of manifolds Algebraic K-Theory,
AMS Proc. Symp. Pure Math. 67, 1999, 213--229.

** Surgery theory:**

-J. Milnor.
*Morse theory*
Annals of Mathematics Studies, No. 51
Princeton University Press, Princeton, N.J. 1963

-J. Milnor.
*Lectures on the h-cobordism theorem*
Princeton University Press, Princeton, N.J. 1965

-W. Lück.
*A basic introduction to surgery theory*
ICTP Lecture Notes Series 9, Vol 1, of ``High-dimensional manifold theory'' 2001. (specially chapters 3-5).

-A. Ranicki.
*Algebraic and geometric surgery*
Oxford Mathematical Monographs, 2002 (specially chapters 9-13).

-S. Weinberger.
*The topological classification of stratified spaces*
Chicago Lectures in Mathematics, 1994 (chapters 2-3 form a good quick survey).

-C. Wall.
*
Surgery on compact manifolds*
Mathematical Surveys and Monographs, 69, 1999.

-F. Quinn.
*A geometric formulation of surgery* 1970, in
Topology of Manifolds, Proc. Inst., Univ. of Georgia, Athens, Ga., 1969, pp. 500--511.

-A. Ranicki
* High dimensional manifold topology then and now* slides (great overview of the subject).
*Surgery theory* slides (much lower level).

** Algebraic surgery:**

-A. Ranicki.
*Foundations of algebraic surgery*
ICTP Lect. Notes, 9, Vol 1 of "High-dimensional manifold theory" 2001.

-A. Ranicki.
* The structure set of an arbitrary space, the algebraic surgery exact sequence and the total surgery obstruction*
ICTP Lect. Notes, 9, Vol 1 of "High-dimensional manifold theory" 2001.

-A. Ranicki.
*
Algebraic L-theory and topological manifolds*
Cambridge Tracts in Mathematics, 102, 1992. (specially chapters 1,3-6, 9,11,18).

-M. Weiss.
*Surgery and the generalized Kervaire invariant*
Proc. London Math. Soc. 3, 51, 1985, no. 1, 146--192. (specially introduction and section 0).

-M. Weiss.
*Visible L-theory*
Forum Math. 4, 1992, no. 5, 465--498.

** K-theory:**

-J. Milnor.

-W. Lück.

-J. Rosenberg.

-C. Weibel

-F. Waldhausen.

-F. Waldhausen.

-F. Waldhausen.

-M. Weiss.

** Controlled K-theory:**

-D. Anderson, F. Connolly, S. Ferry, E. Pedersen.

-E. Pedersen, C. Weibel.

-E. Pedersen, C. Weibel.

-M. Weiss.

-A. Ranicki and M. Yamasaki,

-A. Ranicki and M. Yamasaki,

** Index theory:**

-M. Atiyah and I. Singer / M. Atiyah and G. Segal
*The index of elliptic operators*.

-D. Freed's notes on the Atiyah-Singer index theorem. (readable introduction)

-J. Roe.
*Index theory, coarse geometry, and topology of manifolds*
CBMS Regional Conference Series in Mathematics, 90.

-B. Lawson and M-L Michelsohn.
*Spin geometry*
Princeton Mathematical Series, 38.
Princeton University Press, Princeton, NJ, 1989.

-W. Dwyer, M. Weiss and B. Williams.
*A parametrized index theorem for the algebraic K-theory Euler class*
Acta Math. 190, 2003, no. 1, 1--104.

** Orthogonal calculus:**

-T. Goodwillie.
*Calculus. I. The first derivative of pseudoisotopy theory*
*K*-Theory 4, 1990, no. 1, 1--27.

-T. Goodwillie.
*
Calculus. II. Analytic functors*
*K*-Theory 5, 1991/92, no. 4, 295--332.

-T. Goodwillie.
*Calculus. III. Taylor series*
Geom. Topol. 7, 2003, 645--711, electronic.

-A. Bousfield and D. Kan.
*Homotopy limits, completions and localizations*
Lecture Notes in Mathematics 304, 1972.

-W. Dwyer and J. Spalinski.
*Homotopy theories and model categories*
Handbook of algebraic topology, 73--126, 1995.

-M. Weiss and B. Williams.
*Automorphisms of manifolds and algebraic K-theory, I*
K-theory 1, 1988, no. 6, 575--626. (sections 2-3 provide motivations and basic ideas).

-M. Weiss.
*Orthogonal calculus*
Trans. Amer. Math. Soc. 347, 1995, no. 10, 3743--3796 (more formal). See also the
*Erratum*
Trans. Amer. Math. Soc. 350, 1998, no. 2, 851--855.

** The map from L-theory to Tate K-theory:**

-M. Weiss and B. Williams

-M. Weiss and B. Williams

-M. Weiss and B. Williams

** Other:**

-J. Kelner
*The surgery theoretic classification of high-dimensional smooth and piecewise linear simply-connected manifolds* Harvard senior thesis, 2002.
(computes the homotopy type of G/PL and G/TOP).