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The assumption ts made that black holes should be subject to the same rules of  quantum 
mechanics as ordinary elementary particles or composite systems. Although a complete theory for 
reconciling this requirement with that of general coordinate transformation invariance is not yet 
in sight, a number of observations can be made and a general framework is suggested. 

1. Introduction 

In view of  the fundamental  nature of  both the theory of general relativity and 
that of  quantum mechanics there seems to be little need to justify any attempt to 
reconcile the two theories. Yet the essential academic interest of  the problem may 
be not our only motive. It seems to become more and more clear that "ordinary"  
elementary particle physics, in energy regions that will be accessible to machines 
in the near future, is plagued by mysteries that may require a more drastic approach 
than usually considered: the so-called hierarchy problems, and the freedom to 
choose coupling constants and masses. A variant of  these problems also occurs in 
quantum gravity. Here it is the mystery of the vanishing cosmological constant. It 
would not be the first time in history if a solution to these mysteries could be found 
by first contemplating gravity theory; after all, the very notion of Yang-Mills fields 
was inspired by general relativity. In this paper  we will present an approach in 
which the cosmological constant problem is acute and so, any progress made might 
help us in particle physics also. 

We are not yet that far. The aim of the present paper  is to set the scene, to provide 
a new battery of  formulas that may become useful one day. 

To many practitioners of  quantum gravity the black hole plays the role of  a 
soliton, a non-perturbative field configuration that is added to the spectrum of 
particle-like objects only after the basic equations of  their theory have been put 
down, much like what is done in gauge theories of  elementary particles, where 
Yang-Mills equations with small coupling constants determine the small-distance 
structure, and solitons and instantons govern the large-distance behavior. 

Such an attitude however is probably not correct in quantum gravity. The coupling 
constant increases with decreasing distance scale which implies that the smaller the 
distance scale, the stronger the influences of  "solitons". At the Planck scale it may 
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well be impossible to disentangle black holes from elementary particles. There simply 
is no fundamental  difference. Both carry a finite Schwarzschild radius and both 
show certain types of  interactions. It is natural to assume that at the Planck length 
these objects merge and that the same set of  physical laws should cover all of  them. 

Now in spite of  the fact that the properties of  larger black holes appear  to be 
determined by well-known laws of physics there are some tantalizing paradoxes as 
we will explain further. Understanding these problems may well be crucial before 
one can proceed to the Planck scale. 

At present a black hole is only (more or less) understood as long as it is in a 
quantum mechanically mixed state. The standard picture is that of  the Hawking 
school [I ,  3], but a competing description exists [2] which this author was unable 
to rule out entirely, and which predicts a different radiation temperature. The 
question which of these pictures is right will not be considered in this paper;  we 
leave it open by admitting a free parameter  A in the first sections. 

Whatever the value of A, the picture is incomplete. If black holes show any 
resemblance with ordinary particles it should be possible to describe them as pure  

states, even while they are being born from an implosion of ordinary matter, or 
while the opposite process, evaporation by Hawking radiation, takes place. As we 
will argue, any attempt to "unmix"  the black-hole configuration (that is, produce 
a density matrix with eigenvalues closer to 1 and 0) produces matter in the view of 
a freely falling observer. It is this "mat ter"  that we will be considering in this paper. 

We start with the postulate that there exists an extension of Hilbert space compris- 
ing black holes, and that a hamiltonian can be precisely defined in this Hilbert 
space, although a certain amount  of  ambiguity due to scheme (gauge) dependence 
is to be expected. Although at first sight this postulate may seem to be nearly empty, 
it is directly opposed to conclusions of  the Hawking school [ l ]. These authors apply 
the rule of  invariance under general coordinate transformations in the conventional 
way. We believe that, although our present dogma may well prove wrong ultimately, 
it stands a good chance of being correct if we apply general coordinate transforma- 
tions more delicately, and in particular if the distinction between "vacuum"  and 
"mat ter"  may be assumed to be observer dependent  when coordinate transformations 
with a horizon are considered. 

Another point where the conventional derivations could be greeted with some 
scepticism is the role of  the infalling observer. If  the infalling observer sees a pure 
state an outside observer sees a mixed state. In our view this could be due simply 
to the fact that the "infalling observer" makes part of the system seen by the outsider: 
he himself is included in the outside Hilbert space. Clearly the very foundations of  
quantum mechanics are touched here and we leave continuation of this intriguing 
subject to philosophers,  rather than accepting the simple-minded conclusion that 
transitions will take place between pure states and mixed states [1]. 

Nowhere a distinction may be made between "pr imordial"  black holes and black 
holes that have been formed by collapse. Now we will make use of space-t ime 
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metrics that contain a future and a past horizon, and at first sight this seems to be 
a misrepresentation of the history of a black hole with a collapse in its past. However, 
just because no distinction is made one is free to choose whichever metric is most 
suitable for a description of the present state of  a black hole. It may be expected 
that in a pure-state description of a black hole a collapsing past will be very difficult 
to describe if this collapse took place much longer ago than at time t = - M  log M 
in Planck units. 

From now on a black hole will be defined to be any particle which is considerably 
heavier than the Planck mass and which shows only the minimal amount  of  structure 
(nothing much besides its Hawking radiation [3]) outside its Schwarzschild horizon. 

The first part of  this paper  gives a number  of pedestrian arguments indicating 
what kind of quantum structure one might expect in a black hole. Although they 
should not be considered as airtight mathematical proofs this author finds it 
extremely hard to imagine how the conclusions of  sect. 2 of  this paper  could be 
avoided: 

(i) The spectrum of black holes states is discrete. The density of  states for heavy 
black holes can be computed up to an (unknown but finite) overall constant. 

(ii) Baryon number  conservation, like all other additive quantum numbers to 
which no local gauge field is coupled, must be violated. 

The first of  these conclusions is related to the expected thermodynamic properties 
first proposed by Bekenstein [4]. The second has been discussed at length by him 
and also by Zeldovich [5]. 

In sect. 3 a naive model ("brick wall model")  is constructed that roughly repro- 
duces these features. Being a model rather than a theory it violates the fundamental 
requirement of  coordinate invariance at the horizon so it cannot represent a satisfac- 
tory solution to our problem, but in its simplicity it does show some important facts: 
it is the horizon itself, rather than the black hole as a whole that determines its 
quantum properties. 

In the second part of  the paper  we formulate a much more precise and satisfying 
approach.  A set of  coordinate frames and transformation laws is proposed. One 
simplification is made that presumably is fairly harmless: we assume that, averaged 
over a certain amount  of  time, ingoing and outgoing particles near a black hole are 
smeared equally over all angles 0, ~. Certainly this is true for a Hawking-radiating 
Schwarzschild black hole. Furthermore, ingoing things may be chosen to be spheri- 
cally smeared. As a result we may take the gravitational interactions between ingoing 
and outgoing matter (our most crucial problem) to be rotationally invariant. This 
assumption appears  to be quite suitable for a first attempt to obtain an improved 
theory, and in fact it makes our whole approach quite powerful. 

As stated before, how to interpret the coordinate transformations physically is 
yet another matter. The unorthodox interpretation that we proposed in ref. [2] is 
not ruled out (in fact it fits quite well in our description) but we do not insist on 
it. Rather, we allow the reader to draw his own conclusions here. 
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It is important to note that never space-times are considered that contain a 
"conical singularity" at the origin or elsewhere. Even in the formalism with A = 2 

there is no such singularity. This is because the "identification" of the points x with 

the points - x  is Minkowski space of ref. [2] only is made in the c lass ica l  limit,  not 

in the quantum theory. 
Quantization of the space-time metric g~,, itself is not considered explicitly, since 

we attempt to deduce the black-hole's properties from known laws of physics much 

beyond the Planck length. This may be incorrect: it could be that on ly  by considering 
the full Hilbert space of all metrics a workable picture emerges. Our attitude is to 

first keep everything as simple as possible and only accept such complications when 

they clearly become unavoidable. 

2. The black hole spectrum 

A black hole can absorb particles according to the well-known laws of general 

relativity: the geodesics of particles with an impact parameter below a certain 
threshold will disappear into the horizon. 

Conversely, black holes may emit particles as derived by Hawking. They radiate 
as black bodies with a certain temperature: 

T u =  A / 8 r r M ,  (2.1) 

in units where the gravitational constant, the speed of light, Planck's constant and 
Boltzmann's constant are put equal to one. As is explained in sect. 1 there may be 

reasons to put into question the usual argument that A -- 1. There is an alternative 

theory with A = 2, but the precise value of A is of little relevance to the following 
argument. 

If a black hole is to be compared with any ordinary quantum mechanical system 
such as a heavy atomic nucleus or any "'black box" containing a number of particles 

and possessing a certain set of energy levels, which furthermore can absorb and 

emit particles in a similar fashion, then a conclusion on the density of its energy 
levels, p ( E ) ,  can readily be drawn. 

Imagine an object with energy AE being dropped into a black hole with mass E, 
so that the final mass is E + zaE, where in Planck units 

AE ,~ 1 ,~ E. (2.2) 

Let R be the bound on the impact parameter; usually 

R = 2 E .  

Then the absorption cross section cr is 

(2.3) 

o" = 7rR z . (2.4) 
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From Hawking's  result we conclude that the emission probability W is 

W =  ~rR2pa~ e -~-zE , (2.5) 

where pat  is the density of  states for a particle with energy zaE per volume element, 
a n d / 3 ,  is the inverse of  the temperature T. .  

Now if the same processes can be described by a hamiltonian acting in Hilbert 
space, then we should have in the first case 

cr = I( E + ~tEl TIE , aE)I2p( E + a E ) ,  (2.6) 

where T is the scattering matrix, and in the second case 

W =  I(E, ~EITIE+zaE)IEp(E)paE,  (2.7) 

by virtue of  the "golden rule". 
The matrix elements in both cases should be equal to each other if P C T  invariance 

is to be respected (the expressions hold for particles and antiparticles equally). So 
dividing the two expressions we find 

p(E  + AE)  _ e + ~ . ~  ' (2.8) 
p(E) 

p(E)  = C e 4'~ ,E2 (2.9) 

Now this result could also have been concluded from the usual thermodynamical  
arguments [4]. The entropy S is 

S = 4~rA -l E 2 + const ,  (2.10) 

from which indeed (2.9) follows. We note that E 2 in (2.9) and (2.10) measures the 
total area of  the horizon. 

The constant in (2.9) and (2.10) is not known. Could it be infinite? We claim that 
this can only be the case if there exists a "lightest" stable black hole. Just compare 
eqs. (2.6) and (2.7) if E + AE represents the lightest black hole, and E and AE are 
ordinary elementary particles. If  p(E  + AE) is infinite but p ( E )  finite then, since or 
must be finite, W vanishes. Since this object fails to obey the classical laws of 
physics (it ought to emit Hawking radiation), it cannot be much heavier than the 
Planck mass. Now it is very difficult to conceive of any quantum theory that can 
admit the presence of  such infinitely degenerate "particles".  They are coupled to 
the graviton in the usual way, so their contributions to graviton scattering amplitudes 
and propagators would diverge with the constant C, basically because the probability 
for pair creation of this object in any channel with total energy exceeding the mass 
threshold is proportional  to C. 

Clearly the above arguments assume that several familiar concepts from particle 
field theory such as unitarity, causality, positivity, etc. also apply to these extreme 
energy end length scales, and one might object against making such assumptions. 
But we considered this to be a reasonable starting point and Jaenceforth assume C 
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tO be finite. An interesting but as yet not much explored possibility is that C, though 

finite, might be extremely large. After all, large numbers such as Mp~anck/mpro,on are 
unavoidable in this area of  physics. One might find interesting links with the I / N  

expansion suggested by Weinberg [6], who however finds physically unacceptable 
poles in the N ~ oo limit. 

It is rather unlikely that C is exactly constant. One expects subdominant terms 

in the exponent. Also, we have not taken into account the other degrees of freedom 

such as angular momentum and electric (possibly also magnetic) charge. These can 
be taken into account by rather straightforward extrapolations. 

Other additive quantum numbers cannot possibly be conserved. The reason is 

that the larger black hole may absorb baryons or any other such objects in unlimited 

quantities. If  indeed it allows only a finite number of  quantum states then any 

assignment of baryon number will fail sooner or later. Indeed one of  the paradoxes 
we will have to face is that starting with a theory that is invariant under rotations 

in baryon number space one must end up with a theory where this invariance is 

broken [5]. 

3. The brick wall model 

When one considers the number of energy levels a particle can occupy in the 

vicinity of  a black hole one finds a rather alarming divergence at the horizon. Indeed, 

the usual claim that a black hole is an infinite sink of  information (and a source of  
an ideally random black body radiation of particles [3, 7]) can be traced back to 

this infinity. It is inherent to the arguments in the previous sections that this infinity 

is physically unacceptable. Later in this section we will see that, as is often the case 

with such infinities, the classical treatment of the infinite parts of these expressions 
is physically incorrect. The particle wave functions extremely close to the horizon 

must be modified in a complicated way by gravitational interactions between ingoing 
and outgoing particles (sects. 5 and 6). Before attempting to consider these interac- 

tions properly we investigate the consequences of a simple-minded cut-off in this 

section. 
It turns out to be a good exercise to see what happens if we assume that the wave 

functions must all vanish within some fixed distance h from the horizon: 

~ ( x ) = 0  if x < ~ 2 M + h ,  (3.1) 

where M is the black hole mass. For simplicity we take ~(x) to be a scalar wave 
function for a light (m ,~ 1 ,~ M) spinless particle. Later we will give them a multi- 

plicity Z as a first attempt to mimic more closely the real world. 
In the view of a freely falling observer, condition (3.1) corresponds to a uniformly 

accelerated mirror which in fact will create its own energy-momentum tensor due 

to excitation of the vacuum. As in sect. 1 we stress that this presence of matter and 
energy may be observer dependent, but above all this model should be seen as an 
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elementary exercise, rather than an attempt to describe physical black holes accu- 
rately. 

Let the metric of a Schwarzschild black hole be given by 

ds 2= - ( 1 -  2--~)dr2 + ( 1 -  ~ - ~ ) - '  dr2 + r2 d-Q2. (3.2) 

Furthermore, we need an "infrared cutoff" in the form of a large box with radius L: 

~ ( x ) = 0  if x = L .  (3.3) 

The quantum numbers are l, /3 and n, standing for total angular momentum, its 
z-component and the radial excitations. The energy levels E(l, 13, n) can then be 
found from the wave equation 

1 - - -  E ~+-~O,r ( r -2M)OAo- \ - -~  m2)~o=0.  (3.4) 

As long as M ~, 1 (in Planck units) we can rely on a WKB approximation. Defining 
a radial wave number k(r, l, E) by 

(( ) ~2 -- r2 
r(r-2M) 1- E2-r-2l ( l+l) -m 2 (3.5) 

as long as the r.h.s, is non-negative, and k 2= 0 otherwise, the number of radial 
modes n is given by 

lrn = drk(r, I, E). (3.6) 
M+h 

The total number N of wave solutions with energy not exceeding E is then given by 

I def 
1rN= (21+l)dlrrn = g(E) 

L -, i ( l + l ) ~  
= f2M+hdr(l-2-~-Mr ) I (2l+l)dl~E2-(1-2-~-Mr ) ( m 2 + - - - - ~ ] ,  

(3.7) 

where the I-integration goes over those values of i for which the argument of the 
square root is positive. 

What we have counted in (3.7) is the number of classical eigenmodes of a scalar 
field in the vicinity of a black hole. We now wish to find the thermodynamic 
properties of this system such as specific heat etc. Every wave solution may be 
occupied by any integer number of quanta. Thus we get for the free energy F at 
some inverse temperature/3, 

1 
e-OF = ~ e-~E = l] (3.8) n.l.13 1 - e  - B E  ' 
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and, using (3.7), 
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/ 3 F = ~ l ° g ( 1 - e - ~ E )  ; . ,  (3.9) 

= - dE flg(E.___~) 
e oE - 1 

=-/3 lodE f2M÷hdr(1-2 Mr)-'f(21+l ) dl 

_ 2 M ~ f m 2 + l ( l + l )  ~ 1 - - ; - - /  /3.,o) 

Again the integral is taken only over those values for which the square root exists. 
In the approximation 

m2,~2M//32h, L~ ,2M,  (3.11) 

we find that the main contributions are 

F =  2"/r3 (2M'~ 4 2 L3 f ~  d E ( E 2 - m 2 )  3/2 
-45---h\ 13 ] -9--~ m e~--~--1 " (3.12) 

The second part is the usual contribution from the vacuum surrounding the system 
at large distances and is of  little relevance here. The first part is an intrinsic 
contribution from the horizon and it is seen to diverge linearly as h--, 0. 

The contribution of  the horizon to the total energy U and the entropy S are 

a 2zr3 ( 2 M ~ 4 z ,  (3.13) 
U = a-fl ( /3 F ) = ~-h \ /3 / 

8~ -3 (2M'~  3 
S= /3( U -  F)=-~-~-£ 2M\---~-] Z.  (3.14) 

We added a factor Z denoting the total number  of  particle types. 
Let us now adjust the parameters of  our model such that the total entropy is 

S = 4 A  I M 2 ,  (3.15) 

as in eq. (2.10), and the inverse temperature is 

/3 = 8rrh -~M. (3.16) 

This is seen to correspond to 

ZA 4 
h 720rrM " (3.17) 
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Note also that the total energy is 
U = 3 M ,  (3.18) 

independent of Z, and indeed a sizeable fraction of the total mass M of the black 

hole! We see that it does not make much sense to let h decrease much below the 
critical value (3.17) because then more than the black hole mass would be concen- 

trated at our side of the horizon. 
Eq. (3.17) suggests that the distance of the "brick wall" from the horizon depends 

on M, but this is merely a coordinate artifact. The invariant distance is 

fff~+h ds= f dr 2,~Mh:,/-~A" (3.19) 
_ J , / 1 - 2 M / r  

Thus, the brick wall may be seen as a property of the horizon independent of the 

size of the black hole. 
The conclusion of this section is that not only the infinity of  the modes near the 

horizon should be cut-off, but also the value for the cut-off parameter is determined 

by nature, and a property of the horizon only. The model described here should be 
a reasonable description of a black hole as long as the particles near the horizon 

are kept at a temperature as given by (3.16) and all chemical potentials are kept 

close to zero. The reader is invited to investigate further properties of the model 
such as the average time spent by one particle near the horizon, etc. 

The model automatically preserves quantum coherence completely, but it is also 

unsatisfactory: there might be several conserved quantum numbers, such as baryon 
number*. What is wrong, clearly, is that we abandoned the principle of invariance 

under coordinate transformations at the horizon. The question that we should really 
address is how to keep not only the quantum coherence but also general invariance, 

while dropping all global conservation laws. 

4. Kruskal coordinates and the generators of time translation 

The global structure of the Schwarzschild metric is more conveniently expressed 

in the well-known Kruskal coordinates u and v: 

2-~) er/2M uv=  l -  , (4.1 a) 

v /u  = - e  '/2M . (4.1b) 

The metric takes the form 

- 3 2 M  3 
ds 2 

r 

which remains regular at r = 2M. 

- - e  r/2M d u d v + r 2 d O 2 ,  (4.2) 

* One may postpone this difficulty by inserting explicitly baryon number  violating interactions near 
the horizon. 
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We now define two kinds o f  "universes"  described essentially by the same metric, 

but differing in their notions o f  a time coordinate.  One of  these we will denote  as 
the "Kruskal  universe",  in which u + v serves as a time coordinate.  The other  is the 

" 'Schwarzschild universe",  in which the coordinate  t plays the role o f  time. 

At t =0 ,  the horizon ( r =  2 M )  divides 3-space into two regions: 

I: u < O ,  v > O ,  (4.3) 

II:  u > 0 ,  v < 0 .  (4.4) 

The metrics in regions I and 1I are identical (this statement remains true in the 
Kerr, Re i s sne r -Nords t rom and K e r r - N e w m a n  solutions),  so we can observe that 

the Schwarzschi ld world falls apart  into two worlds between which communica t ion  

is not possible. Thus, a general coordinate  t ransformat ion t ransforms one single 
Kruskai world into these two identical Schwarzschi ld worlds. One state in the Hilbert 

space in the Kruskal coordinates  is mapped  into a product  state ]t/,)~[0)n o f  the 

double  Schwarzschi id universe. 
Cons ider  now an infinitesimal time translation in the Schwarzschild universes: 

t o t + e ,  

t~--, ( l + e / 4 M ) v ,  (4.5) 

u--* (1 - e / 4 M ) u .  

If  a Kruskal "hami l ton ian"  h =~ h(v) dv 

v - - ~ v  

u -.a. u 

t ransforms v and u as 

+ £ ,  

+ e ,  

(4.6) 

then at t = 0  with u = - v  we have for the generator  ~ that generates (4.5) 

~ =  - ~  h(v) dr .  (4.7) 

Since in space II time runs backwards the hamil tonian in the double  Schwarzschild 

universe can be written as 

~ =  H i -  Htl  , (4.8) 

simply by splitting the integral (4.7) into its r ight-hand side and left-hand side. 

There are now two possibilities: 
(i) Space II is inaccessible to us. If  some amount  o f  information - a particle for 

instance - has wandered  into space II it will be lost forever. We must average over 
all states in II and if for example gravitational interactions couple space II to space 
l then pure quan tum states may turn into mixed states. 

(ii) Space II also represents our space. In that case a most convenient  interpreta- 
tion o f  (4.5) is that ~ dictates the evolution o f  a density matrix in our  (Schwarzschild) 
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world. Again,  if certain couplings~ occur  be tween I and II,  pure  states may  turn into 
mixed states. As expla ined  in ref. [2] the two opt ions  (i) and (ii) are quite inequivalent.  
Opt ion (ii) gives the new value A --- 2 in eq. (2.1). Rather  than a t tempt ing  to de termine  
here which o f  the opt ions  represents  reality more  closely we will concent ra te  on the 
t rans format ion  (4.7). How is it affected when gravi tat ional  interact ions are switched 
on and how can we then describe the Hilbert  spaces involved. 

5. lnfalling or outgoing matter 

Let us define the Kruskal  vacuum,  ]0)K as the lowest eigenstate of  the opera to r  
h in Hi lber t  space.  A Schwarzschild vacuum 10)s is then the lowest  eigenstate of  
H~. As is well known,  ]0)K is quite different f rom the produc t  o f  two ]0)s states. Let 
us write the states in space II as bra states, (~], in order  to incorpora te  the minus 
sign in (4.8). Then the Schwarzschild vacuum 

10)s-s(01, 
where s(0l is the lowest  eigenstate of  HH, is a superposi t ion  of  eigenstates of  h with 
quite high eigenvalues:  ra ther  than a vacuum we have a t r emendous ly  energetic 
collision o f  particles in Kruskal  space,  centered abou t  u = v = 0. In fact, any pure  
state in Schwarzschi ld  space,  whether  it be one of  the form o r  

cor responds  to such an infinitely (?) energetic  collision process in Kruskal  space.  
Therefore ,  if we wish to describe pure states in Schwarzschild space,  we must  take 
gravi ta t ional  interact ions in Kruskal  space into account .  Now here is our  problem.  
Superficially it seems that  we have infinite energy in Kruskal  space. What  are the 
consequences  for the metr ic? 

We try to answer  this quest ion step by step. Let us first consider  infalling particles 
only. It will be sufficient to consider  only light particles (m ~ 1) whose energies 
were of  the order  of  the Hawking  t empera tu re  when they were still far from the 
horizon. Cons ider  the process of  "pur i fy ing"  a state in Schwarzschi ld  coordinates ,  
starting f rom the Kruskal  vacuum and removing more  and more  ingoing particles 
closer and closer  to the horizon. In the process we unavoidab ly  add more  and more  
particles in the Kruskal  world.  As we app roach  the horizon we are affecting particle 
states with increasing velocities in Kruskal  space.  Finally we are consider ing particles 
in Kruskal  space  whose energies are so huge that  their gravi tat ional  fields are no 
longer negligible. They move along the u-axis (v = 0) and the gravi tat ional  fields of  
such particles were descr ibed in ref. [8]. See figs. 1, 2. The result is r emarkab ly  
simple: the spaces I and II are just shifted along the u-axis by an a m o u n t  8u(O, ~).  

From ref. [8] one may  deduce,  by contour  integration,  

J 
° 2 ~ * - 0  

~u = Cp dz(cos  0 - c o s  z ) - ~ e - ~ " 5  (5.1) 
o 

if a particle with Kruskal  m o m e n t u m  p went  in at the north pole. C is a numerical  
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Fig. I. The Kruskal vacuum. The u- and v-coordinates are shown. Shaded line is the r = 0 singularity. 

cons t an t :  
C = 29/2M 4 e - t ( 1  + e- '~3-)  - i . (5.2) 

F r o m  (5.1) it is easy  to see tha t  ?Ju is pos i t i ve  for  all 0, ¢. 

I f  m a n y  pa r t i c l e s  fall  in f r o m  d i f fe ren t  d i r ec t i ons  we  find an a v e r a g e  shif t  (tSu), 

by i n t e g r a t i n g  (5.1) o v e r  0 a n d  ~:  

(t$u) = 2 8 M "  e - l ( p ) .  (5.3) 

N o w  as we  see f r o m  the  t r a n s f o r m a t i o n  (4.1),  a t ime  t r a n s l a t i o n  o v e r  an  in te rva l  

At in S c h w a r z s c h i l d  s p a c e  c o r r e s p o n d s  to m u l t i p l y i n g  v a n d  d i v i d i n g  u by an  a m o u n t  

e A'/4r°. In the  n e w  c o o r d i n a t e s  t hen  p g rows  e x p o n e n t i a l l y  wi th  At. 

It n o w  seems  tha t  the  n u m b e r  o f  a l l o w e d  m o d e s  fo r  the  o the r ,  sof t  pa r t i c les  in 

Kruska l  c o o r d i n a t e s  i nc reases  wi th  ~Su (see  fig. 2), b e c a u s e  m o r e  a n d  m o r e  pa r t i c l e s  

a re  a l l o w e d  tha t  pass  the  u-ax is  t h r o u g h  the  newly  o p e n e d  in terva l .  

At  first s ight  this s i t ua t i on  does  not  i m p r o v e  i f  we a lso  a l l o w  for  outgoing mat te r .  

I f  we n o w  p r o c e e d  to r e m o v e  the  o u t g o i n g  pa r t i c l e s  in S c h w a r z s c h i l d  space ,  thus  

a d d i n g  m o r e  a n d  m o r e  o u t g o i n g  par t i c les  in Kruska l  space ,  t h e n  we m a y  reach  the  

Fig. 2. A particle that may have been as light as a thermal proton went into the system some time (t) 
ago, giving a shift 8u in the horizon increasing exponentially with time. ,Su also depends on the angles 

0, ,~ diverging logarithmically where the proton hits the horizon. 
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Fig. 3. The metric in Kruskal-like coordinates when incoming and outgoing matter are taken into account. 

point  where also their gravitational effects may become important .  As long as their 

momenta  are not too large we may assume that they super impose on the effects o f  
the incoming particles and we expect that the metric in Kruskal coordinates  resembles 

fig. 3, where the future and past horizons are now shifted with respect to each other. 

The most  important  feature that we notice is that a new space, labeled V in fig. 
3, opens up. This seems to imply that as we at tempt to remove the particles seen 

by a Schwarzschild observer  when he looks at a Kruskal vacuum, this Kruskal space 
becomes larger, al lowing for new particle modes living in space V. 

We must  stress that using eq. (5.1) now to express both the shifts in the u- and 
the v-coordinates  is not  exactly correct as soon as the product  8u 8v becomes 

non-negligible.  Fig. 3 is just a first approximat ion.  

6. Spherical shells of  matter 

The exact metric when many particles are coming in and going out is expected 

to be cumbersome to compute ,  if this is possible at all. Nevertheless we wish to 

have some idea on what happens  if both 8u and 8v become large. One might fear 

that space V grows indefinitely, which would jeopardize  our  attempts to formulate 
an equivalence principle for pure quantum states, because then a cont inuous  spec- 

trum of  states in V would have to be considered.  
It is here that another  kind of  approximat ion  may be helpful: let us take the case 

that there are many ingoing and outgoing particles whose distribution is smeared 
equally over all angles 0 and ~p. Then spherical symmetry  can be called upon and 

life will be simple again. To be precise, we now propose the following model.  In 
Kruskal space particles are considered moving to and fro, and their gravitational 
fields are not neglected. However,  in order  to simplify calculations,  we take the 
gravitational fields as if the particles were smeared over all angles 0 and ~. It is 

likely then that the "back- reac t ion"  of  matter in this model  may reproduce correctly 
the decrease or  increase o f  the black hole mass (not yet its angular  momentum) ,  

when the Hawking effect is considered. Furthermore,  as we shall see, these spherically 
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Fig. 4. A shel l  o f  mat te r  a, is en te r ing  and  b is leaving.  The metr ic  is then  a pa tch  of  four  Schwarzsch i ld  

so lu t ions  wi th  masses  M~,...,  M4. The s ingular i t ies  at  r = 0 may  or may not be hit. Note  that  the sol id  
l ines  are here wor ld l ines  of  mat ter ,  not horizons.  

symmet r i c  metr ics  are easy to compu te  and  a qui te  r emarkab le  pa t te rn  emerges .  It 

is not  u n r e a s o n a b l e  to assume that  when in a more  advanced  vers ion o f  this mode l  

non - sphe r i ca l l y  symmet r i c  metr ics  are cons ide red  most  of  the topo log ica l  features  

will r ema in  the same. 

The class o f  so lu t ions  that  we will now cons ide r  has been der ived  in ref. [9]. The 

genera l  spher i ca l ly  symmet r i c  so lu t ion  for  two shells o f  mat te r  going  into and  out  

o f  a b lack  hole  is p ic tu red  in fig. 4. Four ,  in genera l  different ,  Schwarzsch i ld  so lu t ions  

are  ma tched  at l ight l ike b o u n d a r y  lines (u or  v are cons tan t  there) ,  and  the match ing  

is def ined  by  requi r ing  the Schwarzsch i ld  coo rd ina t e  r to be con t inuous  on these 

lines. The rest o f  the metr ic  cou ld  in p r inc ip le  be d i scon t inuous  but  it is adv i sab le  

to choose  coo rd ina t e s  such that  we have comple t e  cont inui ty ,  so that  any  poss ib le  

conica l  s ingula r i ty  at ru (where  the two shells meet)  is avoided .  

Let x and  y be the two l ight -cone coo rd ina t e s  in the pa t te rn  o f  fig. 4. Let the 

mat te r  wor ld l ines  be at x = 0 and at y = 0, which need not  be hor izons .  In the regions 

i ( ~  1 . . . . .  4) we have the Kruskal  coord ina te s  

and define 

ui = u i ( x ) ,  vi = v i ( y ) ,  (6.1) 

d/.) i u; = d u ,  vl = - -  (6.2) 
dx  ' dy  " 

In terms o f  the u, and  v, the metr ic  takes the form of  eq. (4.2) with mass  Mi, in the 

regions i nd i ca t ed  in fig. 4. I f  we write this as 

ds  2 = - 2 A ( x ,  y )  d x  d y +  rZ(x, y)  d O  z , (6.3) 

then at the l ine x = 0  the quant i ty  A is con t inuous  if 

u3(O) u~(O) ~ f  
M3u~(O) M,u'I(O) y,~ , (6.4) 

and  we have a s imi lar  cond i t ion  at y = 0. The m o m e n t u m  of  the shell  o f  mat te r  
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causing the discontinuity can be calculated to be 

Mi - M3 P 
K - -  (6.5) 

")/13 r2 4 7 r r  2 ' 

where K is a numerical  constant  (compare  (5.3)): 

K = 26M2(e,r) -1 , (6.6) 

if the m o m e n t u m  p is measured in terms of  the coordinates  in space I (the rather 

strange dimensional i ty  o f  K is a coordinate  artifact). 

Consis tency of  the condit ions (6.4) at the origin gives us 

(ro -- 2Mi)(ro - 2M2) = (ro - 2 Ma)(ro - 2M4) ,  (6.7) 

where ro is the radius of  the shells when they meet at the origin. We find momen tum 
conservat ion:  

M I - M 3  M 4 - M 2  (6.8) 

Tl3 ~/24 

It is impor tant  to require p in (6.5) to be always positive, so that the two sides 

o f  eq. (6.8) are also required to be positive. As a result we find the following general 
rules: 

(i) When a particle line hits an r = 0 singularity the mass o f  the inner solution is 

always larger than the mass of  the outer solution. For example,  in fig. 4, 

M 3 > M~ ; M3 > M2; M4 > M2. 

(ii) When a particle line escapes to infinity this is the other way a round  (due to 

a sign change of  u~(0) in eq. (6.4)). Thus in fig. 4, 

M 4 <  M~. 

(iii) When  a particle line coincides with a horizon ( u ( x  = 0) = 0) then it connects  
two equal masses, as in fig. 2. 

Formally these statements can be extended tO the case when negative 
Schwarzschild masses are considered. However  then 

(iv) a negative mass singularity at r - - 0  is timelike and must  connect  the future 
singularity with the past singularity. 

This latter point  makes negative mass solutions unattractive to work with but 
perhaps they cannot  completely be excluded. 

Now we ask the reader to contemplate  once more fig. 3. When the solid lines in 
there represent shells o f  matter then the volume of  space V will indeed grow with 
increasing momentum.  At some values o f  the momenta  region V will hit the r = 0 

singularities. When the momenta  are increased still further we now can say what 
will happen:  the inner mass,/z,  must be smaller than the outer mass M. The condition 

tz >1 0 is a constraint on the total momentum allowed. Fig. 5 depicts the situation when 
# ~ M .  
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II M2 M, I 

Fig. 5. Two sets of matter shells some in and out in spaces I and !I. Inside we have a mass /a with 
p.<M, and ~ < M  2. 

We notice that as ~z gets smaller, the spaces I and  II become more and  more 

d isconnected.  This is because the connec t ion  goes via the " t iny"  wormhole  of the 

mass-p, object  in the center. Also, of  course, we may have that M2 # M~, so indeed 

we are deal ing with two universes I and  II that now may conta in  different masses. 

In the language  of ref. [2] one could say that here we have a densi ty matrix bui l t  

from a bra and  a ket state represent ing different masses. A diagonal  densi ty matrix 

then has M~ = M2. 

Most impor tan t  must  be the solut ion with ~ = 0, which was also described in ref. 

[9]. Now spaces I and II are entirely disconnected.  From eqs. (5.3), (6.4), (6.5) and  

(6.8) we derive that this happens  at 

Pi," Pout = (4~ 'K)  2M2. (6.9) 

Note that the a rguments  of sect. 5 would imply that  both pi, and  Pout tend to infinity 

in the process of pur i fying the states in Schwarzschild space. Now our  condi t ion  

(6.9) apparen t ly  puts this to a halt. And now we have the configurat ion depicted in 

fig. 6. It is t empt ing  to propose a mapp ing  between pure states in the space of fig. 

6 and pure  states in Schwarzschild space (see sect. 7). 

Fig. 6. The case ,a = 0. The dotted line is the coordinate singularity r = 0. There is one outer space, 
region I and a compact inner space, region V. 
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It is important to note that the shells of matter in fig. 6 are entering and leaving 

the black hole at the horizon. Since in eq. (6.9) p~, and Pout are finite this implies 
that for an observer in Schwarzschild space these amounts of matter are only 

infinitesimal. So one should n o t  consider fig. 6 as the space-time picture of a black 
hole that is created by imploding matter and evaporated by the Hawking effect, 

terminating its life with some explosion. The total (Schwarzschild) time scale that 

we are at all considering is extremely short compared to a black hole's lifetime, 
rather it is of  order M log M in Planck units. 

7. Conclusion 

If the eigenstates of  an (either complete or unperturbed) hamiltonian are used 
to characterize a Hilbert space then clearly the choice of a coordinate frame affects 

this characterization. In particular if in a coordinate transformation the quantity 

does not everywhere have the same sign the two Hilbert spaces will look very 
different. In particular the notion of a vacuum will not at all coincide in the two 

systems and for that reason such transformations cannot be considered without 
taking into account the presence of matter. This is why we believe that in the usual 

Kruskal coordinates a black hole must be represented by more general metrics such 

as the ones discussed in the previous section. It now turns out that if too much 
matter is added in the Kruskal frame then the r = 0 singularity in a certain region 

in the center becomes timelike because the metric there gets a Schwarzschild structure 
with negative mass parameter. In that case there will be no time slices (spacelike 

three-dimensional subspaces that intersect all timelike curves) without singularity. 

This presumably means that the amount of  matter admitted in the Kruskai frame 
is limited. If  the limit is saturated (eq. (6.9)) the Kruskal space-time becomes very 

special: there is n o  wormhole to another infinite universe; instead we do have a 

compact region, labeled V in fig. 6, not accessible for observers in Schwarzschild 
space. 

We now have a proposal for the description of the pure quantum states of a black 
hole, which will partly replace the much uglier "'brick wall model" of sect. 3. 

Postulating the absence of  a wormhole we require a large but finite and precisely 
prescribed amount of matter in the Kruskal frame (eq. (6.9)). If we limit ourselves 
to regions close to the black hole (for instance by imposing a fairly harmless large 
distance limit L as in the "brick wall model")~ Hilbert space will have only a finite 

number of states producing a mass, say, between M and M + ~$M. The evolution 
of these states as a function of  Schwarzschild time can then be deduced from their 
evolution in the Kruskal frame. 

Unfortunately there is a serious shortcoming, a defect, in this proposed model 

for a black hole: in the evolution of time p~, increases indefinitely while Pout decreases: 
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the mode l  changes  as a funct ion o f  Schwarzsch i ld  t ime and therefore  has no real 

p red ic t ing  value.  What  is needed  in add i t i on  is a m a p p i n g  from states with most  

par t ic les  going  in to states with more  par t ic les  going  out. A sa t i s fac tory  prescr ip t ion  

is not  known  as yet. The  m a p p i n g  pin-pout is l ike an (abe l ian)  gauge  t r ans fo rma t ion  

o f  which we do  not  yet know the t r ans fo rma t ion  rules. 

There  may  well be a good  use for all those  Kruskal  systems which  do  have a 

wormho le  (or  poss ib ly  several)  to ano the r  universe.  In this case the amoun t  o f  

mat te r  is less than  the prev ious  case, apa r t  f rom a tr ivial  doub l ing  because  o f  the 

two " 'universes" .  As we p r o p o s e d  prev ious ly  [2], these systems could  be cons ide red  

as r epresen t ing  dens i ty  matr ix  e lements  ra ther  than pure  states in Schwarzsch i ld  

space.  N o w  this p r o p o s a l  was greeted with cons ide rab le  scept ic i sm [10] which was 

a reason for  the  au tho r  not  to use it as a b a c k b o n e  for this paper .  Our  genera l  

a rguments  are  i n d e p e n d e n t  o f  such an assumpt ion .  But we do  want  to stress here 

that  the dens i ty  matr ix  in te rp re ta t ion  fits qui te  na tura l ly  in our  genera l  picture .  The 

" p u r e  s ta tes"  desc r ibed  in the beg inn ing  o f  this sec t ion do  not  fo l low a c losed 

equa t ion  o f  mot ion  in Schwarzsch i ld  space  and  therefore  it is p r o b a b l y  not  d i rec t ly  

poss ib le  to der ive  the Hawking  t empera tu re  using them. The only system in our  set 

o f  sect. 6 a l lowing  for a c o m p u t a t i o n  o f  its evo lu t ion  is the or ig inal  Kruska l  system 

wi thout  any  mat te r  present ,  because  it is the only  one with a t imel ike  Kil l ing vector.  

So it is not  u n r e a s o n a b l e  to assume that  this is the only system that  a l lows us to 

c om pu te  the t e m p e r a t u r e  (which in the dens i ty  matr ix  in te rpre ta t ion  comes  out  with 

twice the value ,  3. = 2, than  the usual  result ,  A = 1), and  that  the pure  state fo rmal i sm 

o f  the beg inn ing  o f  this sec t ion is s imply  i n a d e q u a t e  to der ive  3. at all (a naive  

a rgumen t  wou ld  suggest  3. = 1, namely) .  

Let us f inal ly remark  that  the dens i ty  matr ix  in te rp re ta t ion  o f  ref. [2] a l lows us 

to give a qui te  a t t rac t ive  in te rpre ta t ion  o f  mul t ip ly  connec ted  space - t imes .  The 

metr ic  o f  two or  more  b lack  holes,  in the c o r r e s p o n d i n g  classical  " 'Kruska l "  f rames,  

will show an equal  n u m b e r  of  wormholes .  Because  these wormholes  a lways  connect  

universes  that  are  each o ther ' s  twin image  one  may  well dec ide  to let every wormho le  

connec t  the  same pair o f  universes  (fig. 7). This is what  must be done  in our  dens i ty  

J " "~i 

- ~ . \  I) 
I 
i 

Fig. 7. Swiss cheese model of space-time with many particles. The big holes are black holes connecting 
bra and ket space. The thin lines are lighter particles, which in a pure state connect more or less the 

same points of bra and ket space. 
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matrix formalism because the pair of universes do nothing but represent the bra 

and ket states of Hilbert space. Of course if the Kruskal frames of each hole are 

saturated with matter these bra and ket universes remain disconnected and the 

metric (which could be referred to as "no-bra-metric") still represents a pure state. 

The author owes much to a fruitful collaboration with T. Dray resulting in the 

essential work of refs. [8, 9]. 
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