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During the last decennium it has become more and more clear
that gauge theories play a decisive role in elementary particle
physics. Indeed, the most general possible theory for a finite
class of particle types, with not too strong interactions, and
valid to very high energies, must be a gauge theory with some
scalar and spinor fields.

Renormalizable field theories with only scalar and spinor
fields with Yukawa type interactions were known for a long time.
How to introduce vector fields has for a long time been an out-
standing problem, which was finally solved with the advent of the
gauge theories. In this lecture I will give field theory in a
nutshell, starting by "defining" functional integrals, applied to
scalar field theories. Then I shall discuss the so—called cutting-
relations. These crucial relations in this form were derived by M.
Veltman in his pioneering work in a time that few believed in
field theory and nobody in gauge theories. Finallywewill see how
unitarity and renormalizability can only be reconciled in a gauge
theory.

I1. THE PRECURSORS OF FUNCTIONAL INTEGRALS
Consider integrals of the type:

235 = [ ... [ do,...a0,
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‘Here M; ij = MJl, ‘and the coefficients ﬁi' and 1 may elther be real
or imaginary with a small positive real part. Let us expand with
respect to 11 2 and Jl.
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The integrals can now be performed, for instance by dlagonallz1ng
M. But more conveniently, one can write
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And it is easy tc expand
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The resulting expressions are conveniently expressed in terms of
diagrams. The right hand side of (I4) is to be written as
1oe——j
. J . k ———x
The factors 4,... can often be incorporated in the diagrams. For

instance one could write the third term of eq. (I4) by differ-
entiating with respect to four different J terms:
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It is now easy to compute the terms in (I2). For instance the last

expllcltly written term:
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Still further, ome gets diagrams such as

If one writes

N ;
235 = z(o,o)eW(j”‘_) B PR e e G e

then W contains only comnected diagrams. Further procedures are

possible to obtain only Zrreducible diagrams, but we will not
dwell any further on that. So far, exact and obvious mathematics.

I2. SCALAR FIELD THEORIES

In a scalar field theory the variables in the integrals to be
considered are not a finite but an infinite set, namely the values
of the field ¢ at each space-time point x. So we formally replace
in the previous section

d’i by $(x) ,

where x is a vector in R". To be explicit we consider R™ to be
Minkowsky space. Usually we have

M= i[—-aimz] : (17)
The integral becomes an "integral" over functions ¢(x):

2{3,3} = [ D exp i[f dnx[-ict(x) (m?-3%)¢ (x) - J\]¢3(x) = A2¢4(x) +

+ J(x)tb(x)]] , (18)

a functional integral which, particularly for n > 3, is devoid of
any rigorous meaning. If n = 4 and only A and A; are different
from zero then our expressions can be suitably altered in such a
way that they make sense. But it is not easy. We restrict our—
selves always to perturbation expansions, which implies that we
only consider the Feynman graphs, not the entire integral.

Let us consider Z(J,A) as a funectional of the function J(x).
Let us take J(x) =} J (x) where J (x) are functions with compact

support D and the ﬁomalns D move away from each other to in—
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. ‘finity. Pictorially, we have the diagrams - - Ay Sl -
] ) . } _(I9 &
Let us, for simplicity, ignore blobs that may occur in the ex~ -
ternal lines: - 4 e e e Attt e R
(110)

— -

(these can easily be treated later). e
It is convenient to diagonalize the matrices M, which brings us to °

the space of Fourier transforms of ¢(x), namely {¢(k)}. In this
space we have

-1 -i
M = . .
k2am? o

Now in Minkowsky space k2+m2 can be zero. We imBrove the defi-
nition of our functional integral by replacing k + m? by
k +m2-ie, so that

—p(-2%mD)¢ ' X
e 2
is replaced by )

e-i¢(-32+m2)¢ -2 (1)



which converges if -3%+m2 happens to vanish, _
Of course, € is positive infinitesimal. We now have in x—space

ik(x -xz) |

M (e xy) = iem P @ & . (112), -
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One may now ask what will be the asymptotic form of M-l as
[%; =%,] + =, It is easy to see that only that part of the inte-
gral (I11) survives where k2+m? = o, Physically that implies that
the particles go to their mass shells. The sources J  at the do-
mains Dy can physically be interpreted as particle production or
detection machines, far away from the interaction region. The

amplitude approaches the scattering matrix 5. We now short-circuit ff

complicated lengthy definitions of S, defining it simply g;;ecg;y'
from the Feymman diagrams.

1) Consider all diagrams-bf the type I9 and replace in the
external lines
1

2802 g .
k™4m -ie

that is, we only consider external lines on mass shell, in the
Fourier picture.

2) Look at the sign of k, = i/m2+fz. If k, > o we interpret
this as an outgoing particle, if k, <o it is an ingoing particle.

3) The diagram is now a contribution to the matrix element

<k ,k ,... [S|k ,k,...> ! (114)
0 1772 K . .
outgoing ingoing

The normalization is to be fixed later,

Formally, this all can be derived from good old quantum
mechanics by writing the evolution kernel
—i(tl-t
U(t],tz) = g

Z)H

as a path integral, for the case of a set of anharmonic oscil-
lators at all points x. This is why one expects that the S matrix
defined this way will come out to be unitary. However, divergences,
for instance in the diagram
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make redefinitions necessary. We must ‘require that such ‘redefi- : =
nitions do not affect unitarity. Furthermore, we will want to write -
down functional integrals for the S matrix elements for particles - :-‘:
with spin, in which case the canonical method is less direct. In
short, we wish to understand explicitly how unitarity follows
directly from the diagrams.

I3, CUTTING RELATIONS (SIMPLIFIED)
Consider the "“propagator" in Fourier space

1 1

i E Alk)iE o momrrrmr e (T16a)
Xi xj {2“}4]!- k2+m _iE P e m T e m———————— —— s oy 27
In x-space: 3
4 ik(xi—x.)
Ax; ) =[d'%k e 1 oA) = Ags - (I16b)

Here, i and j are labels for two vertices in a diagram. x; and x,
are the corresponding x variables., We write. ]

+ - -
Aij = B(xo)Aij + e(_xo)Aij 5 (117)
AT, = f a,k e g2k ) s(%md) (118) _
ij (2n)3 o :
where x = X. - X..
We have ]
+ *F ¢ _F
Aij = (Aij) = Aji . {119)
Therefore,
 _ - _ +
Aij = B(xo)Aij + 8¢ xo)Aij . (120)

The above identities are easily derived from

)= eiTx
0(x) =5—= [ dr T . (121)
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Consider now a diagram in the x—representatlon
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leavlng out the § functions for the external 11nes. Call it ;i'__;

(-111)(—1A2)(—113) Ayz 833 A3y1). This diagram may contribute to |
the § matrix after Fourier transformation. Now we define a _more ‘|
general class of diagrams

F(xX1,X7,%3,...) (here we sketched the diagram for F(x;,x;,x3) = I

F(xl,..., Xisenes gj,..i_xn) s [ B

with some of the arguments x underlined;_ln the diagram wé_dgndt}
this by drawing a circle around those vertices:

This function F is defined by the following replacements: replace
A,. by

1]
1Y A.. if neither X, nor xj are underlined,
if X, but not xj is underlined,
3) A.. if x, but not x; is underlined, (122)
4) A%, if both x. and x, are underlined,
ij i 3
5) Replace one factor i by -i for every underlined x

(remember they carry a factor —i); replace by +i},
not iA¥).

In the above example we have
* 1
Fx),%,,%5) = (-id)(i2,) (ir,) a7, A%, 47 . |

We now have theorem 1 ("largest time equation"). Let x| be

the x~coordinate with largest time component, L3 >»xi0 for all i.

Then : I



._ F(x]’--.) % F(J_cl,...-‘),. =-0 , - ... - s _- ) ._ ---__._._...:__.-..(123-). ._.d-

where all other coordinates are underlined or not in the same way
for both terms.

Proof: if x, is not underlined then the first term contains A
the second 3 4*.. But because 8(x, -x. ) = | we have (see eq.
117): 13 lo “jo

13°

Sy s SR e = e L T

Similarly, if x; is underlined we have A;. in the first_qnq_pz._ig 5
the second term. Because of eq. (120), 'J ]

bj=tlys 0 —m Q= ®O—@ . T i

Because of replacement # 5 we have one 'sign- -_flii:;; froq-:_ wﬁidﬁ_
follows (I23).

Theorem 2. For all values of the coordinateé_ﬁi_wé_haég;_:;:

F(xl,..., X)=o (I264)
all possible n
underlinings

Proof: There is always one x with largest time component. The
diagrams therefore combine in pairs of terms that cancel each other.

Next, let us deform all terms in (I24) in such a way that the
underlined vertices occur at the right, the non-underlined at the
left. We obtain:

Add the trivial diagram (without any vertices) and sum formally
over all diagrams. We see

) (125)

How do we interprete this expression? Let the diagrams with all
vertices encircled (all coordinates underlined) generate a matrix



S. The lines connecting § with § are on mass- shell with positive

" B + - -
energy component k , because they all correspond to a term Ai.,see
(118). Our eq. (I25) says 1=,

I
2,2 ~ ik
fdki<Als|k]k2k3,...> lira(kimi) 0(k; ) <kjklko,...[S[B> = <A[B>,-

152 o

(126)

which is unitarity if § f__ST-__ e e P -_m-________(_I.%?.?.: [
One easily checks that indeed the diagrams for S are the same as -

the ones for st provided that the coupling cons;ants_}_iq_gh._ﬁiﬁx =
are real. Otherwise the replacement # 5 in (I22) would not imply
complex conjungation.

]
What generalizations are allowed such Ehaf'ﬁpitérity_ié_hoﬁfif 2
lost? Suppose our propagator was a matrix of the form

S j (128)

?
k2+m2-iE s o Lerk: Rt g

then the intermediate lines (in I25) would carry an eﬁEfa_Eiffix'pE:u_

spst=1. (129) -

We reobtain unitarity by redefining the norm of the particle states =
with a factor vp, but this only works if 5

p is positive definite. (130)

If p has zero eigenvalues besides positive ones then one can write

p=1 lu>0.<u.l, (I131) ~

i

where the number of states is less than the dimension of p. That
describes a system with fewer tyres of particles than fields ¢ and
is therefore acceptable.

I4. REGULATORS

One would like to change the theory further in such a way
that integrals such as (I15) are made convergent (regularized). An
example is the Pauli-Villars regulator. We replace all propagators
1/k24m2-ie by

1 ' __A 1 S B (132)

(k2+m2-—is)(l+-k—2-- ie)  A%n? \raleie  1Zenl-ic

A e ;
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We immediately see that the minus sign destroys unmitarity. A
fictitious particle with mass A may be produced, but in view of
the sign of its contribution the production "probability" for any
odd number of these objects is negative. However we also observe
that our identities can still be used. An immediate A line in T
(I25) is now associated with a factor

saPen®y ey O
and since k, = % 240% enis only contributes if k_ > A. All
other energies k, in the intermediate lines are positive as well.
Therefore, we find only violation of unitarity in channels where
the total enmergy in the initial and final states <Al and |B>
exceeds A. : . . e i i
We can now take the limit A + = carefully, inserting explicitly A - -
dependent extra terms ("counter terms") in the Lagrangian. A
theory is called "renormalizable" if such a limit can be taken in
such a way that the S matrix according to our definition remains =~ .
finite. For scalar fieldtheories this requires the absence of any L
couplings other than cubic or quartic in the fields ¢.

I5. PARTICLES WITH SPIN ONE

We skip the case of spin } particles which yields the well-
known Dirac equation and Fermi-Dirac statistics. We wish to
construct the theory for particles with spin one. Let us try to
construct the propagator, first when the particle is at rest:

k = (ky,0,0,0). (Relativistic covariance will give us the moving
case.) The states |[¢.> in (I31) must transform as vectors under
the "little group” rotations {(these are the SO(3) rotations that
leave the form-vector ky invariant). Suppose that we choose for
the matrix puv in (128)

Py = By = diag (-1,1,1,1) . (133) st
Then unitarity would clearly be violated. The minus sign in (I33)
would correspond to an unwanted particle with negative metric. d
This is why the Lagrangian (= term in the exponent of the
functional integral)
2
2 m 2
£ = - - B
i(auAv) 7 A

for a massive vector particle is unacceptable. We want for the
particle at rest

s (134)

puv(k) = diag (o,1,1,1) . {I35)

For general ku that could be



= s H Vv -.-' : - % b
Duv(k) gn“ ‘kziig 4 (136)

But, whatever sign we choose for tie, the extra part introduces ag
extra pole at k¢ = o with wrong sign (the factors k, were not yet -
considered in my simplified cutting relations, but when they are | 5
carefully taken into account ome verifies that the sign corresponds - -
to particles with wrong metric). ., ! T TR

4 -

The only correct Lorentz invariant propa§a§§;i§§j:“MH—_ii:::: o=
8, ¥k K ju Skt e o e L eede S0S
B el I ey
k™ +m-ig Sl

One verifies (I35) on mass shell. No extra spurious poles ~
occur corresponding to unwanted particle states. The propagator
has only one major disadvantage: it is badly divergent as k + w,
This could also imply complications in our unitarity_relations_gs_ 1
Xj - %x; * 0o because the 8 functions have not yet been properly :?
defined there. Suitable addition of regulators could cure such
problems. However because of the k k, terms the limits A + = for
these regulators are much harder to take. Indeed, in a general
theory for vector particles with such propagators the desease of
high-momentum infinities would spread beyond control. Note that
the Lagrangian giving this propagator is

2 P10
LY== }(BHAV— %Au) im A, (138)

L =~ {Fz - £m2A2
Hv H
16. GAUGE TRANSFORMATIONS

We now wish to cure the infinity problems without destroying
the good (= unitary) features of the Lagrangian (I38). Consider
the functional integral

z = DAu[det: 39%1] exp i [ danl?mv(A)—i(C(A))z:, . (139)
Here £*™ i & function of Ay (x) and 3,4, (x) which is invariant
under local gauge transformations 9 of Au(x):

' - 1 ~1
Au(x) = Q(x) Au(x) + Ea;]ﬂ (x) . (140)

Here (x) is written as an antihermitian matrix. C(A) is a gauge—
fixing term. That is, the restriction C(A) = o can always be
satisfied for any field configuration A after performing gauge
rotations of the type (I40). Finally,

I-11
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is a formal functional determinant of an operator defined by
subjecting C to an infinitesimal gauge rotation Q2. In fact, this
determinant simply fixes a particular measure (through still B
superficially) for the functional integral. Let us give an example.
The infinitesimal gauge rotations are: '

a : S i b C Pmg TUTET T T i e e =
Au(x) + A% (%) aun (x)+gfabc A (x) Au(x) S (141) s
Ca(x) = BuAi(x) ’ - S _—"___(142'5 —:Q

. s g a PR e RETT e
L7777 (A) = - Gy () Gy(® (143)

a _ a_ a b.c e =y
Gy (x) = auAv avAu+gfabc AuAv ’ (T44)
9Ca (x) [~ : i 5
5 =9 +gf 3 (A°) ._ L (IA5) o
aﬂb(x) ab abe P H

Here fabc are structure constants of soﬁe bomﬁ;EE—ér;ﬁp:;Thg_——tT“ ;ij

determinant is something new. But, we can give it a more familear
appearance, by writing

ac Lo

*
_ g% 2C
dec™ 3C - fpgpgr o LML (146)

where ¢i have N components. In our case:

—ch 3 E = - a* a_ a* be i

(where we performed a partial integration).
The Feynman rules for
aC
det 0
are now easily read off from this "Lagrangian" in the usual way.
For the factor N, assoclated to each closed ¢—loop, we must
substitute ~1.

Theorem: the function Z defined in (I39) is independent of
the choice of the gauge fixing function C(a).
The proof of this theorem can be given in various ways, either by
combinatorics with diagrams or by first proving the assertion for
finite dimensional integrals. One of the basic ingredients of the
original proofs of renormalizability of the gauge theories was to
show that this theorem remains valid even if the expression (I39)
for 7 has been made finite by special regularization techniques
(dimensional regularization). I will not g0 into this but simply



formulate how in'ﬁrincipie this central theorem can be usequga‘__
obtain a renormalizable theory.

I7. A GAUGE THEORY L

Let us consider as a gauge group SU(2). Let the fields be A2
and a complex doublet Ei' H

a A D T *
(88,569 = -46] 65 - D £*p ¢

It )"
1

£1nv

u T T S

-+ H
il

i

-heterh? L oMo o Bo  u(148): e

Here F is a c-number, and

D =3¢ - dig ) % . : = DA T )

11’2’3 are the 2x2 Pauli matrices. X
First choice of gauge (the so-called unitary gauge): b M

Re E o = b _— = s ] o e .
2
c*(4,£)=af Im g, ] a+e (150)
Im 52 i)

It is easily seen that if a + = this simply corresponds to freezing
out the variables

Re 52 , Im El s Im 52 = 0

Let us write 3

F 1 [ 2 q
e~[2)-(2)

where Z is now a single real scalar field. The functional
determinant

aC
det 0

gets no space-time derivatives. This implies that the effects of
this determinant, through highly divergent, vanish completely when
we regularize and add counter terms (not explained any further

here).
Substituting (I51) we obtain

fml B | a a o 2 2.2 — 2 - 2_2
L ‘G‘NGIN ig°F Au ;(auz) AF°Z
+ local interaction terms. (152)

Observe that the vector field A2 occurs precisely in the combi-
P Yy

I-13



nation that gives a unitary propagator (see 138). The mass is ;
gF/V/2. The scalar field Z has mass F/2X. We have a unitary theory
with three~ spin—one and one spin-sero particle types.

What makes this theory so special? Let us consider a second choice :_
of gauge (the so-called renormalizabile gauge):

I ¢ -

a a - m 2 e a - - - — e ] - T .
C(&E) =3 A - gPl-Re &, |, PSS ¢ ) 3

Im E] - - e e n e e o —— _-_-'_-:'_

a special combination chosen only for convenience. We get I i.;

inv _ _ 8y2 1 .2.2,2 = oo B G N N
L™ = i(auAv) tg"F A RPN Ry
-i(auwa)2 - 1852 )2 —'iauz2 - ar%z? .

+ total derivatives + local interaction terms (145)

N i
HEE IR
i Ak

where

g, =

1

The total derivatives are irrelevant.
The vector field Lagrangian is now rather like (I34) and gives
nicely convergent propagators:

g
P LA . (155)
2 2.2 .
k“+ig F -ie

Only due to gauge invariance the two theories are equivalent. The
renormalizable gauge still shows infinities but they are not worse
than in the scalar and spinor field theories. A renormalization
procedure can remove them.

The g,y part of the propagator (I55) describes a spurious
particle or "ghost". Suppose we apply our unitarity criteriom
directly. We would notice

skst =1, (156)

where K is an operator with eigenvalues #1. K has a factor -] for
each of these spurious particles. Furthermore, the complex scalar
field ¢ in (I47) now also contributes. It is produced in pairs.
Because their multiplicity factor N is -1, they also come with
wrong metric: a factor ~1 for each ¢, anti-¢ pair. Finally, the
"particles" described by the fields $2 in (I54) have positive
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metric but should not be considered as real particles because they
are absent in (I52). All these spurious states cancel in (I56). If
we write Hilbert space as a product of a physical Hilbert space
(containing only real particles) and a ghost space G (of all states
with at least one unphysical particle), then

I=sks =]s[e><p|st+] sle> () <g|st ' !

: L * I e e e 24 A

=Isle><p[st . A )

P& e E . e e 3

lcw.

The ghost part can be shown to vanish when considered as an ! L
operator on the physical Hilbert space. N — i et

I showed you how such a proof can be set up by showing =

equivalence with a "unitary gauge", containing no ghost space G. | :

In practice a more accurate procedure requires intermediate gauges,

having only ghost particles with very high masses. Our cutting ;g
relations enable us to understand unitarity in all channels where = 2
the energy does not exceed the values of these_mmsses.wﬂ____““m_,*j L)

I hope to have shown in this lecture why there is a strong s
theoretical argument (quite independent of the impressive ex- R
perimental indications) in favor of a gauge theoretical structure
of any field theory containing particles with spin one.
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