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IT1. INTRODUCTION

In the previous lecture a simple gauge model was considered
with a scalar field doublet E. Perturbation expansion was con-
sidered not about the point £ = o but about the "vacuum value"

(1)

Such a theory is usually called a theory with "spontaneous symme-—
try breakdown" °/. In contrast one might consider "unbroken gauge
theories" where perturbation expansion is only performed about a
symuetric 'vacuum". These theories are characterized by the
absence of a mass term for the gauge vector bosons in the
Lagrangian. The physical consequences of that are quite serious.
The propagators now have their poles at k% = o and it will often
happen that in the diagrams new divergences arise because such
poles tend to coincide. These are fundamental infrared di-
vergencies that imply a blow—up of the interactions at large
distance scales. Often they make it nearly impossible to
understand what the stable particle states are.

A particular example of such a system is "Quantum Chromo-
dynamics", an unbroken gauge theory with gauge group SU(3), and
in addition some fermions in the 3-representation of the group,
called "quarks". We will investigate the possibility that these
quarks are permanently confined inside bound structures that do
not carry gauge quantum numbers. First of all this idea is not as
absurd as it may seem. The converse would be equally difficult to

understand. Gauge quantum numbers are a priori only defined up to

local gauge transformations. The existence of global quantum

*)Lecture given at the Cargdse Summer Institute,
August 26 - September 8, 1979.
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numbers that would correspond to these local ones but would be
detectable experimentally from a distance is not at all a pre- )
requisite. We are nevertheless accustomed to attaching a global
significance to local gauge transformation properties because we
are familiar with the theories with spontaneous breakdown. The _
electron and its neutrino, for example, are usually said to form a N
gauge doublet, to be subjected to local gduge transformations. But
actually these words are not properly used. Even the words " 3
"spontaneous breakdown" are formally not correct for local gauge
theories (which is why I put them between quotation marks). The -
vacuum never breaks local gauge invariance because it itself is _ -.

gauge invariant. All states in the physical Hilbert space are et
gauge—invariant. This may be confusing so let me illustrate what I -
mean by considering the familiar Weinberg-Salam~Ward model. The -
invariant Lagrangian is

v s e iy ey R
Iy Ol L Fy m D" e - V(o) T :
YLD - epDey - kep(4huy) - xGrgde . a1 T

Here ¢ is the scalar Higgs doublet. The gauge group is SU(2)xU(1),
to which correspond Aﬁ (Gﬁv)andAﬁ (Fuv)' The subscripts L and R
denote left and right handed components of a Dirac field, obtained
by the projection operators i(]iys).

ey is a singlet;
wL is a doublet.

Du stands for covariant derivative.

The function V(|¢|) takes its minimum at |¢] = F. Usually one

takes
<¢> =|F (112)
vacuum o
1-"+Tci>'I
and perturbes around that value: ¢ = [ ry ].
2

One identifies the components of % with neutrine and electron:
v
b = ( L] . (113)
L

However, this model is not fundamentally different from a model
with "permanent confinement”. One could interpret the same ;
physical particles as being all gauge singlets, bound states of_
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the fundamental fields with extremely strong confining forces, due .

to the gauge fields Aﬁ of the group SU(2). We have scalar quarks
(the Higgs field ¢) and fermionic quarks (the y; field) both as
fundamental doublets. Let us call them q. Then there are "mesons" )
(qq) and "baryons" (qq). The neutrino is a "meson". Its field is :
the composite, SU(2)-invariant B

¢*wL = FvL + negligible_higher_order terms.

The e, field is a "baryon", created by the_SU(i);invqging

Eij¢iwj = FeL &3 S (114)

the ep field remains an SU(2) singlet. i 1
Also bound states with angular momentum occur: The neutral
intermediate vector boson is the "meson"

¢*Du¢ = %gFg AéB) + total derivative + higher orders,  (II5) '
if we split off the total derivative term (which corresponds to a
spin—zero Higgs particle). o PR e e
The WE are obtained from the "baryons" e..6.D ¢., and the Higgs
particle can also be ontained from o¥p, Y11 W e
Apparently some mesonic and baryonic bound states survive
perturbation expansion, wmost do mot (only those containing a Higgs
"quark" may survive).

Is there no fundamental difference then between a theory with
spontaneous breakdown and a theory with confinement? Sometimes
there is. In the above example the Higgs field was a faithful
representation of SU(2). This is why the above procedure worked,
But suppose that all scalar fields pPresent were invariant under
the center Z(N) of the gauge group SU(N), but some fermion fields
were not. Then there are clearly two possibilites. The gauge
symmetry is "broken" if physical objects exist that transform non-
trivially under ZN' such as the fundamental fermions. We call this
the Higgs phase. If on the other hand all physical objects are
invariant under ZN, such as the mesons and the baryons, then we
have permanent confinement.

Quantum Chromodynamics is such a theory where these distinct
possibilities exist. It is unlikely that one will ever prove from
first principles that permanent confinement takes place, simply
because one can always imagine the Higgs mode to occur. If no
fundamental scalar fields exist then one could introduce composite
fields such as

=44 b
¢ab Y quuv
or



j =3 - j . = 2 . e MLk o i o a3 s e =
o; = Vv : : < =
and postulate nonvanishing vacuum expectation values for them:
SapZ =Ty dpg v Fydy,  or =
i. j j
i ¢i F] Asi ¥ F2 131 s s . ik el e Lt el M e 1 e

In that case there would be no confinement. Whether or not F, ,
are equal to zero will depend on details of the dynamics. Therefore, -
dynamics must be an ingredient of the confinement mechanism, not ¥
only topological arguments. What we will attempt in this lecture - -
is to show that topological arguments imply for this theory the -
existence of phase regions, separated by sharp phase transition 5
boundaries (usually of first order). One region corresponds to what =
is usually called "spontaneous breakdown", and will be referred to
as Higgs phase. Another corresponds to absolute quark confinement.
Still another phase exists which allows for long range Coulomb-
like forces to occur. (Coulomb phase.)

J—— -

IT2. VORTICES IN THE PERIODIC BOX

We concentrate on long-range topological phenomena. One topo— -
logical feature is the instanton, corresponding to a gauge field
configuration with non-trivial Pontryagin or Second Chern Class
number. This however has no direct implication for confinement.
What is needed for confinement is something with the space-time
structure of a string, i.e. a two dimensional manifold in 4 dim. L
space-time. Instantons are rather event-like, i.e. zero dimensional =
and can for instance give rise to new types of interactions that
violate otherwise apparent symmetries. We will not consider these
further here®. A topological structure which is extended in two
dimensional  sheets exists in gauge theories, as hag
been first observed by Nielsen, Olesen and Zumino 3). They are
crucial. We will exhibit them by compactifying space-time. For
the instan%zy it had been convenient to compactify space-time to
a sphere S - For our purposes a hypertorus

s 5, M (D)

is more suitable &). One can also consider this to be a four
dimensional cubie box with periodic boundary conditions. Inside,
space—time is flat. The box may be arbitrarily large. To be ex—
*Surely, as is explained by C. Callan in his lectures, configu-
rations such as the instanton gas will influence the dynamics and
thereby give rise to a perhaps crucial force rhat causes the system
to choose the confinement rather than the Higgs mode. The abso-
luteness of the confining force is however not explained that way.



_p11c1t we put a pure SU(N) gauge ‘theory 1n  the box {nq quarks yet).

Now in the continuum theory the gauge fields themselves are repre-
sentations of SU(N)/Z(N), where Z(N) is the center of the group

SUCN) :
Z(N) = {ez“in/NI = o,l,...,N—l} ; (116)

~ This is because : any gauge transformation of the type (I16) leaves
{x) invariant. A consequence of this is the ex15tence of another

class of topological quantum numbers in th1s box be51des ‘the s
familiar Pontryagin number. Consider the most general possible
periodic boundary condition for A (x) in the box. Take first a

plane (x;,x,) in the 12 direction with fixed values of x3_ggg_x&_~
One may have

Nes7))

Au(a],xz) = 9 (x ) A (o,x )

A (x],a ) = ﬂ (x YA (x],o)

Here, a,, a, are the perlods. ;;3;' A E S AT R

QAu stands short for QAuQ -1 + E}-QB Q l.

The periodicity conditions for Q] 2(x) follow by considering (IL7) :;
2

at the corners of the box:
n](az) 92(0) = ﬂz(al) Ql(o)z , (118)

where Z is some element of Z(N).
One may now perform continuous gauge transformationms on Au(x),

A (x],xz) -+ Q(x]:xz) A (X ,X ) » (IIQ) j

where 2(x;,%9) (non-periodic) can be arranged either such that
Q9(x;) =I or such that Q(xp) = I, but not both, because Z in
(IIB% remains invariant under (119) as one can easily verify. We
call this element Z(1,2) because the 12 plane was chosen. By
continuity Z(1,2) cannot depend on X, or x,. For each (uv)
direction such a Z element exist, to be labeled by integers

nuv = -nvu . (IX10)
definerl modulo N. Clearly this gives
d(d-1)
N 2 =g (1111)

topological classes of gauge field configurations. Note that these
classes disappear if a field in the fundamental representation of
SU(N) is added to the system (these fields would make unacceptable

’TM it‘ kol nL«Q!-uI
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jumps at the boundary). Indeed, to understand quark conflnement it -
is necessary to understand pure gauge systems without quarks first,
As we shall see, the new topological classes will imply the e
existence of new vacuum parameters besides the well-known instanton ¢
angle 9. T

..c.

II3. ORDER AND DISORDER LOOP INTEGRALS i

To elucidate the physical significance of the topologlcal L 33
numbers v we flrst concentrate on gauge f1e1d theory in a three o

specific we will choose the temporal gauge, i

A,4 =0 St GET12) s
(this is the gauge in which rotation towards Euclidean space is
particularly elegant). Space has the topology 5(1)°. There is an
infinite set of homotopy classes of closed oriented curves C in
this space: C may wind any number of times in each of the three i
principal directions. For each curve C at each time t there is a
quantum mechanical operator A(C,t) defined by - o

AC,t) = Tr P exp § igh(x,t).dx , (1113)

called Wilson loop or order parameter.

Here P stands for path ordering of the factors K(x t) when the
exponents are expanded The ordering is done with respect to the
matrix indices. Thg A(x,t) are also operators in Hilbert space,
but for different x, same t, all A(x t) commite with each other.
By analogy with ordinary electromagnetism we say that A(C)
measures magnetic flux through C, and in the same time ereates an
electric flux line along C. Since A(C) is gauge-invariant under
purely periodic gauge transformations, our versions of magnetic
and electric flux are gauge—invariant. Therefore they are not
directly linked to the gauge covariant curl Gﬁv(x).

There exists a dual ana10g09 of A(C) which will be called
B(C) or disorder loop operator C is again a closed oriented
curve in S(1)-, A simple definltlon of B(C) could be made by
postulating its equal-time communication rules with A(C):

[a(c), achl

o

[B(C), B(C")] o ; (IT14)

A(C) B(C'") = B{C') A(C) exp 2min/N ,
where n is the number of times C' winds around C in a certain

direction. Note that n is only well defined if either C or C' is
in the trivial homotopy class (that is, can be shrumk to a point

II-6-



by continuous deformations). Therefore, if C' is in a nontrivial
class we must choose C to be in a trivial class. Since these
commutation rules (II14) determine B(C) only up to factors that
commute with A and B, we could make further requirements, for
instance that B(C) be a2 unitary operator.

An explicit definition of B(C) can be given as follows. In
the temporal gauge, A, = o, one must distinguish a "large Hilbert
space" H of all field configurations A(x) from a "physical Hilbert
space HCH. This ¥ is defined to be the subspace of ¥ of all gauge
invariant states: R 0

a=ﬂwy<m%w>=<ﬂﬁnw% _ i watn wn(TT15)

where @ is any infinitesimal gauge transformation in 3 dim. space.
Often we will also write 2 for the corresponding rotation in X:

H = {|1p>, ajp> = [v>, @ infinitesimal}_ eI  (I116)

1 . -
Now comsider a pseudo—gauge transformation Q[C ! defined to be a
genuine gauge transformation at all points x € C', but singular on
C'. For any closed path x(8) with o € 8 < 2r twisting n times
around C' we require

2rin/N

2l xemy = 2l (x(0)) e (1117)

This discontinuity is not felt by the fields A(;,t) which are
invariant under Z(N). They do feel the singularity at C' however.
We define B(C') as

L ]
A[c!]
but with the singularity at C' smoothened; this corresponds to
some form of regularization, and implies that the operator differs

from an ordinary gauge transformation. Therefore, even for
|$> € H we have

B(C") [v> # |v> . (1118)
For any regular gauge transformation f we have an ' such that

€'l = gle'l o (1119)
Therefore, if |¢> € H then B(C') |[¢> € H, and B(C') is gauge-

invariant. We say that B(C') measures electric flux through C' and
creates a magnetic flux line along C'.

|i}li' f

o

B
Rl
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IT4. NON-ABELIAN GAUGE-INVARIANT MAGNETIC FLUX IN THE BOX

We now want to find a conserved variety of Non-Abelian gauge—
invariant magnetic flux in the 3-direction in the 3 dimensional
periodic box. One might be tempted to look for some curve C
enclosing the box in the 12 direction so that A{C) measures the
flux through the box. That turms out not to work because such a
flux is not guaranteed to be conserved. It is better_ to consider
a curve C' in the 3-direction winding over the torus exactly once:

c' = {':E(s) ,0<s <1 ;3 x(1) = %) + (0,0,a )} ~(1120)

B(C') creates one magnetic flux line. But B(C') also changes the _

number ., into n, + 1. This is because : x Sk

Q[C'] 1 . .: . ————

makes a Z(N) jump according to (II17). If Q1,2(x} in (II7) are
still defined to be continuous then Z in (118) changes by one unit.
Clearly, ny, measures the number of times an operator of the type
B(C') has acted, i.e. the number of magnetic flux lines created,.
o, is also conserved by continuity. We simply define

with my the total magnetic flux in the k-direction. Note that m
corre5ponds to the usual magnetic flux (apart from a numerical
constant) in the Abelian case. Here, m is only defined as an
integer modulo N.

II5. NON-ABELIAN GAUGE-INVARIANT ELECTRIC FLUX IN THE BOX

As in the magnetic case, there exists no simple curve C such
that the total electric flux through C, measured by B{(C), corre-
sponds to a conserved total flux through the box. We consider a
curve C winding once over the torus in the 3-direction and comsider
the electric flux creation operator A(C). But first we must study
a2 new conserved quantum number.

Let [y> be a state in the before mentioned little Hilbert space
H. Then, according to eq. (IX16), |[y> is invariant under <nfini-
tesimal gauge transformations Q. But we also have some non-trivial
homotopy classes of gauge transformations Q. These are the pseudo—
periodic ones:

Q(al,xZ,X3) L Q(O,Xz,X3)Zt »
Q(x1,a3,%x3) = 2(x1,0,%x3)25 , (1122)
Q(x1,%0,33) = 2(x1,%2,0)23 ,

Z1,2,3 € center Z(N) of SU(N) .



™

Notice that not only do A,(x) transform smoothly under these © |

(they are invariant under Z(N) transformations), but their boundary

conditions do got change. These @ therefore commute with the
magnetic flux m. If two different Q satisfy the same equation
(1I122) they act differently on states of the big Hilbert space i,
but since they only differ by regular gauge transformations® they

t = e e b —

act identically on states in 4, defined in II16. Thus, Z] 2.3
characterized by three integers kl’ kz, k3: WA e S0 TR Gy
ik 2n/N e W W e
Z =e - L (IT23) 3

define a set of N3 differert operators in H, under which the e
Hamiltonian H is invariant. Let us call these operators Q[ﬁ],____
Their eigenstates satisfy

alk] v = e Wy, | ' e~ T (1124)

where m('l-:) are strictly conserved numbers. Since Qﬁ]_-fqﬁ a"___ _'
{(finite) group (z())3 we have

w®)) +u(&,) = w( +k, mod ¥) mod 21 , (1125)
and
w(o) =0, (1126)
because |y> €47,
Therefore,
w() = ENEE e;k, (mod 21) , (1127)

where e. are three fixed integers, defined modulo N. They are three -
consexved numbers, to be compared with the instanton angle 6.

Now let us turn back to A(C), defined in eq. (II13). If C is
the curve considered in the beginning of this section, A(C) is not
invariant under 2[k |, because

*Here we left aside for sake of simplicity the fourth integer, the
Pontryagin number of the gauge transformations. It gives inter-
esting complications of which Witten's result for magnetic
monopoles is an examplee). To avoid these complications we must
restrict ourselves to 6 (the vacuumangle associated with instantons)
=0, a subspace of #. Clearly, generalization to 8#0 is possible.

I1-9



A©) » Tr ) Plexp [ igKaD) o G
c

-Zﬂik3/N
= e A(C) . (1128)
Therefore,
=2rik /N
a@ alx]ly>=aXl e  ° a@p>. __ (1129)
i (i) - e e
1 alk]ly> =, ) _(1130) -
and A(C) {y>= |yp'>, , . . (1131)
10 () +2nik /N o o
then @[k ]|u'> = e lp'> . (1132)
Therefore A(C) increases e, by one unit:
eq AC}[¥> = A(C) (eg*D)[u> . . (1133)

e3 is a good indicator for electric flux in the 3—direction. It is
strictly conserved. The physical interpretation of the three
integers e; (mod N) is electric flux. It is gauge—invariant and
conserved. Notice that neither electric nor magnetic flux can be
properly defined if fields in the fundamental reprcsentation are
present.

II6. THE FREE ENERGY OF A GIVEN FLUX CONFIGURATION AT LOW BUT
FINITE TEMPERATURE

The free energy F of a system with given flux quantum (m e)
at temperature T = 1/k8 is given by

e BF S @) P @y o BH (1134)
H e m

Here H is the Hamiltonian, and # is the little Hilbert space. P
are projection operators P (m) is simply defined to select a
given set of ny ijk ko the three space-like indices of eq.
{IX10). How is JP {e.) deflned?We must select states Etp> with

(1135)

therefore

1I-10
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BN o Nl e )G
Pi(e)=— ]'e a(k) . T (1136)
N~ »
k z
Now e-BH is the evolution operator in imaginary time direction ~ =

at interval B, expressed by a functional integral over a Euclidean
box with sides (al,az,a3,8):

AG,8) = (1)"‘)

Ry @ Ky Gr>m fon S® [T gy
(e = A(z)(x) e
We may fix the gauge for Az(;) for instance by choosing et
-
Az)3® = o
Argya(%:¥,0) =0, _ R (1138)

A(z)l(x,o,o) =9 ,

We already had A, (x t) = o, Since only states in H are considered,
we insert also a prOJectlon operator

[,
=T

where I is the trivial homotopy class¥,

"Trace" means that we integrate over all Ay = A2y,
therefore we get periodic boundary conditions in the 4-direction.
Insertions of f DQ means that we have periodicity up to gauge

Q=T
transformations, in the completely unique gauge

A4(§,3) = A, (%,0) = A ,(%:¥,0,0) = A (%,0,0,0) =0 . (1139)

Eq. (II36) tells us that we have to conmsider twisted boundary
conditions in the 41, 42, 43 directions and Fourier transform:

2ni o
= e i i - (ke)
e BF(e,m,2,8) —-15): ek w{k,m,au} . (1140)
)@

Here W{k m,a } is the Euclidean functional integral with boundary
conditions fixed by choosing

* See footnote page II21. Read: I1is the class of purely periodic Q.
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Because of the gauge choice (II139) this functional integral must
include integration over the Q belonging to the given homotopy
classes as they determine the boundary conditions such as (II7).
The definition of W is completely Euclidean symmetric. In the next
chapter I show how to make use of this symmetry with respect to
rotation over 90° in Euclidean space.

-

IT7. DUALITY o
The Euclidean symmetry in eq. (II40) suggests to consider the
following S0(4) rotation:

0—] 1 T P — as m= e
1 o g 2E

gl S e e

Let us introduce a notation for the first two components of a
vector:

-
Xu = (x:xé) ’ -
;E = (x] )xz) 3
= (xz,x]) ” (1142)

We have, from eq. (II40):

exp [‘BFGses ’Esm.—jsg’asaﬂ)} =

1 2aip o o~ ~ ~ o~ ~ ~ w
;2— ~z~exp l:—N—I:— (k.e) + (E.m)___l - aBF(E,-e3,k,-m3,a,B,as):, .
k4 (1143)

Notice that in this formula the transverse electric and magnetic
fluxes are Fourier transformed and interchange positions. Notice
also that, apart from a sign difference, there is a complete
electric-magnetic symmetry in this expression, in spite of the
fact that the definition of F in terms of W was not so symmetric.
Eq. (II43) is an exact property of our system. No approximation
was made. We refer to it as "dualicy".

II8. LONG-DISTANCE BEHAVIOR COMPATIBLE WITH DUALITY

Let us now assume that the theory has a mass gap. No
massless particles occur. Then asymptotic behavior at large
distances will be approached exponentially. Then it is exluded that



F(Z,E,Z,B) + 0, exponentially as Z, T e T e

for all e and E, which would clearly contradict (II43). This means
that at least some of the flux configurations must get a large
énergy content as a, B + =, These flux lines apparently cannot =
spread out and because they were created along curves C it is 2
practically inescapable that they gBet a total energy which will be ~
proportional to their length: -
E=1imF =Ca . NN A VISR R (TT44 )
s i o o RSITN J

ol

iy A =

However, duality will never enable us to determine whether it are
the electric or the magnetic flux lines that behave this way. From
the requirement that W in IT40 is always positive one can deduce
the impossibility of a third optionm, namely that only exotic
combinations of electric and magnetic fluxes behave as strings ).

For further information we must make the physically quite
Plausible assumption of "factorizability":

F(2,m) > F,(2) + F_(W) when 3, 8 + = . | ©U(II45)
Suppose that we have confinement in the electric domain:

Fe(o,o,1)=#pa (1146)

3

where p is the fundamental string constant. Then we can derive
from duality the behavior of Fm(m).

First we improve (II46) by applying statistical mechanics to
obtain F_ for large but finite 8. One obtains:

-BFe(el ;521033,8) + C(-;QB)
e

- + -
n,+n n,-n
! 1 22 + = + -
) - 5 =N Y, 6N(n1 n, e]) GN(nz-n2 ez).
]‘ ll 2.“2.

(1147)

Here
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—Bpay
Yl A aza3 e ,
Bpaj

72 = Aala3e ,

6N(x) =

1 N1 ongwa/N =
e .
k=0

8 () {1 if x = o (mod N),

o otherwise. '  (1148)

. . . +
The sum is over all nonnegative integer values of nj (the
orientations * are needed if N 2 3). The y's are Boltzmann factors
associated with each string~like flux tube.

We now insert this, with (II45), into (II43) putting _
=m, = o. One obtains - i
>
+BFm(m],m2,o,a,B) 22 T; cos(Zmaw/N) i ) 3
e =(C'e .o — - (1149)

where C' is again a constant and

€3

T —pazaj
Yl Aalse >

Yo

[}

Aa,8 e P2183 (1150)
At B + = we get

= o~ -+ -+
FmGE,o,a,B) - Em(m,o,a) > Z Ei(mi,a)

i
with
N 2wm] o
El(ml,a) = 2A|1-cos X a e 2938 (I1I51)
and similarly for E2 and E3.

One reads off from eq. (IIS1) that there will be no magnetic
confinement, because if we let the box become wider the ex-
ponential factor

e P3233

causes a rapid decrease of the energy of the magnetic flux., Notice
the occurrence of the string constant p in there.

Of course we could equally well have started from the
presumption that there were magnetic confinement. One then would
conclude that there would be no electric confinement, because then



the electric flux would have an energy given by (II51). e II-15
I19, THE COULOMB PHASE

To see what might happen in the absence 9f 2 mass gap one
could study the (first) Georgi-Glashow mode1l’}. Here SU(2) is
"broken spontaneously” into U(l) by an isospin one nggs field.
Ordinary perturbation expansion tells us what happens in the
infrared limit, There are electrically charged particles: Wt {the
charged vector particles). They carry two fundamental electric
flux units ("quarks" with isospin § would have the fundamental
flux unit q = +ie) There are also magnetically charged parti- 3
cles (monopoles,8)). They also carry two fundemental magnetic flux -
units:

2n 4w el - o
S Ul L 1152
8 a, " e (1152)

A given electric flux conflguratlon of k flux units would
have an energy

s,
E=-2>—o, (1153)

2&283

N
A finite B however pair creation of W takes place, so that we
should take a statistical average over various values of the flux.
Flux is only rigorously defined modulo 2qo. We have

o) eza
a1 ook ]

k——cn

e 5 . (1154)
=@ e’a
) exp[}ﬁiﬂ;—%- k%]
k=-= 273

Similarly, because of pair creation of magnetic monopoles

) 7
¥ exp[“B T2 (k"'i)]

-8F _(1,0,0) k== g a.a

B - 2 . (1155)
@ 8 a 3
Z EKP{}B -Tf-—_-lc]

These expressions do satisfy duality, eq. (II43). This is easily
verified when one observes that
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and

o 2 © 2 2
J (-nk ok =\/§ I e (k+3) /1..

k=—w k=—co

Notice now that this model realizes the dual formula in a _symmetric
way, contrary to the case that there is a mass gap. This dually
symmetric mode will be referred to as the "Coulomb phase" or
"Georgi-Glashow phase", ) o

Suppose that Quantum Chromodynamics would be enriched with
two free parameters that would not destroy the basic topologlcal
features (for instance the mass of some heavy scalar fields in the
adjoint representation). Then we would have a phase diagram as in
the Figure below. '

4
Coulomb
phase
magnetic triple point
confinement electric quark
or Higgs confinement
phase phase

Numerical calculationsg) suggest that the phase tramsition between
the two confinement modes is a first order one. Real QCD is
represented by one point in this diagram. Vhere will that polint
be? If it were in the Coulomb phase there would be long range,
strongly interacting Abelian gluons contrary to experiment. In

the Higgs mode quarks would have finite mass and escape easily. It
could be still in the Higgs phase but very close to the border
line with the confinement mode. If the phase transition were a
second order one then that would imply long range correlation
effects requiring light physical gluons. Again: they are not
observed experlmentally. If, which is more likely, the phase
transition is a first order one then even close to the border line
not even approximate confinement would take place: quarks would

be produced copiously. There is only one possibility: we are in
the confinement mode. Electric flux lines camnct spread out.Quark



confinement is absolute.
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