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Abstract: It is shown that in all those gauge theories in which the electromagnetic group U(I) 
is taken to be a subgroup of a larger group with a compact covering group, like SU(2) or 
SU(3), genuine magnetic monopoles can be created as regular solutions of the field equa- 
tions. Their mass is calculable and of order 137 MW, where M W is a typical vector boson 
mass. 

1. Introduction 

The present investigation is inspired by the work of  Nielsen et al. [1 ], who found 
that quantized magnetic flux lines, in a superconductor,  behave very much like the 
Nambu string [2]. Their solution consists of  a kernel in the form of  a thin tube 
which contains most of  the flux lines and the energy; all physical fields decrease ex- 
ponential ly outside this kernel. Outside the kernel we do have a transverse vector 
potential  A,  but there it is rotation-free: if we put  the kernel along the z axis, then 

A(x)  ec ( y , - x , O ) / ( x  2 + y 2 ) .  (1.1) 

A(x)  can be obtained by means of  a gauge transformation ~(~0) from the vacuum. 
Here ¢ is the angle about the z axis: 

f2(0) = ~2(21r)= 1 . 

It is obvious that such a string cannot break since we cannot have an end point:  
it is impossible to replace a rotat ion over 2rr continuously by ~2(~0) ~ 1. Or: magnetic 
monopoles do not  occur in the system. Also it is easy to see that  these strings are 
oriented: two strings with opposite direction can annihilate; if  they have the same 
direction they may only join to form an even tighter string. 

Now, let us suppose that the electromagnetism in the superconductor is in fact 
described by a unified gauge theory,  in which the electromagnetic group U(1) is a 
subgroup of, say, SO(3). In such a non-Abelian theory one can only imagine non- 
oriented strings, because a rotat ion over 4rr can be continuously shifted towards a 
fixed ~ .  What happened with our original strings? The answer is simple: in an 
SO(3) gauge theory magnetic monopoles with twice the flux quantum (i.e., the 
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Schwinger [3,4] value), occur. Two of  the original strings, oriented in the same 
direction, can now annihilate by formation of a monopole  pair [5]. 

From now on we shall dispose of  the original superconductor with its quantized 
flux lines. We consider free monopoles in the physical vacuum. That these mono- 
poles are possible, as regular solutions of the field equations, can be understood in 
the following way. Imagine a sphere, with a magnetic flux q~ entering at one spot 
(see fig. 1). Immediately around that spot, on the contour C O in fig. 1, we must have 
a magnetic potential  field A ,  with ~(A • dx)  = q~. It can be obtained from the 
vacuum by applying a gauge transformation A:  

A = V A. (1.2) 

This A is multivalued. Now we require that all fields, which transform according to 

t~ ~ ~ e n i A  , (1.3) 

to remain single valued, so • must be an integer times 27r: we then have a com- 
plete gauge rotat ion along the contour  in fig. 1. 

In an Abelian gauge theory we must necessarily have some other spot on the 
sphere where the flux lines come out, because the rotation over 2krr cannot con- 
tinuously change into a constant while we lower the contour C over the sphere. In 
a non-Abelian theory with compact  covering group, however, for instance the group 
O(3), a rotat ion over 47r may be shifted towards a constant,  without  singularity: we 
may have a vacuum all around the sphere. In other theories, even rotations over 21r 

Fig. 1. The contour C on the sphere around the monopole. We deplace it from Co to C1, etc., 
until it shrinks at the bottom of the sphere. We require that there be no singularity at that point. 
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may be shifted towards a constant. This is why a magnetic monopole with twice or 
sometimes once the flux quantum is allowed in a non-Abelian theory, if the elec- 
tromagnetic group U(1) is a subgroup of  a gauge group with compact covering 
group. There is no singularity anywhere in the sphere, nor is there the need for a 
Dirac string. 

This is how we were led to consider solutions of  the following type to the clas- 
sical field equations in a non-Abelian Higgs-Kibble system: a small kernel occurs 
in the origin of  three dimensional space. Outside that kernel a non-vanishing vector 
potential exists (and other non-physical fields) which can be obtained from the 
vacuum* by means of  a gauge transformation ~2(0, ¢). At one side of  the sphere 
(cos 0 ~ 1) we have a rotation over 47r, which goes to unity at the other side of  the 
sphere (cos 0 ~ - 1 ) .  For such a rotation one can, for instance, take the following 
SU(2) matrix: 

e i~° 0 0 i  , cos 0( t s n 0() 
0 e -i~ i 0 

Now consider one rotation of  the angle ¢ over 21r. At 0 = 0, this ~2 rotates over 47r 
(the spinor rotates over 27r). At 0 = 7r, this ~2 is a constant. One easily checks that 

~212t = 1 . (1.5) 

In the usual gauge theories one normally chooses the gauge in which the Higgs 
field is a vector in a fixed direction, say, along the positive z axis, in isospin space. 
Now, however, we take as a gauge condition that the Higgs field is ~2(0, ~0) times 
this vector. As we shall see in sect. 2, this leads to a new boundary condition at in- 
finity, to which corresponds a non-trivial solution of  the field equations: a stable 
particle is sitting at the origin. It will be shown to be a magnetic monopole. If we 
want to be conservative and only permit the normal boundary condition at infinity, 
with Higgs fields pointing in the z direction, then still monopole-antimonopole pairs, 
arbitrarily far apart, are legitimate solutions of the field quations. 

2. The model 

We must have a model with a compact covering group. That, unfortunately, ex- 
cludes the popular SU(2) × U(1) model o f  Weinberg and Salam [6]. There are two 
classes of  possibilities. 

(i) In models of  the type described by Georgi and Glashow [7], based on SO(3), 
we can construct monopoles with a mass of  the order of  137 MW, where M w is the 

* As we shall see this vacuum will still contain a radial magnetic field. This is because the in- 
coming field in fig. 1 will be spread over the whole sphere. 
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mass of  the familiar intermediate vector boson. In the Georgi-Glashow model, 
M w < 53 GeV/c 2. 

(ii) The Weinberg-Salam model can still be a good phenomenological description 
of  processes with energies around hundreds of  GeV, but may need extension to a 
larger gauge group at stilLhigher energies. Weinberg [8] proposed SU(3) × SU(3)  
which would then be compact. Then the monopole mass would be 137 times the 
mass o f  one of  the superheavy vector bosons. 

We choose the first possibility for our sample calculations, because it is the sim- 
plest one. We take as our Lagrangian: 

,,~= _1(2,a (Ta 1 2.-.2 1 2 2 
- - 4 ~ l d U ~ l a u  - -  ~ D u Q a D u Q  a - ~ l a  ~ a  - ' g X ( Q a )  , (2.1) 

where 

b e 
G~ v = ala way - at, W~ + e e.ab c W~ Wv , 

D u Q  a = 3uQ a + e eabcWbQc . (2.2) 

W u and Qa are a triplet of  vector fields and scalar fields, respectively. 
We choose the parameter/l  2 to be negative so that the field Q gets a non-zero 

vacuum expectation value [6,7,9]: 

(Qa)2 = F 2 , /a2 = _ I ~ F  2 . (2.3) 

Two components of  the vector field will acquire a mass: 

MW1 ;2 = e F ,  (2.4) 

whereas the third component describes the surviving Abelian electromagnetic inter- 
actions. The Higgs particle has a mass: 

M H = x/~ F .  (2.5) 

We are interested in a solution where the Higgs field is not rotated everywhere 
towards the positive z direction. If  we apply the transformation f2 of  eq. (1.5) to 
the isospin-one vector F(0 ,  0, 1) we get 

F(s in0 cos~0, sin 0 sin ~0, cos 0). (2.6) 

We shall take this isovector as our boundary condition for the Higgs field at space- 
like infinity. As one can easily verify, it implies that the Higgs field must have at 
least one zero. This zero we take as the origin of  our coordinate system. 

We now ask for a solution of  the field equations that is time-independent and 
spherically symmetric, apart from the obvious angle dependence. Introducing the 
vector 

r a = ( x , y , z ) ,  r 2 = r 2 , (2.7) 
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we can write 

a a ( x ,  t) = r a a ( r  ) , 
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W~(x,  t) -- etlabr b W(r)  , (2.8) 

where e~a b is the usual e symbol if/a = 1,2, 3, and e4a b = O. 
In terms of these variables the Lagrangian becomes 

o ~ - !  

_ l e 2 r 4 W  4 _ ~r 2 ( d Q  ~2 rQ dQ _ ~Q2 _ 2er2WQ2 _ e2r4W2Q2 
~I - 

+ ~ F 2 r 2 Q  2 - ~Xr4Q 4 - ~;kF4J , (2.9) 

where the constant has been added to give the vacuum a vanishing action integral. 
The field equations are obtained by requiring L to be stationary under small varia- 
tions of the functions W(r) and Q(r) .  The energy of the system is then given by 

E = - L ,  (2.10) 

since our system is stationary. 
Before calculating this energy, let us concentrate on the boundary condition at 

r ~ oo. From the preceding arguments we already know that we must insist on 

Q (r) ~ F i r .  (2.11) 

The field W must behave smoothly, as some negative power of r: 

W(r) ~ a r - n  . (2.12) 

From (2.9) we find the Lagrange equation 

d ( 2 r 4  dW~r +4r3W) 

. = r Z [ 4 r d ~ +  1 2 W + 6 e r 2 W 2 + 2 e Z r 4 W 3 + 2 e r Z Q Z + 2 e Z r 4 W Q  2] . (2.13) 

So, substituting (2.11) and (2.12), 

( 3 - n ) ( 4 - 2 n ) a r  2-n  -- - - - -~-4nar 2 -n  + 12ar2-n + 6 e a 2 r 4 - 2 n  + 2e2a3r6 -3n  
T - - ~  ao 

+ 2 e F 2 r  2 + 2 e 2 a F 2 r 4 - n  . (2.14) 

The only solution is 

n = 2 ,  a = - 1 / e .  (2.15) 

So, far from the origin, the fields are 
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W~(x, t ) -+ - e u a b r b / e r 2  , Qa(x , t ) -+ Fra / r .  (2.16) 

Now most of  these fields are not physical. To find the physically observable fields, 
in particular the electromagnetic ones, Fur,  we must first give a gauge invariant de- 
finition, which will yield the usual definition in the gauge where the Higgs field lies 
along the z direction everywhere. We propose: 

1 a _ I 
Fur = IC91QaGuv e[Q[ 3 eabcQa(DuQb)(OvQc) , (2.17) 

because, if after a gauge rotation, Qa = IQ J(o, o, 1) everywhere within some region, 
then we have there 

3 e.==a.w2 - o . w .  , 

as one can easily check. (Observe that the definition (2.17) satisfies the usual 
Maxwell equations, except where Qa = 0; this is one other way of understanding 
the possibility of  monopoles in this theory.) From (2.16), we get (see the definitions 
(2.2)): 

F 
G a - (2.18) 

Qa uv er  3 euvara , 

b DuQ a = 3uQ a + eeabcW~Q c = O. (2.19) 

Hence 

1 
Fur - euvar a . (2.20) 

er 3 

Again, the e symbol has been defined to be zero as soon as one of its indices has 
the value 4. So, there is a radial magnetic field 

B a = ra / e r3 ,  (2.21) 

with a total flux 

4~/e. 

Hence, our solution is a magnetic monopole,  as we expected. It satisfies Schwinger's 
condition 

eg = 1 (2.22) 

(in units where h = 1). In sect. 4, however, we show that in certain cases only 
Dirac's condition 

eg = ½n, n integer,  

is satisfied. 
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3. The mass of the monopole 

Let us introduce dimensionless parameters: 

w = W/F2e, q = O/F2e, 

x eFr ,  ~ = X/e 2 2 2 = = Mfi/MCv. 

From (2.9) and (2.10) we find that the energy E of the system is the minima! 
value of 

(3.1) 

47rM w 
? Ix dw i x 4 w 4 + l x 2 ( d q ~ 2  x 2 dx 2 (dw~ 2 + 4xw + 6w 2 + 2x2w 3 + 

e2 0 \ d x l  ~ ~xx] 

dq 3q2 1 + xq ~~ + - + 2x2wq 2 + xaw2q 2 - ~ x 2 q  2 + ~13xaq 4 + ~ . (3.2) 

The quantity between the brackets is dimensionless and the extremum can be found 
by inserting trial functions and adjusting their parameters. 

We found that the mass of the monopole (which is equal to the energy E since 
the monopole is at rest) is 

M m = 4~ MwC(~ ) (3.3) 
e2 

where C(/3) is nearly independent of the parameter ft. It varies from 1.1 for/3 = 0.1 
to 1.44 for/3 = 10 * 

Only in the Georgi-Glashow model (for which we did this calculation) is the 
parameter M w in eq. (3.3) really the mass of the conventional intermediate vector 
bosom In other models it will in general be the mass of that boson which corre- 
sponds to the gauge transformations of the compact covering group: some of the 
superheavies in Weinberg's SU(3) X SU(3) for instance. 

4. Conclusions 

The relation between charge quantization and the possible existence of magnetic 
monopoles has been speculated on for a long time [10] and it has been observed 
that the gauge theories with compact gauge groups provide for the necessary charge 
quantization [11 ]. On the other hand, solutions of the:field equations with ab- 
normally rotated boundary conditions for the Higgs fields have also been considered 
before [1,12]. Nevertheless, it had escaped to our notion until now that magnetic 
monopoles occur among the solutions in those theories, and that their properties 
are predictable and calculable. 

* These values may be slightly too high, as a consequence of our approximation procedure. 
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Our way of formulating the theory of magnetic monopoles avoids the introduc- 
tion of Dirac's string [3], We expect no fundamental problems in calculating 
quantum corrections to the solution although they might be complicated to carry 
out. 

The prediction is the most striking for the Georgi-Glashow model, although even 
in that model the mass is so high that that might explain the negative experimental 
evidence so far. If  Weinberg's SU(2) X U(1) model wins the race for the presently 
observed weak interactions, then we shall have to wait for its extension to a com- 
pact gauge model, and the predicted monopole mass will be again much higher. 
Finally, one important observation. In the Georgi-Glashow model, one may intro- 
duce isospin ~- representations of the group SU(2) describing particles with charges 
-+ ~e. In that case our monopoles do not obey Schwinger's condition, but only 
Dirac's condition 

q g =  ~ , 

where q is the charge quantum and g the magnetic pole quantum, in spite of the 
fact that we have a completely quantized theory. Evidently, Schwinger's arguments 
do not hold for this theory [13]. We do have, in our model 

A q g  = 1 ,  

where Aq is the charge-difference between members of a multiplet, but this is 
certainly not a general phenomenon. In Weinberg's SU(3) X SU(3) the monopole 
quantum is the Dirac one and in models where the leptons form an SU(3) X SU(3) 
octet [14] the monopole quantum is three times the Dirac value (note the possibili- 
ty of fractionally charged quarks in that case). 

We thank H. Strubbe for help with a computer calculation of the coefficient 
C(/3), and B. Zumino and D. Gross for interesting discussions. 
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