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1. Introduction

Many systems studied in physics show some form of symmetry. In physics, this means
the following: we can consider some transformation rule, like a rotation, a displacement,
or the reflection by a mirror, and we compare the original system with the transformed
system. If they show some resemblance, we have a symmetry. A snow flake looks like
itself when we rotate it by 60◦ or when we perform a mirror reflection. We say that
the snow flake has a symmetry. If we replace a proton by a neutron, and vice versa, the
replaced particles behave very much like the originals; this is also a symmetry. Many laws
of Nature have symmetries in this sense. Sometimes the symmetry is perfect, but often
it is not exact; the transformed system is then slightly different from the original; the
symmetry is broken.

If system A resembles system B , and system B resembles C , then A resembles
C . Therefore, the product of two symmetry transformations is again a symmetry trans-
formation. Thus, the set of all symmetry transformations that characterize the symmetry
of a system, are elements of a group. For example, the reflections with respect to a plane
form a group that contains just two elements: the reflection operation and the identity
— the identity being the one operation that leaves everything the same. The rotations in
three-dimensional space, the set of all Lorentz transformations, and the set of all parallel
displacements also form groups, which have an unlimited number of elements. For obvi-
ous reasons, groups with a finite (or denumerable) number of elements are called discrete
groups; groups of transformations that continuously depend on a number of parameters,
such as the rotations, which can be defined in terms of a few angular parameters, are
called continuous groups.

The symmetry of a system implies certain relations among observable quantities, which
may be obeyed with great precision, independently of the nature of the forces acting in the
system. In the hydrogen atom, for example, one finds that the energies of different states
of the atom, are exactly equal, as a consequence of the rotational invariance of the system.
However, one also often finds that the symmetry of a physical system is only approximately
realized. An infinite crystal, for example, is invariant under those translations for which
the displacement is an integral multiple of the distance between two adjacent atoms. In
reality, however, the crystal has a definite size, and its surface perturbs the translational
symmetry. Nevertheless, if the crystal contains a sufficiently large number of atoms, the
disturbance due to the surface has little effects on the properties at the interior.

An other example of a symmetry that is only approximately realized, is encountered
in elementary particle physics. The so-called ∆+ particle, which is one of the excited
states of the nucleons, decays into a nucleon and an other particle, the π -meson, also
called pion. There exist two kinds of nucleons, neutrons and protons, and there are three
types of pions, the electrically charged pions π+ and π− , and the neutral one, π0 . Since
the total electric charge of the ∆+ must be preserved during its decay, one distinguishes

1This lecture course was originally set up by M. Veltman, and subsequently modified and extended
by B. de Wit and G. ’t Hooft.
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nucleons pions ∆ particles
mproton ≈ 938 MeV/c2 mπ+ ≈ 140 MeV/c2 m∆++ ≈ 1231 MeV/c2

mneutron ≈ 939 MeV/c2 mπ0 ≈ 135 MeV/c2 m∆+ ≈ 1232 MeV/c2

mπ− ≈ 140 MeV/c2 m∆0 ≈ 1233 MeV/c2

m∆− ≈ 1235 MeV/c2

Table 1: Masses of nucleons, pions and ∆ particles, expressed in MeV/c2 .

two possible decay modes:

∆+ → n π+ and ∆+ → p π0 . (1.1)

Remarkably, the second decay occurs twice as often as the the first one, a fact that seems to
be difficult to explain as being due to the differences in the charges of the decay products.
A natural explanation of this factor 2 could follow from symmetry considerations. This
is not as strange as it might seem, because protons and neutrons have nearly identical
masses, just as the three species of pions and the four ∆ particles that are found in
Nature (see table).

It will be demonstrated that the near equality of the masses, and also the factor 2 in
the two decay modes (1.1), can be explained by assuming nature to be invariant under
so-called isospin transformations. The notion of ‘isobaric spin’, or ‘isospin’ for short, was
introduced by Heisenberg in 1932. He was puzzled by the fact that protons and neutrons
have nearly equal masses, while, apart from the obvious differences in electrical charge,
also other properties are much alike. Thus, the nucleons form a doublet, just like electrons
that show a doublet structure as a consequence of the fact that there are two possible spin
orientations for the electron states — hence the term isobaric spin. Later, it turned out
that elementary particles with nearly equal masses can always be arranged in so-called
isospin multiplets. The nucleons form an isospin doublet, the pions an isospin triplet,
and the ∆ particles an isospin quadruplet. Particles inside a single multiplet all have
approximately identical masses, but different electric charges. The charge arrangement is
as indicated in the table: no two particles in one multiplet have the same charge, and the
particles can always be arranged in such a way that the charge difference between two
successive particles is exactly one elementary charge unit.

However, it will be clear that isospin invariance can only be an approximation, since
the masses of the nucleons, pions and ∆ particles turn out to depend somewhat on their
electric charges. The mass differences within a multiplet are only of the order of a few
percent, and this is the degree of accuracy that one can expect for theoretical predictions
based upon isospin invariance.

The above example is an application of group theory in the physics of elementary
particles, but invariance principles play an important role in nearly all branches of physics.
In atomic physics we frequently notice the consequences of rotation invariance, in nuclear
physics we have rotation and isospin invariance, in solid state physics also invariance
under discrete translations and rotations. Also in (quantum) field theory, symmetry
transformations are important. A very special kind of transformations are encountered
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for example in electrodynamics. Here, electric and magnetic fields can be expressed in
terms of the so-called vector potential Aµ(x) , for which we use a relativistic four-vector
notation ( µ = 0, 1, 2, 3 ):

Aµ(x) = (− c−1 φ(x), A(x)) , xµ = (ct, x) , (1.2)

where φ denotes the potential, and A the three-dimensional vector potential field; c is
the velocity of light. The electric and magnetic fields are defined by

E = −∇φ− c−1 ∂A

∂t
, (1.3)

B = ∇×A . (1.4)

An electrically charged particle is described by a complex wave function ψ(~x, t) . The
Schrödinger equation obeyed by this wave function remains valid when one performs a
rotation in the complex plane:

ψ(~x, t) → eiΛ ψ(~x, t) . (1.5)

Is the phase factor Λ allowed to vary in space and time?

The answer to this is yes, however only if the Schrödinger equation depends on the
vector potential in a very special way. Wherever a derivative ∂µ occurs, it must be in
the combination

Dµ = ∂µ − ieAµ , (1.6)

where e is the electric charge of the particle in question. If Λ(~x, t) depends on ~x and
t , then (1.5) must be associated with the following transformation rules for the potential
fields:

A(x) → A(x) + e−1∇Λ(x) , (1.7)

φ(x) → φ(x)− (c e)−1 ∂

∂t
Λ(x) , (1.8)

or, in four-vector notation,

Aµ(x) → Aµ(x) + e−1∂µΛ(x) . (1.9)

It can now easily be established that E en B will not be affected by this so-called
gauge transformation. Furthermore, we derive:

Dµψ(x) → eiΛ(x)Dµψ(x) . (1.10)

Notice that the substitution (1.6) in the Schrödinger equation is all that is needed to
include the interaction of a charged particle with the fields E en B .

These phase factors define a group, called the group of 1× 1 unitary matrices, U(1) .
In this case, the group is quite a simple one, but it so happens that similar theories exist
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that are based on other (continuous) groups that are quite a bit more complicated such as
the group SU(2) that will be considered in these lectures. Theories of this type are known
as gauge theories, or Yang-Mills theories, and the field Aµ is called a gauge field. The
fact that E en B are invariant under gauge transformations implies that electromagnetic
phenomena are gauge-invariant. For more general groups it turns out that several of these
gauge fields are needed: they form multiplets.

Surprisingly, the theory of gravitation, Einstein’s general relativity theory, turns out
to be a gauge theory as well, be it of a somewhat different type. This theory can be
considered to be the gauge theory of the general coordinate transformations, the most
general reparametrizations of points in space and time,

xµ → xµ + ξµ(x) . (1.11)

The gauge field here is the gravitational field, taking the form of a metric, which is to be
used in the definitions of distances and angles in four-dimensional space and time. All of
this is the subject of an entire lecture course, Introduction to General Relativity.

The fact that gauge transformations are associated to an abstract group, and can
depend on space and time as well, can give rise to interesting phenomena of a topological
nature. Examples of this are flux quantization in super conductors, the Aharonov-Bohm
effect in quantum mechanics, and magnetic monopoles. To illustrate the relevance of
topology, we consider again the group of the U(1) gauge transformations, but now in
two-dimensional space (or equivalently, in a situation where the fields only depend on
two of the three space coordinates). Let ψ(x, y) be a complex function, such as a wave
function in quantum mechanics, transforming under these gauge transformations, i.e.

ψ(x, y) → eiΛ(x,y)ψ(x, y) . (1.12)

From the fact that the phase of ψ can be modified everywhere by applying different
gauge transformations, one might conclude that the phase of ψ is actually irrelevant for
the description of the system. This however is not quite the case. Consider for instance
a function that vanishes at the origin. Now take a closed curve in the x - y plane, and
check how the phase of ψ(x, y) changes along the curve. After a complete run along the
curve the phase might not necessarily take the same value as at the beginning, but if we
assume that ψ(x, y) is single-valued on the plane, then the phase difference will be equal
to 2πn , where n is an arbitrary integral number. This number is called the winding
number. An example of a situation with winding number n = 1 is pictured in Fig. 1; the
phase angle makes a full turn over 2π when we follow the function ψ(x, y) along a curve
winding once around the origin. One can easily imagine situations with other winding
numbers. The case n = 0 for instance occurs when the phase of ψ(x, y) is constant.

If we change the function ψ(x, y) continuously, the winding number will not change.
This is why the winding number is called a topological invariant. This also implies that the
winding number will not change under the gauge transformations (1.12), provided that
we limit ourselves to gauge transformations that are well-defined in the entire plane. Note
also that the winding number does not depend on the choice of the closed curve around
the origin, as long as it is not pulled across the origin or any other zero of the function
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Figure 1: De phase angle of ψ(x, y) indicated by an arrow (whose length is immaterial,
but could be given for instance by |ψ(x, y)| ) at various spots in the x - y plane. This
function has a zero at the origin.

ψ(x, y) . All this implies that although locally, that is, at one point and its immediate
neighborhood, the phase of ψ can be made to vanish, this can be realized globally, that
is, on the entire plane, only if the winding number for any closed curve equals zero.

A similar situation can be imagined for the vector potential. Once more consider
the two-dimensional plane, and assume that we are dealing with a magnetic field that is
everywhere equal to zero, except for a small region surrounding the origin. In this region,
A cannot be equal to zero, because of the relation (1.4). However, in the surrounding
region, where B vanishes, there may seem to be no reason why not also A should vanish.
Indeed, one can show that, at every given point and its neighborhood, a suitably chosen
gauge transformation can ensure A(x) to vanish there. This result, however, can only
hold locally, as we can verify by considering the following loop integral:

Φ[C] =

∮

C

Ai dxi, (1.13)

where C is a given closed curve. It is easy to check that Φ[C] does not change under
a gauge transformation (1.5). Indeed, we know from the theory of magnetism that Φ[C]
must be proportional to the total magnetic flux through the surface enclosed by the curve
C .

Applying this to the given situation, we take the curve C to surround the origin and
the region where B 6= 0 , so that the B field vanishes on the curve itself. The quantity
Φ[C] equals the total flux through C , which may well be different from zero. If this
is the case, we cannot transform A away in the entire outside region, even if it can
be transformed away locally2. Note that the magnetic flux here plays the same role as
the winding number of the previous example. Indeed, in superconducting material, the
gauge phases can be chosen such that A vanishes, and consequently, magnetic flux going
through a superconducting coil is limited to integral values: the flux is quantized.

2This causes an interesting quantum mechanical effect in electrons outside a magnetic field, to wit,
the Aharonov-Bohm effect.
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Under some circumstances, magnetic field lines can penetrate superconducting mate-
rials in the form of vortices. These vortices again are quantized. In the case of more com-
plicated groups, such as SU(2) , other situations of a similar nature can occur: magnetic
monopoles are topologically stable objects in three dimensions; even in four dimensions
one can have such phenomena, referred to as “instantons”.

Clearly, group theory plays an essential role in physics. In these lectures we will
primarily limit ourselves to the group of three-dimensional rotations, mostly in the context
of quantum mechanics. Many of the essentials can be clarified this way, and the treatment
can be made reasonably transparent, physically and mathematically. The course does not
intend to give a complete mathematical analysis; rather, we wish to illustrate as clearly as
possible the relevance of group theory for physics. Therefore, some physical applications
will be displayed extensively. The rotation group is an example of a so-called compact Lie
group. In most applications, we consider the representations of this group. Representation
theory for such groups is completely known in mathematics. Some advance knowledge
of linear algebra (matrices, inner products, traces, functions and derivatives of matrices,
etc.) will be necessary. For completeness, some of the most important properties of
matrices are summarized in a couple of appendices.
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2. Quantum mechanics and rotation invariance

Quantum mechanics tells us that any physical system can be described by a (usually
complex) wave function. This wave function is a solution of a differential equation (for
instance the Schrödinger equation, if a non-relativistic limit is applicable) with boundary
conditions determined by the physical situation. We will not indulge in the problems of
determining this wave function in all sorts of cases, but we are interested in the properties
of wave functions that follow from the fact that Nature shows certain symmetries. By
making use of these symmetries we can save ourselves a lot of hard work doing calculations.

One of the most obvious symmetries that we observe in nature around us, is invariance
of the laws of nature under rotations in three-dimensional space. An observer expects that
the results of measurements should be independent of the orientation of his or her appara-
tus in space, assuming that the experimental setup is not interacting with its environment,
or with the Earth’s gravitational field. For instance, one does not expect that the time
shown by a watch will depend on its orientation in space, or that the way a calculator
works changes if we rotate it. Rotational symmetry can be found in many fundamental
equations of physics: Newton’s laws, Maxwell’s laws, and Schrödinger’s equation for ex-
ample do not depend on orientation in space. To state things more precisely: Nature’s
laws are invariant under rotations in three-dimensional space.

We now intend to find out what the consequences are of this invariance under rotation
for wave functions. From classical mechanics it is known that rotational invariance of
a system with no interaction with its environment, gives rise to conservation of angular
momentum: in such a system, the total angular momentum is a constant of the motion.
This conservation law turns out to be independent of the details of the dynamical laws; it
simply follows from more general considerations. It can be deduced in quantum mechanics
as well. There turns out to be a connection between the behavior of a wave function under
rotations and the conservation of angular momentum.

The equations may be hard to solve explicitly. But consider a wave function ψ de-
pending on all sorts of variables, being the solution of some linear differential equation:

Dψ = 0 . (2.1)

The essential thing is that the exact form of D does not matter; the only thing that
matters is that D be invariant under rotations. An example is Schrödinger’s equation
for a particle moving in a spherically symmetric potential V (r) ,

[
~2

2m

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)
− V (r) + i~

∂

∂t

]
ψ(~x, t) = 0 , r

def
=
√

~x 2 . (2.2)

Consider now the behavior of this differential equation under rotations. When we
rotate, the position vector ~x turns into an other vector with coordinates x′i :

x′i =
∑

j

Rij xj . (2.3)
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Here, we should characterize the rotation using a 3 × 3 matrix R , that is orthogonal
and has determinant equal to 1 (orthogonal matrices with determinant −1 correspond
to mirror reflections). The orthogonality condition for R implies that

R̃ R = R R̃ = 1 , or
∑

i

Rij Rik = δjk ;
∑

j

Rij Rkj = δik , (2.4)

where R̃ is the transpose of R (defined by R̃ij = Rji ).

It is not difficult now to check that equation (2.2) is rotationally invariant. To see

this, consider3 the function ψ′(~x, t)
def
= ψ(~x ′, t) ,

∂

∂xi

ψ′(~x, t) =
∂

∂xi

ψ(~x ′, t) =
∑

j

∂x′j
∂xi

∂

∂x′j
ψ(~x ′, t) =

∑
j

Rji
∂

∂x′j
ψ(~x ′, t) , (2.5)

where use was made of Eq. (2.3). Subsequently, we observe that

∑
i

∂

∂xi

∂

∂xi

ψ(~x ′, t) =
∑

i,j,k

Rji Rki
∂

∂x′j

∂

∂x′k
ψ(~x ′, t)

=
∑

i

∂

∂x′i

∂

∂x′i
ψ(~x ′, t) , (2.6)

where we made use of Eq. (2.4). Since ~x ′ 2 = ~x 2 , the potential V (r) also remains the
same after a rotation. From the above, it follows that Equation (2.2) is invariant under
rotations: if ψ(~x, t) is a solution of Eq. (2.2), then also ψ ′(~x, t) must be a solution of
the same equation.

In the above, use was made of the fact that rotations can be represented by real 3× 3
matrices R . Their determinant must be +1 , and they must obey the orthogonality
condition R R̃ = 1 . Every rotation in 3 dimensions can be represented by three angles
(this will be made more precise in Chapter 3) Let R1 and R2 both be matrices belonging
to some rotations; then their product R3 = R1R2 will also be a rotation. This statement
is proven as follows: assume that R1 and R2 are orthogonal matrices with determinant
1 . From the fact that

R̃1 = R−1
1 , R̃2 = R−1

2 , (2.7)

it follows that also R3 = R1R2 is orthogonal:

R̃3 = R̃1R2 = R̃2R̃1 = R−1
2 R−1

1 = (R1R2)
−1 = R−1

3 . (2.8)

Furthermore, we derive that

det R3 = det(R1R2) = det R1 det R2 = 1 , (2.9)

3By rotating ~x first, and taking the old function at the new point ~x ′ afterwards, we actually rotate
the wave function into the opposite direction. This is a question of notation that, rather from being
objectionable, avoids unnecessary complications in the calculations.
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so that R3 is a rotation as well. Note that also the product R4 = R2R1 is a rotation, but
that R3 en R4 need not be the same. In other words, rotations are not commutative;
when applied in a different order, the result will be different, in general.

We observe that the rotations form what is known as a group. A set of elements (here

the set of real 3×3 matrices R with determinant 1 and R̃R = 1 ) is called a group if an
operation exists that we call ‘multiplication’ (here the ordinary matrix multiplication), in
such a way that the following demands are obeyed:

1. If R1 en R2 are elements of the group, then also the product R1R2 is an element
of the group.

2. The multiplication is associative: R1(R2R3) = (R1R2)R3 . So, one may either first
multiply R2 with R3 , and then multiply the result with R1 , or perform these two
operations in the opposite order. Note that the order in which the matrices appear
in this expression does have to stay the same.

3. There exists a unity element 1 , such that 1R = R for all elements R of the group.
This unity element is also an element of the group.

4. For all elements R of the group, there exists in the group an inverse element R−1

such that R−1R = 1 .

The set of rotation matrices possesses all these properties. This set forms a group with
infinitely many elements.

Every group is fully characterized by its multiplication structure, i.e. the relation
between the elements via the multiplication rules. Later, we will attempt to define this
notion of “structure” more precisely in terms of formulae. Note that a group does not
possess notions such as “add” or “subtract”, only “multiply”. There is no “zero-element”
in a group.

Much use is made of the fact that the set of all transformations that leave a system
invariant, together form a group. If we have two invariance transformations, we can
immediately find a third, by subjecting the quantities in terms of which the theory is
defined, to the two transformations in succession. Obviously, the resulting transformation
must leave the system invariant as well, and so this “product transformation” belongs to
our set. Thus, the first condition defining a group is fulfilled; the others usually are quite
obvious as well.

For what follows, the time dependence of the wave function is immaterial, and therefore
we henceforth write a rotation R of a wave function as:

ψ′(~x) = ψ(~x ′) = ψ(R~x) . (2.10)

Applying a second rotation S , gives us

ψ′′ = ψ′(S~x) = ψ(RS~x) . (2.11)
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In what follows now, we will make use of the fact that the equation Dψ = 0 is a linear
equation. This is in contrast to the invariance transformation R , which may or may not
be linear: the sum of two matrices R and S usually is not a legitimate rotation. It is
true that if we have two solutions ψ1 and ψ2 of the equation (2.1), then every linear
combination of these is a solution as well:

D (λψ1 + µψ2) = λDψ1 + µDψ2 = 0 . (2.12)

In general: if ψ1, . . . , ψn are solutions of the equation in (2.1) then also every linear
combination

λ1 ψ1 + λ2 ψ2 + · · ·+ λn ψn (2.13)

is a solution of (2.1).

Regarding the behavior under rotations, we now distinguish two possible situations.
Either the wave function ψ is rotationally invariant, that is, upon a rotation, ψ turns
into itself,

ψ′(~x) = ψ(~x) ⇐⇒ ψ(~x ′) = ψ(~x) , (2.14)

or we have sets of linearly independent solutions ψ1, . . . , ψn , that, upon a rotation, each
transform into some linear combination of the others. To illustrate the second possibility,
we can take for example the set of solutions of particles moving in all possible directions.
In this case, the set ψ1, . . . , ψn contains an infinite number of solutions. In order to avoid
complications due to the infinite number of elements in this set, we can limit ourselves
either to particles at rest, or omit the momentum dependence of the wave functions. Upon
a rotation, a particle at rest turns into itself, but the internal structure might change. In
this case, the set of wave functions that rotate into one another usually only contains a
finite number of linearly independent solutions. If the particle is in its ground state, the
associated wave function is often rotationally invariant; in that case, the set only contains
one wave function. If the particle is in an excited state, different excited states can emerge
after a rotation.

Now let there be given such a set Ψ = (ψ1, . . . , ψn) of wave functions transforming
into one another upon a rotation. This means that after a rotation, ψ1 turns into some
linear combination of ψ1, . . . , ψn ,

ψ′1(~x) ≡ ψ1(R~x) = d11 ψ1(~x) + d12 ψ2(~x) + · · ·+ d1n ψn(~x) , (2.15)

and a similar expression holds for ψ2, . . . ψn . In general, we can write

ψ′A =
∑
B

dAB ψB. (A,B = 1, . . . , n) . (2.16)

The coefficients dAB depend on R and form a matrix D(R) , such that

Ψ′(~x) = Ψ(R~x) = D(R) Ψ(~x) , (2.17)

where we indicated the wave functions ψ1, . . . , ψn as a column vector Ψ . In the cases
to be discussed next, there is only a limited number of linearly independent solutions of
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the equation Dψ = 0 , and therefore the space of all solutions (2.15) that we obtain by
rotating one of them, must be finite-dimensional.

The matrices D(R) in (2.15)-(2.16) are related to the rotation matrices R in the
sense that for every rotation R in 3-dimensional space a matrix D(R) exists that turns
the solutions ψA into linear combinations of the same solutions. One can, however, say
more. A given rotation can either be applied at once, or be the result of several rotations
performed in succession. Whatever is the case, the final result should be the same. This
implies that the matrices D(R) must possess certain multiplication properties. To derive
these, consider two successive rotations, R and S (see Eq. (2.11)). Let R be associated
with a matrix D(R) , and S with a matrix D(S) . In formulae:

Ψ(R~x) = D(R) Ψ(~x) ,

Ψ(S ~x) = D(S) Ψ(~x) . (2.18)

Obviously, the combined rotation R S must be associated with a matrix D(R S) , so that
we have

Ψ(R S ~x) = D(R S) Ψ(~x) . (2.19)

But we can also determine Ψ(R S) using Eq. (2.18),

Ψ(R S ~x) = D(R) Ψ(S ~x) = D(R) D(S) Ψ(~x) . (2.20)

therefore, one must have4

D(R) D(S) = D(R S) . (2.21)

Thus, the matrices D(R) must have the same multiplication rules, the same multipli-
cation structure, as the matrices R . A mapping of the group elements R on matrices
D(R) with this property is said to be a ‘representation’ of the group. We shall study
various kinds of representations of the group of rotations in three dimensions.

Summarizing: a set of matrices forms a representation of a group, if one has

1. Every element a of the group is mapped onto a matrix A ,

2. The product of two elements is mapped onto the product of the corresponding
matrices, i.e. if a , b and c are associated to the matrices A , B , and C , and
c = a b , then one must have C = AB .

We found the following result: Upon rotations in three-dimensional space, the wave func-
tions of a physical system must transform as linear mappings that form a representation
of the group of rotations in three dimensions.

4In this derivation, note the order of R en S . The correct mathematical notation is: D(R)Ψ = Ψ·R ,
so D(R) · (D(S) ·Ψ) = D(R) ·Ψ · S = (Ψ ·R) · S = D(RS) ·Ψ . It is not correct to say that this should

equal D(R) · (Ψ · S) ?= (Ψ · S) · R because the definitions (2.18) only hold for the given wave function
Ψ , not for Ψ · S .
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As a simple example take the three functions

ψ1(~x) = x1 f(r) , ψ2(~x) = x2 f(r) , ψ3(~x) = x3 f(r) , (2.22)

where f(r) only depends on the radius r =
√

~x 2 , which is rotationally invariant. These
may be, for instance, three different solutions of the Schrödinger equation (2.2). Upon a
rotation, these three functions transform with a matrix D(R) that happens to coincide
with R itself. The condition (2.21) is trivially obeyed.

However, the above conclusion may not always hold. According to quantum mechan-
ics, two wave functions that only differ by a factor with absolute value equal to 1, must
describe the same physical situation. The wave functions ψ and eiαψ describe the same
physical situation, assuming α to be real. This leaves us the possibility of a certain mul-
tivaluedness in the definition of the matrices D(R) . In principle, therefore, the condition
(2.21) can be replaced by a weaker condition

D(R1) D(R2) = exp [iα(R1, R2)] D (R1 R2) , (2.23)

where α is a real phase angle depending on R1 and R2 . Matrices D(R) obeying (2.23)
with a non-trivial phase factor form what we call a projective representation. Projective
representations indeed occur in physics. We shall discover circumstances where every
matrix R of the rotation group is associated to two matrices D(R) en D′(R) , differing
from one another by a phase factor, to wit, a factor −1 . One has D′(R) = −D(R) .
This is admitted because the wave functions ψ and −ψ describe the same physical
situation. This multivaluedness implies that the relation (2.21) is obeyed only up to a
sign, so that the phase angle α in (2.23) can be equal to 0 or π . Particles described by
wave functions transforming according to a projective representation, have no analogue
in classical mechanics. Examples of such particles are the electron, the proton and the
neutron. Their wave functions will transform in a more complicated way than what is
described in Eq. (2.10). We shall return to this topic (Chapter 6).

The physical interpretation of the quantum wave function has another implication, in
the form of an important constraint that the matrices D(R) must obey. A significant
role is attributed to the inner product, a mapping that associates a complex number to a
pair of wave functions, ψ1 and ψ2 , to be written as 〈ψ1 | ψ2〉 , and obeying the following
relations (see Appendix E):

〈ψ | ψ〉 ≥ 0 ,

〈ψ | ψ〉 = 0 , then and only then if | ψ〉 = 0 , (2.24)

〈ψ1 | λψ2 + µψ3〉 = λ 〈ψ1 | ψ2〉+ µ 〈ψ1 | ψ3〉 , (2.25)

for every pair of complex numbers λ and µ ,

〈ψ1 | ψ2〉∗ = 〈ψ2 | ψ1〉 . (2.26)

For wave functions depending on just one coordinate, such an inner product is defined
by

〈ψ1 | ψ2〉 =

∫ ∞

−∞
dx ψ∗1(x) ψ2(x) , (2.27)

12



but for our purposes the exact definition of the inner product is immaterial.

According to quantum mechanics, the absolute value of the inner product is to be
interpreted as a probability. More explicitly, consider the state described by | ψ〉 . The
probability that a measurement will establish the system to be in the state | ϕ〉 is given
by |〈ϕ | ψ〉|2 . Now subject the system, including the measurement device, to a rotation.
According to (2.17), the states will change into

| ψ〉 → D | ψ〉 , | ϕ〉 → D | ϕ〉 . (2.28)

The corresponding change of the inner product is then

〈ϕ | ψ〉 −→ 〈ϕ | D†D | ψ〉 . (2.29)

However, if nature is invariant under rotations, the probability described by the inner
product, should not change under rotations. The two inner products in (2.29) must be
equal. Since this equality must hold for all possible pairs of states | ψ〉 and | ϕ〉 , we can
conclude that the matrices themselves must obey the following condition:

D†D = 1 , (2.30)

in other words, D must be a unitary matrix.5 Since this has to hold for every matrix
D(R) associated to a rotation, this demand should hold for the entire representation.
Thus, in this context, we shall be exclusively interested in unitary representations.

5The condition is that the absolute value of the inner product should not change, so one might suspect
that it suffices to constrain D†D to be equal to unity apart from a phase factor. However, D†D is a
hermitian, positive definite matrix, so we must conclude that this phase factor can only be equal to 1.
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3. The group of rotations in three dimensions

A rotation in three-dimensional space can be represented by a 3 × 3 matrix of real
numbers. Since upon a rotation of a set of vectors, the angles between them remain the
same, the matrix in question will be orthogonal. These orthogonal matrices form a group,
called O(3) . From the demand R R̃ = 1 , one derives that det (R) = ±1 . If we restrict
ourselves to the orthogonal matrices with det (R) = +1 , then we call the group SO(3) ,
the special orthogonal group in 3 dimensions.

A rotation in three-dimensional space is completely determined by the rotation axis
and the angle over which we rotate. The rotation axis can for instance be specified by
a three-dimensional vector ~α ; the length of this vector can then be chosen to be equal
to the angle over which we rotate (in radians). Since rotations over angles that differ by
a multiple of 2π , are identical, we can limit ourselves to rotation axis vectors ~α inside
(or on the surface of) a three-dimensional sphere with radius π . This gives us a natural
parametrization for all rotations. Every point in this sphere of parameters corresponds
to a possible rotation: the rotation axis is given by the line through this point and the
center of the sphere, and the angle over which we rotate (according to a left-handed screw
for instance) varies from 0 to π (rotations over angles between −π and 0 are then
associated with the vector in the opposite direction). Two opposite points on the surface
of the sphere, that is, ~α and −~α with |~α| = π , describe the same rotation, one over an
angle π and one over an angle −π , around the same axis of rotation. However, apart
from this identification of diametrically opposed points on the surface of the sphere, two
different points inside this parameter sphere always describe two different rotations.

From the above, it is clear that rotations can be parameterized in terms of three
independent parameters, being the three components of the vectors ~α , and furthermore
that the rotations depend on these parameters in a continuous fashion. To study this
dependence further, consider infinitesimal rotations, or, rotations corresponding to vectors
|~α| ≈ 0 . First, let us limit ourselves to rotations around the z axis, so that ~α = (0, 0, α) .
The associated rotation follows from

x → cos α x + sin α y ,

y → cos α y − sin α x , (3.1)

z → z .

This leads to a matrix R(α) , equal to

R(α) =




cos α sin α 0
− sin α cos α 0

0 0 1


 . (3.2)

The rotation by an angle α can also be regarded as being the result of n successive
rotations over an angle α/n . For very large values of n , the rotation by a small angle
α/n will differ from the identity only infinitesimally; ignoring terms of order (α/n)2 , we
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find for the associated 3× 3 matrix,

R(α/n) =




1 α/n 0
−α/n 1 0

0 0 1


 + O

(
α2

n2

)

= 1 +
α

n




0 1 0
−1 0 0
0 0 0


 + O

(
α2

n2

)
. (3.3)

It is now possible to reconstruct the finite rotation over an angle α by taking the nth

power of (3.3),

R(α) = [R(α/n)]n =

[
1 +

α

n
T + O

(
α2

n2

)]n

, (3.4)

where the matrix T is given by

T =




0 1 0
−1 0 0
0 0 0


 . (3.5)

In the limit n → ∞ , we expect to be able to ignore terms of order 1/n2 ; furthermore,
we make use of the formula

eA = lim
n→∞

(
1 +

1

n
A

)n

. (3.6)

This results in

R(α) = exp(αT ) . (3.7)

The exponent of this matrix can be elaborated by using the series expansion

eA =
∞∑

n=0

1

n!
An . (3.8)

Next, we remark that

T 2n = (−)n




1 0 0
0 1 0
0 0 0


 , (n ≥ 1) (3.9)

from which it follows immediately that T 2n+1 = (−)nT for n ≥ 0 . Using this, we can
perform the exponentiation by separately selecting the even and odd powers. This leads
to

exp(αT ) = 1 +
∞∑

n=1

(−)nα2n

(2n)!




1 0 0
0 1 0
0 0 0


 +

∞∑
n=0

(−)nα2n+1

(2n + 1)!
T

= 1 + (cos α− 1)




1 0 0
0 1 0
0 0 0


 + sin α T , (3.10)
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α

r
r + r × α

Figure 2: Infinitesimal rotation of a vector ~r , around a rotation axis ~α

which indeed coincides with the original matrix (3.2).

Let us now consider the relation between finite and infinitesimal transformations as
given by Eq. (3.7), for more general rotations. For rotations over a small angle, every ~r
gets a small vector added to it that is orthogonal both to the vector ~r and the rotation
axis (see Figure 2). This tiny vector is exactly equal to the outer product of ~r and the
rotation axis vector ~α (where it was assumed that |~α| ≈ 0 ), so that

~r → ~r + ~r × ~α + O
(|~α|2) . (3.11)

therefore, in case of a general rotation axis vector ~α = (α1, α2, α3) one can write

x → x + α3 y − α2 z + O
(|~α|2) ,

y → y + α1 z − α3 x + O
(|~α|2) , (3.12)

z → z + α2 x− α1 y + O
(|~α|2) .

Infinitesimal rotations can therefore be written as follows:

R(~α) = 1 + i
(
α1L1 + α2L2 + α3L3

)
+ O

(|~α|2) , (3.13)

where we added a factor i in order to conform to the usual notations, and the hermitian
matrices L1 , L2 en L3 are defined by

L1 =




0 0 0
0 0 −i
0 i 0


 ,

L2 =




0 0 i
0 0 0
−i 0 0


 , (3.14)

L3 =




0 −i 0
i 0 0
0 0 0


 .
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Above result can be compressed in one expression by using the completely skew-symmetric
epsilon tensor,

(Li)jk = −iεijk . (3.15)

Indeed, we can easily check that

(L1)23 = − (L1)32 = −iε123 = −i ,

(L2)31 = − (L2)13 = −iε231 = −i , (3.16)

(L3)12 = − (L3)21 = −iε312 = −i .

Again, we can consider R(~α) as being formed out of n successive rotations with
rotation axis ~α/n ,

R(~α) = [R(~α/n)]n

=

[
1 +

1

n

(
iα1L1 + iα2L2 + iα3L3

)
+ O

( |~α|2
n2

)]n

. (3.17)

Employing (3.4), we find then the following expression in the limit n →∞ ,

R(~α) = exp

(
i
∑

k

αkLk

)
. (3.18)

The correctness of Eq. (3.18) can be checked in a different way. First, we note that
the following multiplication rule holds for rotations around one common axis of rotation,
but with different rotation angles:

R(s~α) R(t~α) = R((s + t)~α) , (3.19)

where s and t are real numbers. The rotations R(s~α) with one common axis of rotation
define a commuting subgroup of the complete rotation group. This is not difficult to see:
The matrices R(s~α) (with a fixed vector ~α and a variable s ) define a group, where the
result of a multiplication does not depend on the order in the product,

R(s~α) R(t~α) = R(t~α) R(s~α) . (3.20)

This subgroup is the group SO(2) , the group of the two-dimensional rotations (the axis
of rotation stays the same under these rotations, only the components of a vector that are
orthogonal to the axis of rotation are rotated). Using Eq. (3.19), we can simply deduce
the following differential equation for R(s~α) ,

d

ds
R(s~α) = lim

∆→0

R((s + ∆)~α)−R(s~α)

∆

= lim
∆→0

R(∆~α)− 1

∆
R(s~α)

=

(
i
∑

k

αkLk

)
R(s~α) , (3.21)
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where first Eq. (3.19) was used, and subsequently (3.13). Now it is easy to verify that the
solution of this differential equation is exactly given by Eq. (3.18).

Yet an other way to ascertain that the matrices (3.18) represent rotations, is to prove
that these matrices are orthogonal and have determinant equal to 1, which means that
the following relations are fulfilled

R̃(~α) = [R(~α)]−1 = R(−~α) , det R(~α) = 1 , (3.22)

The proof follows from the following properties for a general matrix A (see also Appendix
C),

(̃eA) = e
eA , det

(
eA

)
= eTr A . (3.23)

From this, it follows that the matrices (3.18) obey Eqs. (3.22) provided that the matrix
i
∑

k αkLk be real and skew-symmetric. This indeed turns out to be the case; from the
definitions (3.15) it follows that i

∑
k αkLk in fact represents the most general real, and

skew-symmetric 3× 3 matrix.

The above question may actually be turned around: can all rotations be written in the
form of Eq. (3.18)? The answer to this question is not quite so easy to give. In principle,
the exponentiation in (3.18) can be performed explicitly via the power series expansion
(3.8), and the result can be compared with the most general rotation matrix. It will
turn out that the answer is affirmative: all rotations can indeed be written in the form
of Eq. (3.18). This, however, is not the case for all groups. The so-called non-compact
groups contain elements that cannot be written as a product of a finite number of such
exponentials. These groups are called non-compact, because the volume of parameter
space is non-compact. The rotation group, where all possible group elements are defined
in terms of the parameters αk that are restricted to the insides of a sphere with radius
π , is a compact group. Within the frame of these lectures, non-compact groups will
play no role, but such groups are not unimportant in physics. The Lorentz group, for
example, which is the group consisting of all lorentz transformations, is an example of a
non-compact group.

From the preceding discussion it will be clear that the matrices Lk , associated with
the infinitesimal transformations, will be important, and at least for the compact groups,
they will completely determine the group elements, by means of the exponentiation (3.18).
This is why these matrices are called the generators of the group. Although our discussion
was confined to the rotation group, the above can be applied to all Lie groups6: a group
whose elements depend analytically on a finite number of parameters, in our case α1 , α2 ,
and α3 . In the case that the group elements take the form of matrices, this means that
the matrix elements must be differentiable functions of the parameters.7 The number of
linearly independent parameters defines the dimension of the Lie group, not to be confused

6Named after the Norwegian mathematician Sophus Lie, 1842-1899
7This is clearly the case for the rotation group. In the general case, the above requirement can

be somewhat weakened; for a general Lie group it suffices to require the elements as functions of the
parameters to be twice differentiable.
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with the dimension of the matrices considered.8 The number of linearly independent
generators must obviously be equal to the dimension of the group.

One of the most essential ingredients of a group, is its multiplication structure, accord-
ing to which the product of two rotations R(~α) and R(~β) , again should be a rotation,

R(~α) R(~β) = R(~γ) , (3.24)

where ~γ depends on ~α and ~β . The exact dependence fixes the multiplication structure
of the group. The fact that such a vector function ~γ(~α, ~β) must exist, has implications
for the product of generators. To derive these, we expand (3.24) in powers9 of α en β ,

ei~α·~L ei~β·~L =
(
1 + iαkLk + O(α2)

)(
1 + iβlLl + O(β2)

)

= 1 + i(α + β)k Lk − αkβl LkLl + O(α2) + O(β2)

= 1 + i(α + β)k Lk − 1
2
(α + β)k(α + β)l LkLl

−1
2
αkβl [Lk, Ll] + O(α2) + O(β2) . (3.25)

The first three terms are recognized as the beginning of the power series of exp(i(~α+~β)·~L) .
If the fourth term would vanish, that is, if the matrices Lk and Ll commute, then indeed
γk = αk + βk . However, it will turn out that the generators of the rotation group do not
commute. Since it must be possible in any case to write the r.h.s. of the equation again in
the form of the power series for exp(i~γ·~L) , it must be possible to rewrite the commutators
of the generators in terms of some linear combination of the generators. in other words,
we must have

[Li, Lj] = ck
ij Lk , (3.26)

where the constants ck
ij are called the structure constants of the group, because they

(nearly) completely determine the multiplication structure of the group. Note that, since
the generators Lk are hermitian, the structure constants must be purely imaginary.

Before continuing, we first verify whether the generators (3.15) obey to the demand
(3.26). After explicit matrix multiplications, we find this indeed to be the case:

[L1, L2] = iL3 , [L2, L3] = iL1 , [L3, L1] = iL2 , (3.27)

or,

[Li, Lj] = iεijk Lk . (3.28)

Making use of Eq. (3.26), we can now deduce the following result for ~γ(~α, ~β) :

γk = αk + βk + i
2
ck
mn αmβn + O(α2) + O(β2) . (3.29)

8For the rotation group in three dimensions the dimension of the group and that of the matrices are
both 3, but this is a coincidence: the dimension of the rotation group in d dimensions is 1

2d(d− 1) .
9The notation ~α · ~L is here intended to mean α1L1 + α2L2 + α3L3 . In Eq. (3.25) we also used

summation convention: if in one term of an expression an index occurs twice, this means that it is
summed over, even if the summation sign is not explicitly shown. So, αkLk ≡

∑
k αkLk . From now on,

this convention will be frequently used.
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In principle, the higher order contributions can be determined by means of iteration; for
example, we find

γk = αk + βk + i
2
ck
mn αmβn − 1

12
(αmαnβp + βmβnαp) ck

mqc
q
np + · · · . (3.30)

The fact that all terms in this iteration can be expressed in terms of the structure constants
follows from the Campbell-Baker-Hausdorff formula, which expresses the logarithm of
(exp A exp B) in terms of a power series consisting exclusively of repeated commutators
of the matrices A and B . Thus, the multiplication structure of the group is determined
by the structure constants (at least for all those group elements that reside in some finite
domain in the neighborhood of the identity). The CBH formula is explained in Appendix
D.

Imagine that we can find matrices Ak , different from the matrices Lk , obeying the
same commutation relations (3.26) as the Lk . In that case, by means of exponentiation,
we can determine the corresponding group elements, which will have the same multiplica-
tion rules as the elements of the original group. In other words, we find a representation
of the group this way. On the other hand, for every representation of the group, we can
construct the corresponding generators, using the infinitesimal transformations, and they
will obey the same commutation rules (3.26), with the same structure constants. Thus,
we have found a direct relation between group representations and the matrix relations
(3.26) (In more mathematical terms: the generators Lk , together with the commutation
relations (3.26), define an algebra, called the Lie algebra. Matrices Ak with the same
commutation relations then define a representation of the Lie algebra.)

One can easily check that the structure constants also must obey certain relations.
This follows from the so-called Jacobi identity, which holds for any triple of matrices A ,
B and C ,

[[A,B] , C] + [[B, C] , A] + [[C, A] , B] = 0 . (3.31)

This identity can be proven by explicitly writing the commutators and using the asso-
ciativity of the multiplication (See chapter 2); one then obtains 12 terms that cancel out
pairwise. Using the Jacobi identity with A = Li , B = Lj en C = Lk , we deduce the
following equation for the structure constants,

cm
ij cn

mk + cm
jk cn

mi + cm
ki c

n
mj = 0 , (3.32)

where use was made of (3.26). The equation (3.32) is also called the Jacobi identity. For
the rotation group, this implies the following equation for the ε -tensors:

εijm εmkn + εjkm εmin + εkim εmjn = 0 , (3.33)

which will be frequently used later. The validity of Eq. (3.33) can be derived directly
from the identity

εijm εmkl = δik δjl − δil δjk , (3.34)

which is easy to prove (for instance by choosing a couple of values for two of the indices).
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Equation (3.32) has another consequence. Let us define n n × n matrices Ci ac-
cording to

(Ci)
k

j ≡ −ck
ij , (3.35)

where n is the dimension of the Lie group. We can then write (3.32) as

(cm
ij Cm) n

k + (CjCi)
n

k − (CiCj)
n

k = 0 , or Ci Cj − Cj Ci = ck
ij Ck . (3.36)

These are exactly the same commutation relations as the ones we used to define the
structure constants, in Eq. (3.26). The matrices Ci thus define a representation of the
Lie algebra based on (3.26). Through exponentiation of the matrices Ci , we can then
define a group with the same multiplication properties (at least in some finite region
surrounding the identity) as the original Lie group, consisting of n×n matrices, where n
is the dimension of the Lie group. This representation is called the adjoint representation.

Applying the above to the case of the rotation group leads to something of a dis-
appointment. Since in this case ck

ij = iεijk , the matrices Ci are simply equal to the
matrices Li (see Eq. (3.15), and so we recovered the original three-dimensional rotations.
The adjoint representation thus coincides with the original group. This, however, is rather
the exception than the rule, as will be seen later.
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4. More about representations

In the previous chapter the properties of the group of three-dimensional rotations were
discussed. Now, we return to the representations of this group. First, we note that,
starting from a given representation, for instance by the matrices D acting on the wave
functions that we combined in a column vector ψ , we can obtain an other representation,
by constructing an other vector ψ . For instance, rearrange ψ in wave functions ψ̂
according to

ψ̂ = Uψ . (4.1)

Under rotations, ψ̂ then transforms according to

ψ̂ → ψ̂′ = D̂ψ̂ , (4.2)

where D̂ is given by

D̂ = UD U−1 . (4.3)

Both the original matrices D and the matrices D̂ define a representation of the rotation
group, but such representations will not be considered as fundamentally different. This
is why representations that are related according to (4.3), are called equivalent represen-
tations. This allows us to formulate an important result in representation theory:

All finite dimensional representations of finite or compact groups are unitary.

With this we mean that all representations can be chosen to be unitary via a redefinition
(4.3), so that all matrices D belonging to the representation obey D† = D−1 . We will
not prove this here.

Up to here, we have primarily discussed one special representation of the group of
rotations, being the representation defined by rotating the three-dimensional vector ~x =
(x1, x2, x3) . There is an easy way to construct larger representations: just consider two
vectors, ~x and ~y , both transforming the usual way under rotations. Together, they form
a six-dimensional vector ~z = (x1, x2, x3, y1, y2, y3) , transforming under rotations as

~z → ~z ′ = D~z , (4.4)

where the matrix D can be decomposed in 3× 3 matrices in the following way:

D =

(
R 0
0 R

)
. (4.5)

Such a representation is called reducible, because the six-dimensional space can be split up
in two invariant three-dimensional subspaces. This reducible six-dimensional representa-
tion can therefore be regarded as the direct sum of two three-dimensional representations,
and we write

6 = 3⊕ 3 . (4.6)

The sum representation can occur if we consider a particle that can be in a superposition
of two different kinds of quantum states.
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It will be clear that representations that do not leave any subspace invariant, and
therefore cannot be described in a block diagonal form such as in Eq. (4.5), are considered
to be irreducible representations.

Other representations can be obtained by constructing so-called product representa-
tions. Consider for instance a system of two (free) particles with wave functions ψ1(~x)
and ψ2(~y) , where ~x and ~y are the coordinates of the particles. The wave functions
Ψ(~x, ~y) of the combined system then consist of all possible products of wave functions
ψ1 and ψ2 . We call this a tensor product, which is denoted by

Ψ = ψ1 ⊗ ψ2 . (4.7)

Under rotations of both ~x and ~y , this Ψ transforms accordingly, but the correspond-
ing representation is more complicated than the ones associated to the separate wave
functions ψ1 and ψ2 . Often, such a product representation is not irreducible, and can
be decomposed into a number of distinct representations that are irreducible. Let us
demonstrate this phenomenon first in the following example. Let three possible functions
ψ1

i be given by the coordinates xi and three possible functions ψ2
j by the coordinates

yj . Thus, both the ψ1
i ’s and the ψ2

j ’s transform according to the three-dimensional
representation of the rotation group. The product representation works on all possible
products of ψ1

i and ψ2
j , and therefore we can distinguish nine independent functions,

Tij(~x, ~y) = xi yj , (4.8)

transforming under rotations as

Tij → T ′
ij = Rii′Rjj′ Ti′j′ . (4.9)

This nine-dimensional representation however is not irreducible. For instance, the
symmetric part and the skew-symmetric part of Tij , defined by T(ij) ≡ 1

2
(Tij + Tji) , and

T[ij] ≡ 1
2
(Tij−Tji) , transform separately and independently under rotations. This follows

directly by restricting ourselves only to the (skew-)symmetric part of T ′
ij , and observing

that the (anti)symmetry in i and j of 1
2
(Rii′Rjj′±Rji′Rij′) implies the (anti)symmetry

in i′ en j′ . This is why we write

T(ij) → T ′
(ij) = Rii′Rjj′ T(i′j′) , T[ij] → T ′

[ij] = Rii′Rjj′ T[i′j′] . (4.10)

The skew-symmetric part of Tij contains three independent components, transforming
as a three-dimensional representation of the rotation group. The symmetric part of Tij

contains the remaining six components, which however do not transform as an irreducible
transformation. This follows immediately from the fact that the trace of Tij is equal to

Tii = ~x · ~y , (4.11)

and therefore invariant under rotations. We must conclude that Tij can be decomposed
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in three independent tensors10,

Tij →





T = ~x · ~y
Ti = εijkxjyk

Sij = xiyj + xjyi − 2
3
δij(~x · ~y)





. (4.12)

Note that we used the epsilon symbol to describe the skew-symmetric part of Tij again as

a three-dimensional vector ~T (it is nothing but the outer product ~x× ~y ). Furthermore,
we made the symmetric part Sij traceless by adding an extra term proportional to δij .
The consequence of this is that Sij consists of only five independent components. Under
rotations, the terms listed above transform into expressions of the same type; the five
independent components of Sij transform into one another.11 In short, the product of
two three-dimensional representations can be written as

3⊗ 3 = 1⊕ 3⊕ 5 , (4.13)

where the representations are characterized by their dimensions (temporarily ignoring
the fact that inequivalent irreducible representations might exist with equal numbers of
dimensions; they don’t here, as we will see later).

The procedure followed in this example, rests on two features; first, we use that the
symmetry properties of tensors do not change under the transformations, and secondly
we make use of the existence of two invariant tensors, to wit:

Tij = δij , Tijk = εijk . (4.14)

An invariant tensor is a tensor that does not change at all under the group transformations,
as they act according to the index structure of the tensor, so that

Tijk··· → T ′
ijk··· = Rii′Rjj′Rkk′ · · · Ti′j′k′··· = Tijk··· . (4.15)

Indeed, both tensors δij and εijk obey (4.15), since the equation

Rii′Rjj′ δi′j′ = δij (4.16)

is fulfilled because the Rij are orthogonal matrices, and

Rii′Rjj′Rkk′ εi′j′k′ = det R εijk = εijk (4.17)

10In the second equation, again summation convention is used, see an earlier footnote.
11For each of these representations, we can indicate the matrices D(R) that are defined in chapter 2.

For the first representation, we have that D(R) = 1 . In the second representation, we have 3 × 3
matrices D(R) equal to the matrix R . For the third representation, we have 5 × 5 matrices D(R) .
The indices of this correspond to the symmetric, traceless index pairs ij . The matrices D(R) can be
written as

D(R)(ij) (kl) =
1
2

(Rik Rjl + Ril Rjk)− 1
3
δij δkl .
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holds because the rotation matrices Rij have det R = 1 . For every given tensor Tijk··· we
can contract the indices using invariant tensors. It is then evident that tensors contracted
that way span invariant subspaces, in other words, under rotations they will transform into
tensors that are formed the same way. For example, let Tijk··· be a tensor transforming
like

Tijk··· → T ′
ijk··· = Rii′Rjj′Rkk′ · · · Ti′j′k′··· . (4.18)

Now, form the tensor
T̂klm··· ≡ δij Tijklm··· (4.19)

which has two indices less. By using Eq, (4.16), it is now easy to check that T̂ transforms
as

T̂klm··· → T̂ ′
klm··· = Rkk′Rll′Rmm′ · · · T̂k′l′m′··· , (4.20)

and, in a similar way, we can verify that contractions with one or more δ and ε tensors,
produce tensors that span invariant subspaces. Using the example discussed earlier, we
can write the expansion as

Tij =
1

2
εijk (εklm Tlm) +

1

2

(
Tij + Tji − 2

3
δijTkk

)
+

1

3
δij Tkk , (4.21)

where the first term can also be written as 1
2
(Tij − Tji) , by using the identity (3.34),

εijk εklm = δilδjm − δimδjl , (4.22)

and the second term in (4.21) is constructed in such a way that it is traceless:

δij

(
Tij + Tji − 2

3
δijTkk

)
= 0 . (4.23)
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5. Ladder operators

Let us consider a representation of the rotation group, generated by hermitian matrices
I1 , I2 and I3 , which obey the same commutation rules as L1 , L2 and L3 , given in
Eq. (3.15),

[I1, I2] = iI3 , [I2, I3] = iI1 , [I3, I1] = iI2 , (5.1)

or in shorthand:

[Ii, Ij] = iεijk Ik . (5.2)

We demand the matrices exp(iαkIk) to be unitary; therefore, the Ii are hermitian:
I†i = Ii . Starting from this information, we now wish to determine all sets of irreducible
matrices Ii with these properties. This is the way to determine all (finite-dimensional,
unitary) representations of the group of rotations in three dimensions.

To this end, first define the linear combinations

I± = I1 ± iI2 , (5.3)

so that (I±)† = I∓ , and

[I3, I±] = [I3, I1]± i[I3, I2] = iI2 ± I1 = ±I± . (5.4)

So we have for any state | ψ〉 ,

I3

(
I+ | ψ〉

)
= I+(I3 + 1) | ψ〉 . (5.5)

A Casimir operator is a combination of operators for a representation constructed in such
a way that it commutes with all generators. Schur’s lemma states the following: if and
only if the representation is irreducible, every Casimir operator will be a multiple of the
unit matrix.

In the case of the three-dimensional rotations, we have such a Casimir operator:

~I 2 ≡ I2
1 + I2

2 + I2
3 . (5.6)

We derive from Eq. (5.1):

[~I 2, I1] = [~I 2, I2] = [~I 2, I3] = 0 . (5.7)

Since ~I 2 en I3 are two commuting matrices, we can find a basis of states such that ~I 2

and I3 both at the same time take a diagonal form, with real eigenvalues. Furthermore,
the eigenvalues of ~I 2 must be positive (or zero), because we have

〈ψ | ~I 2 | ψ〉 =
∣∣∣I1 | ψ〉

∣∣∣
2

+
∣∣∣I2 | ψ〉

∣∣∣
2

+
∣∣∣I3 | ψ〉

∣∣∣
2

≥ 0 . (5.8)
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It will turn out to be convenient to write the eigenvalues of ~I 2 as `(` + 1) , where ` ≥ 0
(The reason for this strange expression will become clear shortly; for the time being,
consider this merely as a notation).

Now, consider a state | `, m〉 that is an eigenstate of ~I 2 and I3 , with eigenvalues
`(` + 1) and m ,

~I 2 | `,m〉 = `(` + 1) | `,m〉 , I3 | `,m〉 = m | `,m〉 . (5.9)

From Eqs. (5.5) and (5.7), one derives that

I3

(
I+ | `,m〉

)
= (m + 1)

(
I+ | `,m〉

)
,

~I 2
(
I+ | `,m〉

)
= `(` + 1)

(
I+ | `,m〉

)
. (5.10)

Substituting I+ | `, m〉 = | ψ〉 , we have

I3 | ψ〉 = (m + 1) | ψ〉 , ~I 2 | ψ〉 = `(` + 1) | ψ〉 , (5.11)

in other words, | ψ〉 is a new eigenvector of I3 and ~I 2 with eigenvalues m′ = m + 1 ,
and `′ = ` , unless

| ψ〉 ≡ I+ | `,m〉 ?
= 0 . (5.12)

Furthermore, we find

〈ψ | ψ〉 = 〈`,m | I−I+ | `,m〉
= 〈`,m | I2

1 + I2
2 + i[I1, I2] | `,m〉

= 〈`,m | I2
1 + I2

2 − I3 | `, m〉
= 〈`,m | ~I 2 − I3(I3 + 1) | `,m〉 , (5.13)

where we made use of: I†+ = I− . And so, using Eq. (5.9), we find

〈ψ | ψ〉 =
(
`(` + 1)−m(m + 1)

)
〈`,m | `,m〉 . (5.14)

If we now assume that | `,m〉 is a normalized state (so, 〈`,m | `,m〉 = 1 ), then | ψ〉
can be written as a normalized state | `, m + 1〉 multiplied by a proportionality factor
that is given by (5.14). This factor is fixed up to a phase factor, which we absorb in the
definition of | `,m + 1〉 . This way, we conclude that

I+ | `,m〉 =
√

`(` + 1)−m(m + 1) | `,m + 1〉 . (5.15)

Repeating this procedure, the operator I+ produces states with ever increasing eigenval-
ues of I3 :

| `,m〉 I+−→| `,m + 1〉 I+−→| `,m + 2〉 I+−→| `,m + 3〉 I+−→ etc . (5.16)

This is why I+ will be called “ladder operator” or “step operator”. However, we are
interested in finite matrices Ii , and this implies that the series (5.16) has to come to
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an end somewhere. According to Eq. (5.15), this only happens if, in the series (5.16),
a state emerges for which the eigenalue m of I3 equals ` . This, in turn, requires
that the original eigenvalue m of the state we started off with, differs from ` by an
integer. The necessity of this in fact already follows from Eq. (5.14): since 〈ψ | ψ〉 and
〈`,m | `, m〉 must have non negative norms, one must have `(` + 1) − m(m + 1) ≥ 0 ,
and also −` − 1 ≤ m ≤ ` . In order to ensure that the series (5.15) terminates, as soon
as m approaches values greater than its allowed limit, we must demand that `−m be
a positive integer. therefore, we find

| `,m〉 I+−→| `,m + 1〉 I+−→ · · · · · · I+−→| `, `〉 , (5.17)

where the vector | `, `〉 with the highest eigenvalue of I3 obeys

I+ | `, `〉 = 0 . (5.18)

It is now easy to continue by observing that the matrix I− is also a ladder operator,
but one generating lower eigenvalues of I3 . Starting from a state | `,m〉 , we can construct
states with decreasing eigenvalues of I3 :

etc.
I−←−| `,m− 3〉 I−←−| `,m− 2〉 I−←−| `,m− 1〉 I−←−| `,m〉 (5.19)

Repeating the same manipulations as the ones for I+ , shows that for | ψ〉 = I− | `,m〉 ,

〈ψ | ψ〉 =
[
`(` + 1)−m(m− 1)

]
〈`,m | `,m〉 , (5.20)

so it follows that we must have `(` + 1) −m(m − 1) ≥ 0 , and subsequently `(` + 1) −
m(m − 1) ≥ 0 , that is, −` ≤ m ≤ ` + 1 . Since we must require the series (5.19) to
terminate as well, there must be a state in the series with minimal eigenvalue m = −` ,
which guarantees that

I− | `,−`〉 = 0 . (5.21)

Again, we encounter an undetermined phase factor. It seems that we have the freedom
to choose it any way we like, so again we fix the phase factor to be +1 , but we return to
this phase factor shortly:

I− | `,m〉 =
√

`(` + 1)−m(m− 1) | `,m− 1〉 . (5.22)

Starting from a given state | `,m〉 , we now have constructed ` − m states with
eigenvalues m + 1, m + 2, . . . , ` and ` + m states with I3 eigenvalues m − 1, m −
2, . . . ,−` . Thus, in total we found 1 + (`−m) + (` + m) = 2` + 1 states. This is why
2` + 1 must be an integral number, so that ` , and therefore also m , are either both
integers or both an integer plus 1

2
.

Above arguments do not quite suffice to prove that we indeed found all states. In
principle, it might be possible to apply arbitrary sequences of I+ and I− operators, to
find many more states. Suppose we apply I+ and subsequently I− . We get a state with
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the same values of both ` and m as before. But is this the same state? Indeed, the
answer is yes — and also the phase is +1 ! Note that

I− I+ = I2
1 + I2

2 + i(I1 I2 − I2 I1) = (~I)2 − I2
3 − I3 =

(
`(` + 1)−m(m + 1)

)
1 . (5.23)

This ensures that, if we apply (5.15) and (5.22) in succession, we get back exactly the
same state as the one we started off with (correctly normalized, and with a phase factor
+1 ).

By way of exercise, we verify that the operators I+, I− and I3 exclusively act on this
single series of states | `,m〉 as prescribed by Eqs. (5.9), (5.15), and (5.22). Checking the
commutation rules,

[I3, I±, ] = ±I± , [I+, I−] = 2I3 , (5.24)

we indeed find

(I3I± − I±I3) | `,m〉 = (m± 1)
√

`(` + 1)−m(m± 1) | `,m± 1〉
−m

√
`(` + 1)−m(m± 1) | `,m± 1〉

= ±
√

`(` + 1)−m(m± 1) | `,m± 1〉
= ±I± | `,m〉 , (5.25)

(I+I− − I−I+) | `,m〉 =
√

`(` + 1)− (m− 1)m
√

`(` + 1)− (m− 1)m | `,m〉
−

√
`(` + 1)− (m + 1)m

√
`(` + 1)− (m + 1)m | `, m〉

= 2m | `,m〉
= 2I3 | `,m〉 . (5.26)

Summarizing, we found that an irreducible representation of I1 , I2 , I3 can be char-
acterized by a number ` , and it acts on a space spanned by 2` + 1 states | `,m〉 for
which

~I 2 | `,m〉 = `(` + 1) | `,m〉 ,

I3 | `,m〉 = m | `,m〉 ,

I± | `,m〉 =
√

`(` + 1)−m(m± 1) | `,m± 1〉 , (5.27)

with m = −`, −` + 1, ,−` + 2, · · · , `− 2, `− 1, ` . Either both ` and m are integers,
or they are both integers plus 1

2
. Of course, we always have I1 = 1

2
(I+ + I−) and

I2 = 1
2i

(I+ − I−) .

We now provide some examples, being the representations for ` = 0, 1
2
, 1 , and 3

2
:

• For ` = 0 , we find the trivial representation. There is only one state, |0, 0〉 , and
Ii|0, 0〉 = 0 for i = 1, 2, 3.
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• For ` = 1
2

, we find a two-dimensional representation. There are two basis elements,
| 1

2
, 1

2
〉 and | 1

2
,−1

2
〉 , for which, according to Eq. (5.27), we have

I+ | 1
2
,−1

2
〉 = | 1

2
, 1

2
〉 ,

I+ | 1
2
, 1

2
〉 = 0 ,

I− | 1
2
, 1

2
〉 = | 1

2
,−1

2
〉 ,

I− | 1
2
,−1

2
〉 = 0 .

(5.28)

This way, we find the matrices

I3 =

(
1
2

0
0 −1

2

)
, I+ =

(
0 1
0 0

)
, I− =

(
0 0
1 0

)
. (5.29)

The matrices I1 , I2 en I3 following from this calculation, are the matrices 1
2
τi

that will be introduced in Chapter 6.

• For I = 1 we find a three-dimensional representation. There are three basis ele-
ments, | 1, 1〉 , | 1, 0〉 and | 1,−1〉 , for which, according to Eq. (5.27), we have

I+ | 1,−1〉 =
√

2 | 1, 0〉 ,

I+ | 0〉 =
√

2 | 1, 1〉 ,
I+ | 1, 1〉 = 0 ,

I− | 1, 1〉 =
√

2 | 1, 0〉 ,

I− | 1, 0〉 =
√

2 | 1,−1〉 ,
I− | −1,−1〉 = 0 .

(5.30)

This way, we find the matrices

I3 =




1 0 0
0 0 0
0 0 −1


 , I+ =




0
√

2 0

0 0
√

2
0 0 0


 , I− =




0 0 0√
2 0 0

0
√

2 0


 .

(5.31)
The matrices I1 , I2 en I3 are here equal to the matrices Li , but in a different
(complex) basis, where L3 is diagonal.

• For l = 3
2

, we find a four dimensional representation. We have the basis elements
| 3

2
, 3

2
〉 , | 3

2
, 1

2
〉 , | 3

2
,−1

2
〉 en | 3

2
,−3

2
〉 , for which, according to Eq. (5.27),

I+ | 3
2
,−3

2
〉 =

√
3 | 3

2
,−1

2
〉 ,

I+ | 3
2
,−1

2
〉 = 2 | 3

2
, 1

2
〉 ,

I+ | 3
2
, 1

2
〉 =

√
3 | 3

2
, 3

2
〉 ,

I+ | 3
2
, 3

2
〉 = 0 .

(5.32)

This way, we find the marices

I3 =




3
2

0 0 0
0 1

2
0 0

0 0 −1
2

0
0 0 0 −3

2


 , I+ =




0
√

3 0 0
0 0 2 0

0 0 0
√

3
0 0 0 0


 . (5.33)

The matrix I− can be derived in a similar way from Eq. (5.27), or can be obtained
directly by hermitian conjugation: I− = I †+ .
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6. The group SU (2)

In Chapter 4, we only saw irreducible representations of the three-dimensional rotation
group that were all odd dimensional. Chapter 5, however, showed the complete set of
all irreducible representations of this group, and as many of them are even as there are
odd ones. More understanding of the even-dimensional representations is needed. To
this end, we subject the simplest example of these, the one with ` = 1

2
, to a closer

inspection. Clearly, we have vectors forming a two-dimensional space, which will be
called spinors. Every rotation in a three-dimensional space must be associated to a
unitary transformation in this spinor space. If R = exp(i

∑
k αkLk) , then the associated

transformation X is written as X = exp(i
∑

k αkIk) , where the generators Ik follow
from Eq. (5.29):

I1 =
I+ + I−

2
= 1

2
τ1 , I2 =

I+ − I−
2i

= 1
2
τ2 , I3 = 1

2
τ3 . (6.1)

Here, we have introduced the following three fundamental 2× 2 matrices: 12

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. (6.2)

These τ -matrices obey the following product rules:

τi τj = δij1 + iεijk τk , (6.3)

as can easily be established. Since [τi, τj] = τi τj − τj τi , we find that the generators Ik

indeed obey the correct commutation rules:
[τi

2
,
τj

2

]
= iεijk

τk

2
. (6.4)

The three τ matrices are hermitian and traceless :

τi = τ †i ; Tr (τi) = 0 . (6.5)

For rotations over tiny angles, |~α| ¿ 1 , the associated matrix X(~α) takes the fol-
lowing form:

X(~α) = 1 + iB + O(B2) ; B = αi
τi

2
. (6.6)

One readily verifies that X(~α) is unitary and that its determinant equals 1:

(
1 + iB + O(B2)

)†
=

(
1 + iB + O(B2)

)−1
= 1− iB + O(B2) ;

det
(
1 + iB + O(B2)

)
= 1 + i Tr B + O(B2) = 1 , (6.7)

since
B† = B , Tr B = 0 . (6.8)

12Also called Pauli matrices, and often indicated as σi .
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The finite transformation X(~α) is found by exponentiation of (6.6), exactly in accor-
dance with the limiting procedure displayed in Chapter 3:

X(~α) = lim
n→∞

{
1 + i

αi

n

τi

2

}n

= exp
(
iαi

τi

2

)
. (6.9)

The matrices 1
2
τi are therefore the generators of the rotations for the ` = 1

2
representa-

tion. They do require the coefficients 1
2

in order to obey exactly the same commutation
rules as the generators Li of the rotation group in three dimensions, see Eq. (6.4).

By making use of the product property of the τ -matrices, we can calculate the expo-
nential expression for X(~α) . This is done as follows:

X(~α) = eiαiτi/2

=
∞∑

n=0

1

n!

(
iαjτj

2

)n

=
∞∑

n=0

1

(2n)!

(
iαjτj

2

)2n

+
∞∑

n=0

1

(2n + 1)!

(
iαjτj

2

)2n+1

, (6.10)

where, in the last line, we do the summation over the even and the odd powers of (iαjτj)
separately. Now we note that

(iαjτj)
2 = −αjαk τj τk = −α2 1, (6.11)

where use was made of Eq. (6.3), and α is defined as

α =
√

α 2
1 + α 2

2 + α 2
3 . (6.12)

From Eq. (6.11) it immediately follows that

(iαjτj)
2n = (−)n α2n 1, (iαjτj)

2n+1 = (−)n α2n (iαjτj) , (6.13)

so that we can write Eq. (6.10) as

X(~α) =

{ ∞∑
n=0

(−)n

(2n)!

(α

2

)2n
}

1 +

{ ∞∑
n=0

(−)n

(2n + 1)!

(α

2

)2n+1
} (

iαjτj

α

)

= cos
α

2
1 + i sin

α

2

αjτj

α
. (6.14)

It so happens that every 2× 2 matrix can be decomposed in the unit matrix 1 and
τi :

X = c0 1 + ici τi. (6.15)

If we furthermore use the product rule (6.3) and Eq. (6.5), and also

Tr (1) = 2 , (6.16)
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the coefficients c0 and ci can be determined for every 2× 2 matrix X :

c0 = 1
2
Tr (X) ; ci = 1

2
Tr (X τi) . (6.17)

In our case, we read off the coefficients c0 and ci directly from Eq. (6.14):

c0 = cos
α

2
, ci =

αi

α
sin

α

2
. (6.18)

It is clear that all these coefficients are real. Furthermore, we simply establish:

c2
0 + c2

i = 1. (6.19)

The expression (6.15) for X(~α) can now also be written in terms of two complex
parameters a en b ,

X =

(
a b
−b∗ a∗

)
, (6.20)

with |a|2 + |b|2 = 1 . Matrices of the form (6.20) with generic a and b obeying
|a|2 + |b|2 = 1 form the elements of the group SU(2) , the group of unitary 2 × 2
matrices with determinant 1, because 13 they obey:

X† = X−1, det X = 1 . (6.21)

It should be clear that these matrices form a group: if X1 en X2 both obey (6.21)
and (6.20), then also X3 = X1X2 and so this matrix also is an element of the group.
Furthermore, the unit matrix and the inverse matrix obey (6.20) en (6.21), so they also
are in the group, while associativity for the multiplication is evident as well.

In chapter 3 we established that the rotations can be parameterized by vectors ~α that
lie in a sphere with radius α = π . The direction of ~α coincides with the axis of rotation,
and its length α equals the angle of rotation. Since rotations over +π and −π radians
are equal, we established that

R(~α) = R(−~α) , if α = π . (6.22)

As we see in Eq. (6.14), the elements of SU(2) can be parameterized by the same vectors
~α . However, to parameterize all elements X(~α) , the radius of the sphere must be taken to
be twice as large, that is, equal to 2π . Again consider two vectors in opposite directions,
~α and ~α ′ , in this sphere, such that the lengths α+α ′ = 2π , so that they yield the same
rotation,

R(~α ′) = R(~α) , (6.23)

just because they rotate over the same axis with a difference of 2π in the angles. The
two associated SU(2) elements, X(~α ′) and X(~α) , however, are opposite to each other:

X(~α ′) = −X(~α) . (6.24)

13Similarly, the complex numbers with norm 1 form the group U(1) , which simply consists of all phase
factors exp iα .
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This follows from Eqs. (6.14), (6.18) and the fact that cos α′
2

= − cos α
2

en sin α′
2

= sin α
2

.

The above implies that, strictly speaking, the elements of SU(2) are not a represen-
tation of the three-dimensional rotation group, but a projective representation. After all,
in the product of the rotations

R(~α) R(~β) = R(~γ), (6.25)

with α , β , we would also have γ ≤ π , but the product of the associated SU(2) matrices,

X(~α) X(~β) = ±X(~γ) , (6.26)

the value of γ depends on α and β but its length can be either larger or smaller than π ,
so we may or may not have to include a minus sign in the equation14 if we wish to restrict
ourselves to vectors shorter than π . The group SU(2) does have the same structure
constants, and thus the same group product structure, as the rotation group, but the
latter only holds true in a small domain surrounding the unit element, and not exactly
for the entire group.

A spinor ϕα transforms as follows:

ϕα → ϕα′ = Xα
β ϕβ . (6.27)

The complex conjugated vectors then transform as

ϕ∗α → ϕ∗′α = (Xα
β)∗ ϕ∗β = (X†)β

α ϕ∗β . (6.28)

Here, we introduced an important new notation: the indices are sometimes in a raised
position (superscripts), and sometimes lowered (subscripts). This is done to indicate that
spinors with superscripts, such as in (6.27), transform differently under a rotation than
spinors with subscripts, such as (6.28). Upon complex conjugation, a superscript index
becomes a subscript, and vice versa. Subsequently, we limit our summation convention to
be applied only in those cases where one superscript index is identified with one subscript
index:

φαψα ≡
2∑

α=1

φαψα . (6.29)

In contrast to the case of the rotation group, one cannot apply group-invariant sum-
mations with two superscript or two subscript indices, since

Xα
α′ X

β
β′ δ

α′β′ =
∑

γ

Xα
γ Xβ

γ 6= δαβ , (6.30)

because X in general is not orthogonal, but unitary. The only allowed Kronecker delta
function is one with one superscript and one subscript index: δα

β . A summation such as
in Eq.(6.29) is covariant:

2∑
α=1

φ′αψ′α = (Xα
β)∗Xα

γφβψγ = (X† X)β
γφβψγ = δβ

γ φβψγ =
2∑

β=1

φβψβ , (6.31)

14On the other hand, we may state that the three-dimensional rotations are a representation of the
group SU(2) .
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where unitarity, according to the first of Eqs. (6.21), is used.

We do have two other invariant tensors however, to wit: εαβ and εαβ , which, as
usual, are defined by

εαβ = eαβ = −εβα , ε12 = ε12 = 1 . (6.32)

By observing that

Xα
α′ X

β
β′ ε

α′β′ = det X εαβ = εαβ , (6.33)

where the second of Eqs. (6.21) was used, we note that εαβ and εαβ after the transfor-
mation take the same form as before.

From this, one derives that the representation generated by the matrices X∗ is equiv-
alent to the original representation. With every co-spinor ϕα we have a contra-spinor,

ψα
def
= εαβϕβ , (6.34)

transforming as in Eq. (6.28).

The fact that X and X∗ are equivalent can also be demonstrated by writing εαβ as
a matrix:

εXε−1 =

(
0 1
−1 0

)(
a b
−b∗ a∗

)(
0 −1
1 0

)

=

(
a∗ b∗

−b a

)

= X∗ , (6.35)

since ε 2 = −1 . From this, it follows that the two representations given by (6.27) and
(6.28) are equivalent according to the definition given in Eq. (4.3).

Now, let us attempt to find all representations of the group SU(2) , rather than
SO(3) . To this end, we let the SU(2) matrices act in an abstract vector space with
complex coordinates 15 ϕα , where α = 1 , 2 . We consider all analytic functions f of
these two coordinates. Perform the Taylor series expansion of such a function at the origin.
At the N th order, the Taylor expansion terms form homogeneous, symmetric polynomials
in ϕα of degree N . Obviously, N is a non negative integer. Since f is analytic, the
complex conjugated spinors, ϕ∗α are not allowed to enter in these polynomials. Write

Y α1α2···αN = ϕα1 ϕα2 · · ·ϕαN . (6.36)

Under SU(2) , these polynomials transform as follows:

Y α1α2···αN → Y α1α2···αN ′ = Xα1

α′1
Xα2

α′2
· · ·XαN

α′N
Y α′1α′2···α′N . (6.37)

In view of the above, we expect that the tensors Y α1α2···αN (which, because of the
symmetry under interchange of the indices, do not depend on the way these indices are

15The coordinates ϕα are therefore slightly more difficult to interpret.
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ordered), should transform as representations of SU(2) . Indeed, they are irreducble
representations. The independent coefficients of these polynomials are completely charac-
terized by specifying the number p1 of indices that are equal to 1 (the remaining indices,
their number being p2 = N − p1 , must be equal to 2 ), and so we find the number of
independent coefficients in a polynomial of degree N to be

N∑
p1=0

= N + 1 . (6.38)

Thus, here we have representations of dimension N +1 , for any non negative integer N .

Subsequently, we can write the SU(2) generators, acting on functions of the coordi-
nates ϕ , as differential operators. This leads to

L
SU(2)
i = −1

2
(τi)

α
β ϕβ ∂

∂ϕα
, (6.39)

so that infinitesimal SU(2) transformations on functions f(ϕ) can be written as

f(ϕ) → f ′(ϕ) =
(
1− i~α · ~LSU(2) + O(α2)

)
f(ϕ)

= f(ϕ) +
i

2
αj (τj)

α
β ϕβ ∂f(ϕ)

∂ϕα
+ O(α2) . (6.40)

Note in passing that the index α in ∂
∂φα is treated as a subscript index.

Making use of Eq. (6.39), we can now derive the Casimir operator (~LSU(2))2 as a
differential operator,

(L
SU(2)
i )2 =

1

4

∑
i

(
τα
i β ϕβ ∂

∂ϕα

) (
τ γ
i δ ϕδ ∂

∂ϕγ

)

=
1

4
(− δα

β δγ
δ + 2 δα

δ δγ
β) ϕβ ∂

∂ϕα
ϕδ ∂

∂ϕγ

= −1

4
ϕα ∂

∂ϕα
ϕγ ∂

∂ϕγ
+

1

2
ϕβ ∂

∂ϕα
ϕα ∂

∂ϕβ

=
1

4

(
ϕα ∂

∂ϕα

)2

+
1

2

(
ϕα ∂

∂ϕα

)
. (6.41)

It is easy to see that the last two lines of Eq. (6.41) are equal by writing all derivatives to
the right of the coordinates. The transition from the first to the second line is less trivial.
There, use was made of the identity

∑
i

(τi)
α
β (τi)

γ
δ = −δα

β δγ
δ + 2 δα

δ δγ
β . (6.42)

A convenient way to derive this equation is by first multiplying it with an arbitrary matrix
Xγ

δ , after which one uses the decomposition rule (6.15) and Eq. (6.17) for this X . If now
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the derivative of this equation is taken with respect to Xγ
δ , we directly end up with the

identity (6.42). Evidently, the validity of (6.42) can also be verified by choosing specific
values for the indices α , β , γ and δ .

Now, let the operator (6.41) act on the polynomials Y α1α2···α2s . Using the fact that
(

ϕα ∂

∂ϕα

)
Y α1α2···αN = N Y α1α2···α2s , (6.43)

we find directly the result:

(L
SU(2)
i )2 Y α1α2···αN = 1

2
N(1

2
N + 1) Y α1α2···αN . (6.44)

Thus, we recognize the representations ` of chapter 5, if we write ` = s, s = 1
2
N .

We succeeded to (re)construct (2s + 1) dimensional representations of SU(2) , where s
is an integer or an integer plus 1

2
. In these representations, the eigenvalue of the Casimir

operator, according to Eq. (6.44), equals s(s + 1) . In Chapter 5, it was shown that this
completes the set of all irreducible representations of SU(2) .

We expect that, for integral values of s , the representations coincide with the repre-
sentation of the rotation group found in chapter 4. This indeed turns out to be the case.
To see this, consider the tensors Y with an even number of indices. Then, arrange the
factors ϕα in pairs, and use in each pair the ε tensor to lower one of the superscript
indices to obtain a subscript index:

Y αβ = ϕα ϕβ ; Ŷ α
β = εβγY

αγ = εβγϕ
αϕγ . (6.45)

We read off easily that Sp(Ŷ ) = 0 , so that, according to the decomposition (6.15), Ŷ
can be written as

Ŷ = 1
2

∑
i

xi τi ; xi = Ŷ α
β (τi)

β
α . (6.46)

Under SU(2) , the quantities xi transform as

xi → x′i = Xα
α′ (X

−1)β′
β Y α′

β′ (τi)
β
α , (6.47)

where use was made of the transformation rules for superscript and subscript indices.
And now we prove that

X−1(~α) τi X(~α) = R(~α)ij τj , (6.48)

so that the tensors xi actually transform exactly like the coordinates xi in chapter 4.
We verify the validity of the transformation rule (6.48) for infinitesimal transformations.
One then has

X−1(~α) τi X(~α) ≈
(
1− i

2
αj τj + O(α2)

)
τi

(
1 +

i

2
αk τk + O(α2)

)

=

(
τi +

i

2
αj [τi, τj] + O(α2)

)

= τi + εijk τj αk + O(α2) , (6.49)
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which indeed takes the same form as infinitesimal rotations of the coordinates xi .

The rotation operator (6.39) is an exact analogue of the generator of rotations in x
space:

Li = −iεijkxj
∂

∂xk

, (6.50)

which we obtain if we apply an infinitesimal rotation (3.11) to a function ψ(~r) :

ψ(~r) → ψ(~r + ~r × ~α) = (1 + iαkLk)ψ(~r) . (6.51)
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7. Spin and angular distributions

In the preceding chapters we saw how wave functions of some rotationally invariant system
can be classified according to representations of the rotation group. These representations
can be decomposed into irreducible ones, which in turn are characterized by an integer or
half-odd integer ` or s . We also know that this is a feature of the hydrogen atom, where
the wave functions depend on an integer ` , defining the orbital angular momentum of
the electron. The generators, Lk , as defined in the preceding chapters (in particular in
(3.13) and (6.50)), actually correspond to the angular momentum operators. This follows
from the fact that the quantum mechanical operator associated with momentum, acting
on wave functions ψ(~r) has the form

~p =
~
i

∂

∂~r
. (7.1)

The operator for angular momentum ~L ≡ ~r × ~p , takes the same form as the generators
(6.50),apart from a factor ~ . According to Eq. (5.9) it therefore follows that the total
angular momentum of the states is given by the eigenvalue equation

~L2 | ψ〉 = `(` + 1) ~2 | ψ〉 . (7.2)

However, in addition to orbital angular momentum, particles can have intrinsic an-
gular momentum, a contribution to the angular momentum from the particle’s internal
structure besides the motion of its center of gravity. In principle, this can be understood
by assuming that the particle has finite dimensions, so that its rotation about its center
of gravity could be responsible for this extra contribution to the angular momentum, also
called spin. This feature is known from classical mechanics (an example is a rotating
top). This way of looking at intrinsic angular momentum is not free from troubles, but
this does not concern us for the moment. Our starting point is that intrinsic angular
momentum fits naturally within the formalism introduced in the previous chapters. We
leave it to experiments to decide whether and to what extent Nature made use of this
possibility. For particles with spin, it is no longer obvious that only representations occur
with integral values of ` . Indeed, it turns out that particles with half-odd integer spin
occur in Nature, such as the electron, the proton, and the neutron.

From representation theory, it follows that a particle with spin s can be in 2s +
1 mutually independent states.16 This is why the wave function has 2s + 1 different
components. Upon a rotation, these different states are transformed into one another, as
dictated by the associated representation of the rotation group. The fact that particles
occur in different spin states, of course has implications for experiment. Many of the
experiments that demonstrate the existence of spin, and the related properties, make use
of the magnetic moment induced by spin. The well-known Stern-Gerlach experiments can
serve as an example. An other measurement from which the existence of different spin

16An exception must be made for massless particles, such as the photon, which always move with the
velocity of light. For massless particles, at most two different states are possible; spin is defined differently
in that case.
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states can be deduced, is that of the angular distribution in scattering experiments. In
this chapter, we shall demonstrate this by describing an idealized experiment to observe
scattering of protons against a carbon nucleus.

Protons have spin s = 1
2

, so that we are actually dealing with two species of protons,
to be described by a wave function with two components. In practice, we write such a
wave function as a spinor depending on the position in space, and on time. In total,
one thus needs two independent wave functions describing the two possible proton states:
ψ = ψ↑ + ψ↓ ,

ψ↑(~r) = f↑(~r)
(

1
0

)
, ψ↓(~r) = f↓(~r)

(
0
1

)
. (7.3)

The above states are eigenstates of the generator L
SU(2)
3 , which is associated to rotations

about the z axis. The first state is said to be the state with spin oriented along the
positive z axis having the value Sz = 1

2
~ , the second state is the one with its spin in the

opposite direction, Sz = −1
2
~ . Upon a rotation, these two states may transform into one

another. For example, a rotation about the x axis of π radians acts on the spinors as a
matrix (see Eq. (6.14))

X = iτ1 =

(
0 i
i 0

)
, (7.4)

so that our two states are being interchanged.

In this chapter, we consider the situation of a proton that is being scattered against a
carbon nucleus ( C12 ). Suppose that the proton comes in along the positive x axis, hitting
a carbon nucleus at the origin of our coordinate frame. Carbon nuclei are spherically
symmetric (in a good approximation), and we can compare the scattering of protons
with spin “up” (that is, Sz = +1

2
~ ) with the scattering of protons with spin “down”

( Sz = −1
2
~ ). It now turns out that one species of protons prefers to deviate towards

the negative y axis, and the other towards the positive y axis. This is established in
the angular distribution, which describes the probability for the proton to scatter into
an angle θ , which, in this case, is defined to be the angle between the z axis and the
plane of scattering (see Figure 3). It turns out that the angular distribution strongly
depends on the spin of the arriving particle (it is assumed that the particle against which
we scatter, in this case the carbon nucleus, has no spin, and is therefore spherically
symmetric); the larger the spin of the particle that enters, the more complicated the
angular distribution may be. Here it will be shown that the angular distribution is nearly
completely determined by the demand of rotational invariance, apart from a few adjustable
constants.

Let us now consider the quantum states before and after the collision.17 Before the

17The states of the particles entering are now characterized by writing the wave function at t → −∞ ,
that is, the asymptotic states long before the scattering takes place. Similarly, the states of the scattered
particles are specified by the wave function at t → +∞ , that is, long after the collision took place. States
specified this way are called ‘in’ states and ‘out’ states. To compute the inner products, we must use the
wave functions at the same moment in time. These considerations are of great importance conceptually,
but play no role here.
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Figure 3: Proton scattering against a carbon nucleus. The protons enter along the x
axis and the plane of scattering, being the plane defined by the trajectories of the proton
going in and the proton going out.

collision, we are dealing with an initial proton, whose momentum is determined by the
experimental conditions, while its spin state may be chosen at will; the carbon nucleus is
in its ground state. Thus, the ‘in’ states can be described as |↑〉 and |↓〉 , corresponding
to the proton wave functions (7.3). After the collision, the possible states are much more
difficult to describe. Momentum and spin of the proton have changed, and also the carbon
nucleus may in general no longer be at rest, and possibly in an excited state. However,
apart from the scattering angle θ , defined by the plane formed by the ‘in’ vector and
the ‘out’ vector, the experiment is unable to measure all these details concerning the
carbon-proton system after the collision, or in any case, we are not interested in these at
the moment. The possible out-states are denoted by | ψ{ρ}(θ)〉 , where {ρ} summarizes
all those variables in the final state that we decided not to measure.

When the proton that enters along the x -axis his spin “up”, the probability that
the proton going out is in a state characterized by {ρ} and the angle θ , is taken to
be |〈ψ{ρ}(θ) |↑〉|2 . We are not interested in ρ ; the chance to find a scattering angle θ ,
regardless what ρ is, will be given by 18

f1(θ) =
∑

{ρ}

∣∣∣〈ψ{ρ}(θ) |↑〉
∣∣∣
2

. (7.5)

In a similar way, we find the probability for a proton to scatter under an angle θ when
it entered with spin “down”, to be equal to

f2(θ) =
∑

{ρ}

∣∣∣〈ψ{ρ}(θ) |↓〉
∣∣∣
2

. (7.6)

18With this, we mean that the chance to measure a scattering angle between θ and θ + dθ is equal
to f1(θ) dθ . For us it is only of secondary importance how to perform the summation over the variables
ρ .
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Upon a rotation over π radians about the x -axis, the angle θ turns into θ+π , while
the two spin states (7.3) of the initial proton are interchanged. This is why invariance
under rotations implies that one must have

f1(θ) = f2(θ + π). (7.7)

We can say more, however. Consider an initial proton with spin characterized by

| ψ(a)〉 = a1 |↑〉+ a2 |↓〉. (7.8)

A procedure similar to Eqs. (7.5) and (7.6) allows us to derive that the distribution over
the angles θ is given by

f(θ) =
∑

{ρ}

∣∣∣〈ψ{ρ}(θ) | ψ(a)〉
∣∣∣
2

=
∑

{ρ}

∣∣∣a1〈ψ{ρ}(θ) |↑〉+ a2〈ψ{ρ}(θ) |↓〉
∣∣∣
2

= f1(θ) |a1|2 + f2(θ) |a2|2 + f12(θ) a1a
∗
2 + f ∗12(θ) a∗1a2 , (7.9)

where f1 en f2 are defined in (7.5) and (7.6), while the mixing term f12 is given by

f12(θ) =
∑

{ρ}
〈ψ{ρ}(θ) |↑〉 〈ψ{ρ}(θ) |↓〉∗ . (7.10)

Eq. (7.9) can also be written in matrix notation,

f(θ) =
∑

α,β=1,2

F (θ)αβ a∗β aα, (7.11)

where the 2× 2 matrix F (θ) , defined by

F (θ) =




f1(θ) f ∗12(θ)

f12(θ) f2(θ)


 , (7.12)

is hermitian and positive definite.

Now consider a rotation over an angle φ around the x -axis. To get the signs correct19,
remember the definition (2.17) of a representation. Comparing Eq. (3.12), we see that
R(φ, 0, 0) is the rotation matrix

R(φ) = eiφL1 =




1 0 0

0 cos φ sin φ

0 − sin φ cos φ


 , (7.13)

19Versions of these notes prior to 25/06/07 were not very precise at this point; we modified the notation
here.
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which rotates the coordinates in the positive θ direction in Fig. 3. Having ψi(Rx) =
Xij(φ)ψj(x) , where ψ(x) stands for 〈ψ{ρ}(θ)|ψ〉 , we find

〈ψ{ρ}(θ + φ)|ψi〉 = ψi(Rx) = Xijψj(x) = Xij〈ψ{ρ}(θ)|ψj〉 , (7.14)

and Xij is the matrix that transforms the states |↑〉 and |↓〉 :

X(φ) = eiφτ1/2 =




cos φ
2

i sin φ
2

i sin φ
2

cos φ
2


 . (7.15)

Writing Eq. (7.8) as |ψ〉 = ai|ψi〉 , we find that Eq. (7.14) can be written as

〈ψ{ρ}(θ + φ)|ψ〉 = aiXij〈ψ{ρ}(θ)|ψj〉 . (7.16)

Consequently, with our definitions (7.10)—(7.12) for the matrix F (θ) , we have

F (θ + φ) = X†(φ) F (θ) X(φ) . (7.17)

This equation determines the θ dependence of the distribution. Just take θ = 0 in
(7.17), so that this equation can be written as (we use X(φ)† = X(φ)−1 )

F (φ) = X(φ)−1 F (0) X(φ) . (7.18)

Elaborating this matrix equation for the individual components yields (we replace φ now
back to θ )

f1(θ) = f1 cos2 θ
2

+ f2 sin2 θ
2

+ i(f12 − f ∗12) cos θ
2
sin θ

2
, (7.19)

f2(θ) = f2 cos2 θ
2

+ f1 sin2 θ
2
− i(f12 − f ∗12) cos θ

2
sin θ

2
, (7.20)

f12(θ) = f12 cos2 θ
2

+ f ∗12 sin2 θ
2

+ i(f1 − f2) cos θ
2
sin θ

2
, (7.21)

The θ dependence of the angular distributions thus follows completely from rotation
invariance. The functions f1(θ) en f2(θ) have exactly one maximum and one minimum
in the interval −π ≤ θ ≤ π , and thus they yield exactly one preferred direction for
scattering, in agreement with what was described earlier.

The angular distributions can be predicted even more precisely by making use of
yet an other symmetry. To a very good precision, Nature is also invariant under mirror
reflections in space. Under a reflection P with respect to the origin, all space coordinates
are given an extra minus sign,

~r
P−→ −~r . (7.22)

Two reflections in succession yield the identity, so that what we have here is a finite group
consisting of two elements, the space reflection P and the identity I . By adding the
reflection to the rotation group SO(3) , the latter is expanded to O(3) , see the beginning
of Chapter 3.
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The generators of the rotation group do not change upon a reflection. This directly
follows from the fact that a reflection with respect to the origin commutes with rotations,
as can easily be checked. From this it follows that such a reflection acting on irreducible
representations of the rotation group, must be proportional to the identity. This is why
the spin of a state does not change under reflections, and the state itself can at most
receive a minus sign.

Consider once more the scattering of protons against carbon nuclei, and the effect of
the O(3) matrix

Pz =




1 0 0

0 1 0

0 0 −1


 . (7.23)

After this matrix, which is also a reflection since its determinant is −1 , we encounter the
same experimental situation, because the momentum of the initial proton did not change.
Only the angle θ is now replaced by π−θ . Since, upon this substitution, f1(θ) en f2(θ)
may not change, one must have

f1(θ) = f1(π − θ), f2(θ) = f2(π − θ) . (7.24)

This implies that f1 = f2 .

Observe that Pz can be written as the product of the reflection P = −1 and a
rotation over π radians about the z -axis. The reflection P does not affect the spin
states, but the rotation corresponds to

e
1
2
iπτ3 =

(
i 0

0 −i

)
= iτ3 . (7.25)

Consequently, we have (analogously to Eq. (7.17)) that τ3 F (π − θ) τ3 = F (θ) , which
now also implies that f ∗12 = −f12 .
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8. Isospin

As explained in Chapter 1, elementary particles with the same spin and similar mass
values, can be grouped in so-called multiplets. For example,

nucleon-doublet : (p, n),

pion-triplet : (π+, π0, π−) , (8.1)

Delta-quadruplet : (∆++, ∆+, ∆0, ∆−) ,

etc.

This structure can be explained by assuming that Nature is approximately invariant un-
der what will be referred to as isospin rotations. Isospin rotations form a group, whose
elements can be regarded as rotations in some “internal” three-dimensional space. The
states that correspond to the isospin multiplets transform according to (irreducible) rep-
resentations of this group. Thus, the notion of isospin is analogous to the usual notion of
spin, which is connected to rotations in ordinary 3-space.

The force that binds the nucleons in an atomic nucleus, the so-called strong force, is
invariant under isospin rotations. However, the electro magnetic forces are not. This is
why that electric charges within one multiplet are not all the same. Conservation of elec-
tric charge is exact. This is associated with conservation of isospin-“angular momentum”
in the 3 direction, since electric charge is described by the Gell-Mann-Nishijima relation

Q = I3 + 1
2
Y , (8.2)

where Y is the “hyper charge”, which has the same value for all states within one
multiplet. We readily determine that Y = 1 for the nucleon and ∆ multiplets, and 0
for the pion multiplet.

Now let us consider the decay of a ∆++ ,

∆++ −→ p π+ . (8.3)

For the particles involved in this decay, we have

I3 | ∆++〉 = 3
2
| ∆++〉, I3 | p〉 = 1

2
| p〉, I3 | π+〉 =| π+〉 , (8.4)

so that

I3

(
| p〉 | π+〉

)
=

(
I3 | p〉

)
| π+〉+ | p〉

(
I3 | π+〉

)
= 3

2
| p〉 | π+〉 . (8.5)

The above equation follows from the fact that the generators Ii for a representation
consisting of the products of states, is given by the sum of the generators acting on the
separate states. Similar equations therefore hold for I+ and I− as well.

∆ particles predominantly decay into one nucleon and one pion. Because of charge
conservation, ∆++ can only decay as in Eq. (8.3). As for the other ∆ particles, the
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situation is not so simple. Let us begin by enumerating the six different nucleon-pion
states, all being eigenstates of the I3 -operator,

I3

(
| p〉 | π+〉

)
= 3

2
| p〉 | π+〉 ,

I3

(
| p〉 | π0〉

)
= 1

2
| p〉 | π0〉 ,

I3

(
| p〉 | π−〉

)
= −1

2
| p〉 | π−〉 ,

I3

(
| n〉 | π+〉

)
= 1

2
| n〉 | π+〉 ,

I3

(
| n〉 | π0〉

)
= −1

2
| n〉 | π0〉 ,

I3

(
| n〉 | π−〉

)
= −3

2
| n〉 | π−〉 .

(8.6)

The fact that ∆ particles can only decay into special linear combinations of these states
can be explained by the fact that the product states (8.6) split up into two different irre-
ducible representations of the isospin group. This follows immediately from an inspection
of the eigenvalues of I3 : the eigenvalues ±3

2
occur only once each, while the eigenvalues

±1
2

occur twice each. The corresponding states must therefore form one irreducible rep-
resentation with “total isospin” 3

2
, and one with “total isospin” 1

2
. Thus, we can write

the following decomposition of the product representation (analogously to Eq. (4.13)),

2⊗ 3 = 2⊕ 4 (8.7)

where 2 , 3 , and 4 indicate the 2-, 3- and 4-dimensional representations, associated to
isospin 1

2
, 1, and 3

2
, respectively.

If indeed these decay processes are invariant under isospin rotations, then the decays
of the other ∆ particles can be predicted from what is known about the ∆++ decay.
The operator I− turns the ∆++ state into

I− | ∆++〉 = I− | 3
2
, 3

2
〉 =

√
3 | 3

2
, 1

2
〉 =

√
3 | ∆+〉 , (8.8)

Where we used Eq. (5.22). For the nucleon pion final state, into which ∆++ decays, we
find that it transforms as

I−
(
| p 〉 | π+〉

)
=

(
I− | p 〉

)
| π+〉+ | p 〉

(
I− | π+〉

)

= | n〉 | π+〉+
√

2 | p 〉 | π0〉 . (8.9)

Isospin invariance should now imply that | ∆+〉 , which is obtained from an isospin
rotation acting on | ∆++〉 , should decay into the state obtained by applying the same
rotation to the state | p 〉 | π+〉 ; this leads to the state that was obtained in Eq. (8.9),
after normalization:

| ψ〉 =
1√
3

(
| n〉 | π+〉+

√
2 | p 〉 | π0〉

)
. (8.10)

Thus, isospin invariance implies that ∆+ must decay in the state (8.10), and we find that
the decay probabilities for the two possible decay modes of ∆+ obey

Γ(∆+ → nπ+) : Γ(∆+ → p π0) = 1 : 2 , (8.11)
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as is observed in the experiments.

To study the decay modes of ∆0 , we apply I− once more,

I− | ∆+〉 = 2 | ∆0〉 ,

I−
(
| n〉 | π+〉

)
=

√
2 | n〉 | π0〉 ,

I−
(
| p〉 | π0〉

)
= | n〉 | π0〉+

√
2 | p〉 | π−〉 , (8.12)

so that

I−

(
| n〉 | π+〉+

√
2 | p〉 | π0〉√

3

)
= 2

(√
2 | n〉 | π0〉+ | p〉 | π−〉√

3

)
. (8.13)

One concludes that the decay probabilities for the two possible decay modes of ∆0 are
related according to

Γ(∆0 → nπ0) : Γ(∆0 → p π−) = 2 : 1 . (8.14)

Thus, we see in this example how the ratio 2 : 1 of decay rates of elementary particles
can be a consequence of invariance under the transformations forming a Lie group.
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Figure 4: Construction of the so-called Runge-Lenz vector ~K .

9. The Hydrogen Atom

In this chapter we show how group theory can be used to derive the entire energy spectrum
of the hydrogen atom. The Hamiltonian of the hydrogen atom has the form

H =
~p 2

2µ
− e2

r
, (9.1)

where the first term represents the kinetic energy (with µ the reduced mass of the electron
proton system), and the second term is the contribution of the Coulomb potential. First
consider the classical equations of motion following from Eq. (9.1):

~̇p = −e2 ~r

r3
, (9.2)

where the momentum ~p is given by

~p = µ ~̇r . (9.3)

The hydrogen atom is known to feature a number of conserved quantities, that is,
quantities that stay constant in time. The best known examples are the energy, given by
Eq. (9.1), and the 3 components of the angular momentum vector,

~L = ~r × ~p , or: Li = εijk rj pk . (9.4)

Indeed, one easily derives from Eqs. (9.2) and (9.3) that

d

dt
H =

~p·~̇p
µ

+
e2

r3
~r·~̇r = 0 , (9.5)

d

dt
~L = ~̇r × ~p + ~r × ~̇p = 0 . (9.6)

The latter result follows from the fact that, according to Eq. (9.3), ~̇r and ~p are parallel,
and according to Eq. (9.2), also ~r and ~̇p are parallel. There exists however yet another
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vector that stays constant. This is the so-called Runge-Lenz vector, defined by

~K =
1

µe2
~L× ~p +

~r

r
. (9.7)

The fact that ~K is conserved follows from Eqs. (9.2) en (9.3), but the proof is a little
more involved. First, we show that

d

dt
~K =

1

µe2
~L× ~̇p +

~̇r

r
− (~̇r · ~r) ~r

r3

= − 1

µ

~L× ~r

r3
+

r2 ~p− (~p · ~r)~r
µ r3

, (9.8)

where in the first line Eq. (9.6) was used, and in the second line Eqs.(9.2) and (9.3). Next,
we show that Eq. (9.8) is equal to zero by substituting Eq. (9.4), so that

d

dt
~K =

1

µ r3

{−(~r × ~p)× ~r + r2 ~p− (~r · ~p)~r
}

. (9.9)

Using the relation

(~a×~b)× ~c = (~c · ~a)~b− (~c ·~b)~a , (9.10)

we subsequently show that Eq. (9.9) is equal to zero, so that ~K is indeed a constant
vector.

The Runge-Lenz vector enjoys a number of other interesting properties. Using the
definitions and the elementary relations from vector analysis, we find

~K ·~L = 0 , (9.11a)

~K2 =

(
1

µe2

)2

(~L× ~p )2 +
2

µ e2 r
(~L× ~p)·~r + 1

=

(
1

µe2

)2

~L2 ~p 2 − 2

µ e2 r
~L 2 + 1

=
2H

µe4
~L2 + 1 . (9.11b)

For the elliptical orbit of a classical particle, the Runge-Lenz vector ~K in fact points
into the direction of the semi major axis of the ellipse, see the illustration in Figure 4.
The length of ~K is the excentricity ε of the ellipse.

In quantum mechanics, the vectors ~r en ~p are operators, obeying Heisenberg’s com-
mutation relations,

[pi, rj] = −i~ δij ,

[ri, rj] = [pi, pj] = 0 . (9.12)
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In the coordinate representation, we describe states in terms of wave functions of the coor-
dinates ri . The coordinate operator then acts trivially on the wave function, multiplying
it by the value of the coordinate, whereas the momentum operators are given by

~p =
~
i

∂

∂~r
. (9.13)

Naturally, also H , ~L and ~K are operators now, but the definition of ~K presents us
with a new problem, since ~p and ~L do not commute,

[Li, pj] = i~ εijk pk ,

[Li, rj] = i~ εijk rk . (9.14)

which follows directly from Eqs. (9.4) and (9.12) using the commutation relation

[A,BC] = [A,B] C + B [A,C] . (9.15)

In view of Eq. (9.14), it is not obvious in which order the operators ~L en ~p have to be

placed in the definition of Eq. (9.7) for ~K .20 We now propose the following choice for

the quantum mechanical definition of ~K :

~K =
1

2µe2

(
~L× ~p− ~p× ~L

)
+

~r

r
. (9.16)

It is clear that this definition would boil down to Eq. (9.7) if ~L and ~p would commute.

With this particular choice, the operator ~K is hermitian.

In quantum mechanics, conserved quantities commute with the Hamiltonian. Let
us first check this for the operators ~L . Using the commutation relations (9.14), and
Eq. (9.15), we readily derive that

[Li, H] = 0 , (9.17)

[Li, Lj] = i~ εijk Lk . (9.18)

Eq. (9.17) indicates that Li is conserved. Eq. (9.18) shows that angular momentum
operators obey the same commutation relations as the operators in Eq. (3.28) for the
three-dimensional rotation group21.

By way of illustration, we give the explicit derivation of Eq. (9.18):

[Li, Lj] = εjkl [Li, rk pl]

= εjkl ([Li, rk] pl + rk [Li, pl])

= i~ εjkl (εikm rm pl + εilm rk pm)

= i~ (εjlk εimk + εjmk εikl) rm pl

= i~ εijk εkml rm pl , (9.19)

20The reader may wish to check that this problem does not arise in the definitions (9.1) and (9.4) of
H and ~L .

21Apart from the factors ~ ; the operators Li in this chapter include the constant ~ as commonly
used in quantum mechanics.
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Where successively Eqs. (9.4), (9.15) and (9.14) were used; furthermore, indices were
renamed, and Eq. (3.33) for ε tensors was employed.

In a similar fashion we can determine commutators containing the operators ~K . First,
by using Eq. (9.13), we verify that

[
~p,

1

r

]
=
~
i

(
∂

∂~r

1

r
− 1

r

∂

∂~r

)
= i~

~r

r3
. (9.20)

Subsequently, we derive that

[Li, Kj] = i~ εijk Kk (9.21)

(a property that also follows from the fact that the Ki form a vector),

[Ki, pj] =
i~
µe2

(pipj − p2 δij) +
i~
r3

(r2δij − rirj) , (9.22)

[
Ki,

1

r

]
=

i~
2µe2

εijk
Ljrk + rkLj

r3
. (9.23)

Using eqs. (9.22) and (9.23), it is now not difficult to prove that ~K commutes with the
Hamiltonian,

[ ~K, H] = 0 . (9.24)

Finally, we can conclude from the Jacobi identity,

[[A,B], C] + [[B, C], A] + [[C,A], B] = 0 , (9.25)

that also [Ki, Kj] must commute with the Hamiltonian, and is therefore conserved. A
computation shows that this commutator does not give us a new conserved quantity, but
it is a product of two conserved quantities that we already had,22

[Ki, Kj] = i~ εijk Lk

(−2H

µe4

)
. (9.26)

Since Lk and H commute, the order of these operators is immaterial.

Herewith, all relevant commutators have been determined. Next, we must establish
whether the classical relations (9.11) remain valid for the case that ~K and ~L are oper-
ators. For the first equation, we find

~K · ~L = ~L · ~K =
1

2µe2

{
~L · (~L× ~p)− ~L · (p× ~L)

}
+

~L · ~r
r

. (9.27)

22On general grounds one can prove that the hydrogen atom cannot have more than 5 independent
conserved quantities. For instance, one can choose the components of the angular momentum and the
two coordinates of the Runge-Lenz vector that are orthogonal to ~L .
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Since ~L · ~r = 0 (this continues to hold true in quantum mechanics as one easily checks),
only the first two terms contribute, proportional to

εijk Li (Ljpk − pjLk) = εijk (2 Li Lj pk − i~εjkl Li pl) , (9.28)

where use was made of Eq. (9.14) to write pi at the right of the operators Li . Using

Eq. (9.18) we write the first term proportional to εijk εijl Ll pk ∝ ~L · ~p = 0 ; the second
term vanishes for the same reason, so that we find the same result as before,

~K · ~L = 0 . (9.29)

Eq. (9.11b) no longer holds in the quantum mechanical case, and the exchange of two
operators leads to extra terms. The correct result, which requires some more calculations,
takes the following form,

~K2 =
2H

µe4
(~L 2 + ~2) + 1 . (9.30)

In the limit ~→ 0 this result agrees with (9.11b).

The above results now enable us to determine the energy spectrum of the hydrogen
atom. Consider the eigenstates of H , obeying

H | ψ〉 = E | ψ〉 , (9.31)

where the energy E will be assumed to be negative, E < 0 , so that we are dealing with
bound states. Since the operators Li en Ki commute with the Hamiltonian, all states
Li | ψ〉 and Ki | ψ〉 also solve the Schrödinger equation (9.31). Within the set (9.31),
the operators Li and Ki may be seen to act as the generators of a Lie group, because
their commutators are linear combinations of the Li and Ki themselves. Indeed, they
generate the Lie group of all transformations that leave the energy E invariant. The
Hamiltonian is a Casimir operator.

In order to analyze the mathematical structure of this Lie group, define the following
two linear combinations of the operators ~L and ~K ,23

~L± =
1

2

(
~L±

√
µ e4

−2E
~K

)
. (9.32)

These operators commute with the Hamiltonian,

[L±i , H] = 0 . (9.33)

23The fact that E is negative, ensures that the argument of the square root in these definitions is
positive.
Note that ~L+ and ~L− each are vectors, out of which the ladder operators L+

± and L−± of Chapter 5
can be constructed.
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Using Eqs. (9.18), (9.21), and (9.26), we prove the following commutation relations

[
L+

i , L+
j

]
= i~ εijk L+

k , (9.34)[
L−i , L−j

]
= i~ εijk L−k , (9.35)[

L+
i , L−j

]
= 0 . (9.36)

In view of these commutation relations, we can regard ~L+ and ~L− as the generators
of two separate rotation groups, which mutually commute, and they act upon the states
according to

| ψ〉 →| ψ′〉 = ei~α·~L+

ei~β·~L− | ψ〉 , (9.37)

where the parameters ~α and ~β describe the two groups generated by ~L+ en ~L− .24

If | ψ〉 obeys the Schrödinger equation (9.31), then also the transformed states | ψ′〉
obey this equation, with the same eigenvalues E . All these states are to be character-
ized as representations of the two rotation groups (this product group is often denoted as
SU(2)⊗SU(2) ). The states should therefore transform according to a (2s+ +1) dimen-
sional (irreducible) representation of the first rotation group. If now we let an element
of the second group act on this representation, we find an identical representation of the
first group (with this, we mean that each of the states of the original representation stays
the same apart from a universal factor). Thus, the second group maps entire represen-
tations of the first group into entire representations. Obviously, the converse also holds:
the first group maps representations of the second group into the same representations.
One therefore is dealing with the tensor product of a representation of the first group and
a representation of the second group. Assume we have a (2s+ + 1) dimensional repre-
sentation of the first, and a (2s− + 1) dimensional representation of the second group,
where s± = 0 , 1

2
, 1, 3

2
, . . . . Then we find (2s+ + 1)(2s− + 1) states, to be indi-

cated as | m+, m−〉 , where m± denotes the eigenvalues of the components L±3 , obeying
−s± ≤ m± ≤ s± . These states obey

(
~L+

)2

| m+,m−〉 = s+(s+ + 1) ~2 | m+,m−〉 ,
(
~L−

)2

| m+,m−〉 = s−(s− + 1) ~2 | m+,m−〉 , (9.38)

However, we also have an extra condition for the generators ~L± , following from Eq. (9.29):

(
~L+ + ~L−

)
·
(
~L+ − ~L−

)
∝ ~L · ~K = 0 , (9.39)

or

(
~L+

)2

=
(
~L−

)2

. (9.40)

24We point out once more that the two groups mutually commute. the two exponentiated operators in
Eq. (9.37) can therefore be exchanged.

53



From this, we conclude that

s+ = s− =
1

2
(n− 1) , (9.41)

with n = 2s± + 1 = 1, 2, . . . , so that we are dealing with n2 states | m+,m−〉 .

Finally, we can express the Hamiltonian, which is the energy E , in terms of the
operators ~L± using eq. (9.30). We then find

−
(
~L+ − ~L−

)2

=
µ e4

2E
~K2 =

(
~L+ + ~L−

)2

+ ~2 +
µ e4

2E
, (9.42)

from which

−2
(
~L+

)2

− 2
(
~L−

)2

= −2(n− 1)(
1

2
(n− 1) + 1) ~2 = ~2 +

µ e4

2E
. (9.43)

This implies that the bound states are n2 fold degenerate, with energies

En = − µ e4

2 ~2 n2
. (9.44)

The angular momentum operators are given by the operators ~L+ + ~L− . This linear
combination acts the same way on both representations in the tensor product defining
the states |m+,m−〉 . Upon rotations in space, generated by the operators ~L+ + ~L− , the
states |m+,m−〉 therefore transform as a tensor product of two representations of the
usual rotation group. Such product representations are no longer irreducible, as we saw
earlier. From the product properties of representations we can determine which values of
the angular momentum occur at a given n ; this we deduce from the representations that
occur in the product of two n dimensional representations,

n⊗ n = 2n−1⊕ 2n−3⊕ · · · ⊕ 3⊕ 1 , (9.45)

where n denotes the irreducible n -dimensional representation of the rotation group
(being a state with spin 1

2
(n − 1) ). We do not prove this decomposition laws here; for

n = 3 this was done for Eq. (4.13), and a similar product was determined in Eq. (8.7).

In conclusion, we can say that the bound states of the hydrogen atom can be deter-
mined by the principal quantum number n , which takes the values n = 1, 2, . . . . For
given n , we have n2 states with angular momenta ` = 0, 1, . . . , n − 1 , and energy En

given by Eq. (9.44).

References : O. Klein, Z. für Physik 22 (1924) 109; W. Lenz, Z. für Physik 24 (1924)
197; W. Pauli, Z. für Physik 36 (1926) 336.
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isospin-multiplet spin parity isospin S mass (MeV)
pions, π±, π0 0 − 1 0 139.6, 135
kaons, K0, K+ 0 − 1/2 1 497.7, 493.7

anti kaons, K−, K0 0 − 1/2 −1 493.7, 497.7
eta, η0 0 − 0 0 547.3
eta′, η′ 0 − 0 0 ≈ 960

nucleons, n, p 1/2 + 1/2 0 939.5, 938.3
delta, ∆−, ∆0, ∆+, ∆++ 3/2 + 3/2 0 ≈ 1235

sigma, Σ−, Σ0, Σ+ 1/2 + 1 −1 1197.4, 1192.6, 1189.4
sigma∗, Σ∗−, Σ∗ 0, Σ∗+ 3/2 + 1 −1 ≈ 1385

lambda, Λ0 1/2 + 0 −1 1115.7
ksi, Ξ−, Ξ0 1/2 + 1/2 −2 1321.3, 1315

ksi∗, Ξ∗−, Ξ∗ 0 3/2 + 1/2 −2 ≈ 1530
omega, Ω− 3/2 + 0 −3 1672.4

Table 2: Various isospin-multiplets and their masses.

10. The group SU(3)

The Lie group SU(3) has played an important role in the realization of quark theory.
In studying the hadrons (the strongly interacting subatomic particles) it was noted that
they appear to fit in a scheme of multiplets that is more complicated than the isospin
multiplets that we have seen. Various isospin multiplets appeared to fit in larger frames.

When it was realized that this might again be attributed to one or more Lie groups,
various possibilities were tried out. This led to SU(3) . Today we know why exactly this
group applies. Deeply hidden inside these subatomic particles are their constituents, the
quarks. There are three species of these. We call them u , d and s . Of these, u and
d form an isospin doublet. So they are in a I = 1

2
representation of SU(2) . The third

quark, s , is an isospin singlet. We write the quark wave functions as

|ψ 〉 =




u
d
s


 , (10.46)

and we assume the physical properties of these particles to be (approximately) invariant
under the unitary transformations of these 3-vectors. Therefore, we regard (10.46) as the
fundamental representation of SU(3) , where 3 stands for the dimension of the vectors,
U stands for “unitary”, and S for “special”: we restrict ourselves to matrices with
determinant 1.

If we restrict ourselves to those transformations that transform u and d into one an-
other, but leave s invariant, then we have the subgroup SU(2) of SU(3) . In SU(2) we
saw that if you try to form new representations starting from products of representations
with integral ` , you only obtain representations where ` is again an integer. These are
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all representations that map the element

−I =

(−1 0
0 −1

)
, (10.47)

onto the unit matrix +I .

Something similar happens to SU(3) . This group has three special elements that
commute with all elements of the same group (we call the subgroup formed by these
special elements the center of the group:

I ; e
2πi
3 I =




e
2πi
3

e
2πi
3

e
2πi
3


 ; e

−2πi
3 I =




e
−2πi

3

e
−2πi

3

e
−2πi

3


 . (10.48)

We now distinguish two types of representations of SU(3) : the regular and the exotic
representations. Regular representations are the ones that map all three elements (10.48)
of the center onto the unit matrix. All other representations are exotic. The elementary
representation itself is exotic. The representations formed by the 3 × 3 matrices U of
the SU(3) transformations, the adjoint representation, is regular, because they transform
according to

U → U ′ = X U X−1 , (10.49)

and if we take X to be one of the center elements, we see that U does not change.

Writing U = eiT , we see that unitarity of U follows if we demand that T be
hermitian: T = T † , and the fact that det(U) = 1 requires that we should demand
Tr (T ) = 0 . The 3×3 matrices have 9 complex elements. Hermiticity of T restricts this
number to 9 real parameters. From Tr (T ) = 0 it follows that 8 of these are independent.
Therefore, the adjoint representation spans an 8 dimensional real space. Just as in Chapter
6, Eq. (6.45), we write this representation as Y α

β , but now the indices α, β can take three
values. Selecting the elements where α en β both take the values 1 or 2, we reobtain the
three-dimensional representation 3 , with I = 1 , of SU(2) . If α = 1, 2 and β = 3 , we
have the complex, fundamental 2 representation of SU(2) , and we find the same back
if α = 3 and β = 1, 2 . Finally, there is a 1 representation of SU(2) on the diagonal.
Since the 2 representation is complex while the others are real, we count the complex
one twice, but we can also say that it occurs twice, once in Y α

3 and once in Y 3
α :

8SU(3) = (3 + 2 + 2 + 1)SU(2) . (10.50)

The other representations of SU(3) are found by multiplying symmetric or skew-
symmetric combinations of the fundamental representation. This way, “tensors” Y α1α2···

β1β2···
are obtained, and from these we extract the irreducible combinations, which can be done
by symmetrization or skew symmetrization, or by multiplication with invariant tensors. If
we only want to use the fundamental indices (see later), one finds that there are only three
invariant tensors: δα

β , εαβγ and εαβγ . The latter two are invariant, just like the εαβ

and εαβ in SU(2) , because of the constraint det(X) = 1 imposed on the transformation
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Figure 5: The meson octet with spin 0 and parity − , and the baryon-octet with spin 1
2

and parity +

matrices X in SU(3) . We can use the εαβγ tensors to turn all indices into superscripts
(or all subscripts), so it suffices to look for all representations with only superscripts.

Unlike the situation in SU(2) , the representations generated by φα and φα are not
equivalent. We call these two representations 3 and 3̄ . The 3̄ can also be written as an
skew-symmetric Y αβ . The symmetric representation Y αβ is a complex 6 representation.
The first non exotic representation, encountered after the 8 , is a 10 , formed by the
completely symmetric tensors Y αβγ . This decuplet is built from SU(2) representations
as follows:

10 SU(3) = (4 + 3 + 2 + 1)SU(2) . (10.51)

The set of all regular (non-exotic) representations can be found as follows: the number
of superscript indices minus the number of subscript indices must be a multiple of 3.

In hadron physics, particles of a certain type can be arranged according to isospin I3

and a new quantum number S , called “strangeness”. The patterns obtained have been
sketched in Figures 5 and 6.

We recognize two octets and a decuplet. Writing the meson octet as Mα
β and the

baryon decuplet as Bαβγ , we see that strangeness S may correspond to the number of
subscripts with the value 3, minus the number of superscripts taking the value 3. Now
we know that we are dealing here with wave functions of the type |ψα · ψβ〉 where |ψα〉
indicate quarks of type α and |ψβ〉 anti quarks of type β . Here, α = 1 and 2 form the
isodoublet u en d , and α = 3 is the s -quark, that has been assigned strangeness −1 .
A ninth meson, with Mα

β = δα
β also exists. This is the η′ , whose mass deviates more

from the others. The baryons are all written as Bαβγ . The octet, which can be written
as

Bαβγ = εαβκBγ
κ ; Bα

α = 0 , (10.52)

can also be defined by

Bαβγ = −Bβαγ ; εαβγB
αβγ = 0 . (10.53)
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Figure 6: The baryon decuplet with spin 3
2

and parity P = + .

SU(3) symmetry is broken more strongly than isospin, because the masses of these
particles in different isospin multiplets differ much more than the masses within one isospin
multiplet (see Table 2). Nevertheless this symmetry is of great importance. M. Gell-
Mann discovered the decuplet when it was not yet complete, which enabled him the
predict the missing particle Ω− . A striking feature is that all representations of SU(3)
that we encounter among the hadrons in Nature are regular representations, The exotic
representations are apparently forbidden.

We can link the baryon decuplet with the baryon octet. Consider the basis of ‘quark
states’, where now also ordinary spin is taken into account. Every quark may now have
Sz = +1 or −1 , so instead of 3 we now have 6 quark states. If we were allowed
to transform all six quark states into one another, we get the Lie group SU(6) . The
symmetric representation |ψABC〉 of SU(6) has 6 · 7 · 8/3! = 56 elements. The SU(6)
indices each consist of one SU(3) index and one SU(2) index for spin, which we will
call σ :

A = (α, σ1) , B = (β, σ2) , C = (γ, σ3) . (10.54)

Taking all states symmetric in α, β , and γ , we easily establish that they also have to
be symmetric under interchange of the ordinary spin indices σ1, σ2 and σ3 . So, these
states have spin 3

2
, exactly as in our baryonic decuplet. Every particle in the decuplet

has 4 spin states, so here we have 10 · 4 = 40 basis elements. Orthogonally to those, we
have 56− 40 = 16 elements left, exactly an octet with spin 1

2
, because each member of

the octet has 2 spin states.

SU(6) is even less well conserved than SU(3) , as exemplified by the fact that the
masses of the baryon decuplet are considerably larger than those of the baryon octet.

Two questions have not yet been answered: 1) Why do the hadrons only occur in
regular (non-exotic) SU(3) representations, and 2) How can it be that quarks with spin

58



1
2

are in a symmetric wave function; having spin 1
2

one would have expected that quarks
are fermions, which should occur only in completely skew-symmetric wave functions, in
view of Pauli’s exclusion principle. The answer to both questions is that quarks carry yet
another, ‘internal’ quantum number, called color, which again can take three values. The
color theory can explain the nature of the forces between the quarks. Attractive forces
between quarks with different values for the color index are so great that these colors
must neutralize each other completely. This theory will not be further explained here,
but it is known to imply that all hadrons must form a color singlet representation. The
wave function must therefore be completely skew-symmetric under exchanges of the color
indices. In agreement with Pauli’s principle, the entire wave functions of the hadrons
are completely skew-symmetric under the interchange of two quarks. This leaves us with
completely symmetric wave functions when only two SU(6) indices are interchanged.

To describe the generators of an SU(3) transformation, we use the hermitian matrices
λ a, α = 1, · · · , 8 :

X = exp(1
2
iθ aλ a) . (10.55)

λ a , called the Gell-Mann matrices, are a generalization of the SU(2) matrices τi :

λ 1 =




0 1 ·
1 0 ·
· · ·


 λ 2 =




0 −i ·
i 0 ·
· · ·


 λ 3 =




1 0 ·
0 −1 ·
· · ·




λ 4 =




0 · 1
· · ·
1 · 0


 λ 5 =




0 · −i
· · ·
i · 0


 λ 6 =



· · ·
· 0 1
· 1 0




λ 7 =



· · ·
· 0 −i
· i 0


 λ 8 =

1√
3




1 0 0
0 1 0
0 0 −2


 (10.56)

The λ a are normalized according to

Tr (λ a λ b) = 2δab , (10.57)

and they obey the commutation relations

[1
2
λ a,

1
2
λ b] = ifabc(

1
2
λ c) . (10.58)

The list of the structure constants fabc is

f123 = 1

f147 = f246 = f257 = f345 = f516 = f637 = 1
2

f458 = f678 = 1
2

√
3 ; (10.59)

the remaining ones follow from the complete antisymmetry of these coefficients:

fabc = fbca = −fbac , etc. (10.60)

59



  =  c)

b)

a)

  =  

Figure 7: Young tableaus

fabc en δab are not the only invariant tensors of the 8 representation. We can also
consider the anticommutators of the λ ’s, to find:

{1
2
λ a,

1
2
λ b} = 1

3
δab + dabc(

1
2
λ c) . (10.61)

The anticommutator is defined as {A, B} = AB + B A . The dabc are completely
symmetric:

dabc = dbca = dbac , etc. (10.62)

and they can also be listed:

d118 = d228 = d338 = −d888 = 1√
3

d146 = d157 = d256 = d344 = d355 = 1
2

d247 = d366 = d377 = −1
2

d448 = d558 = d668 = d778 = − 1
2
√

3
(10.63)

The tensors δab, fabc en dabc are the only independent invariant tensors in the 8 repre-
sentation.

11. Representations of SU(N); Young tableaus

We have already seen a glimpse of SU(6) . Larger Lie groups also occur in physics. Take
SU(N) for any value of N . General methods exist to find all their representations.
First, we decide to replace all subscript indices by superscripts using the invariant tensor
εα1α2 ···αN .

The fundamental representation, corresponding to the N dimensional ‘spinor’ φα in
SU(N) , is indicated by a box. The product of two of these representations is depicted as
two boxes, see Figure 7a. If the representation is symmetric, we picture the boxes next
to each other horizontally; the skew-symmetric component is depicted by the vertical ar-
rangement. In Fig. 7b, we see how larger representations can be constructed. Every box
represents an index. If we have a complicated representation, such as in Fig. 7c, then the
associated tensor is symmetric under all permutations of the indices within one horizontal
row of boxes. In the vertical direction the rule is somewhat more complicated; it is com-
pletely determined by the demand that all allowed representations must be independent,
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so that two tensors that are described by different Young tableaus are always orthogonal
to one another. It then turns out that we arrive at the following rule:

i All independent, irreducible representations of SU(N) can be distinguished by the
fact that they have different Young tableaus, and every Young tableau represents
one irreducible representation, provided that:

ii Every horizontal row in a Young tableau may not have more boxes than the row
above it, and every column may not have more boxes than the column left of it.

iii There cannot be more than N − 1 rows, so the columns may not have more than
N − 1 boxes.

A typical example is the Young tableau of Fig. 7c.

12. Beyond these notes

There is a large amount of literature on Lie groups. The problem of classifying all in-
equivalent Lie groups has been solved (W. Killing and E. Cartan). One first defines the
simple Lie groups, which are the Lie groups that cannot be written as the product of two
non-trivial mutually commuting Lie groups. Then it was found that there are four infinite
series of these:

The groups An = SU(n + 1) ; n ≥ 1 ,

The groups Bn = SO(2n + 1) ; n ≥ 2 ,

The groups Cn = Sp(2n) , n ≥ 3 ,

The groups Dn = SO(2n) , n ≥ 4 ;

n may take values smaller than the limits indicated, but these groups are not independent
of the others given, for instance: the algebra of SO(3) coincides with that of SU(2) , as
was described in these notes. We write SO(3) ∼= SU(2) . Similarly, one has SO(4) ∼=
SO(3)⊗ SO(3) and SO(6) ∼= SU(4) .

The groups Sp(2n) are the so-called symplectic groups.

Besides these regular series, there are five more simple Lie groups that are not in one
of these series, called the exceptional groups, E6, E7, E8, F4 , and G2 . The E8 algebra
is the largest and most complicated of these exceptional cases. This group is so large that
it could easily encompass all known particles and fields, and since it also plays a role in
super string theories, it receives a lot of interest from physicists.

The Lie algebra can also be extended to algebras where, at various places, the com-
mutators are replaced by anticommutators. One then gets the graded Lie groups. These
play a role in supersymmetric particle theories.
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Appendix A

Summary of the properties of matrices

A square matrix of dimension n is a table of n× n elements aij :

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann


 .

The matrix elements aij are (possibly complex) numbers. Suppose we have an other
n× n matrix B with elements bij .

Definition: The sum of two matrices A and B is a matrix C with matrix elements
given by

cij = aij + bij . (A.1)

Their difference C ′ is given by the matrix elements c′ij = aij − bij . We write:

C = A + B, or C ′ = A−B .

From Eq. (A.1) it follows that the summation is commutative: A + B = B + A .

Definition: The product of the matrices A and B is a matrix C with matrix elements
cij given by

cij =
n∑

k=1

aikbkj. (A.2)

We write:
C = AB . (A.3)

Explanation: Eq. (A.2) defines the matrix elements cij if aij and bij are given. Since
aij and bij are ordinary numbers, it does not matter in which order they are written.
This does not hold, however, for products of matrices, where in general C = A B 6= B A .
Note that C ′ = BA is a matrix whose elements are given by

c′ij =
∑

k

bikakj , (A.4)

which differs from Eq. (A.2). We say that matrix multiplication is non commutative. It
is associative: A(BC) = (AB)C .

Definition: The commutator of two matrices A and B is given by

[A,B] ≡ AB −BA . (A.5)
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We say that A and B commute if the commutator is equal to zero.

Definition: The product of a (possibly complex) number x with a matrix A is a
matrix B with elements:

bij = x aij . (A.6)

Notation:

B = xA . (A.7)

From Eq. (A.6), it follows that
B2 = x2A2 ,

since ∑

k

bikbkj = x2
∑

k

aikakj .

Definition: The unit matrix 1 is defined as

1 =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


 ,

and gives 1A = A1 = A for every matrix A .
For every n×n matrix we can define its determinant, being a (possibly complex) number.
It is defined recursively by taking out one of its rows, say the ith row:

Det(A) =
n∑

k=1

aik(−1)k+iDet(A(i, k)) , (A.8)

where the (n− 1)× (n− 1) matrix A(i, k) is obtained from A by removing the ith row
and the kth column. The determinant of a 0× 0 matrix is 1.

Many properties of determinants are easy to derive: if C = AB then

Det(C) = Det(AB) = Det(A) Det(B) . (A.9)

If C = xA with x a number and A an n× n matrix,

Det(C) = Det(xA) = xnDet(A) . (A.10)

Furthermore: the inverse of a matrix A is a matrix B such that BA = AB = 1 .
Notation: B = A−1 . The matrix elements of B are (note: A(j, i) , not A(i, j) ):

bij =
(−1)i+jDet(A(j, i))

Det(A)
. (A.11)
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from this, it follows that a matrix A has an inverse if Det(A) 6= 0 . An other definition
of the determinant makes use of the ε symbols, defined by

εi1···in = 0 if in i1 . . . in two or more of the indices are equal,
εi1···in = ±1 if in i1 . . . in no two indices are equal, in which case we have
εi1···in = 1 if i1 . . . in are an even permutation of 123 . . . n ,
εi1···in = −1 if i1 . . . in are an odd permutation of 123 . . . n . In particular,
ε123···n = +1.

The determinant of a matrix A is then given by

Ai1j1Ai2j2 · · ·Ainjn εj1···jn = Det(A) εi1···in .

Finally, for a given matrix A , the transpose Ã of a matrix A is defined by the matrix
elements

ãij = aji ,

and if A−1 is the inverse of a matrix A , one has

ÃB = B̃ Ã , (AB)−1 = B−1A−1 . (A.12)

The first equation follows from the definition (A.2) of the matrix product, and the second
formula follows from 1 = (AB) (AB)−1 = AB B−1A−1 = 1 .

Appendix B

Differentiation of matrices

Matrix elements can be functions of one or more variables. These functions may be
differentiable. In this case, one can define the derivative of a matrix.

Definition: The derivative of a matrix A is a matrix whose elements are the derivatives
of the matrix elements of A .
Thus, the matrix A′ with

A′(x) =
dA(x)

dx
, (B.1)

has the matrix elements

a′ij(x) =
daij(x)

dx
. (B.2)

In general, the derivative of a matrix will not commute with the matrix itself. Apart from
this fact, one may use all formulae that are familiar from differentiation theory, and they
follow from the definition (B.1). For example,

d(A + B)

dx
=

dA

dx
+

dB

dx
, (B.3)
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and
d(AB)

dx
=

dA

dx
B + A

dB

dx
. (B.4)

The latter result follows from the chain rule

d

dx

∑

k

aikbkj =
∑

k

a′ikbkj +
∑

k

aikb
′
kj . (B.5)

Similarly,
dAn

dx
= An−1A′ + An−2A′A + · · ·+ A′An−1 . (B.6)

Note that this is not always equal to nAn−1 A′ , because A and A′ do not necessarily
commute.

The derivative of the inverse of a matrix A can be found the following way. Since
A−1A = 1 , we have

0 =
d

dx
(A−1A) =

dA−1

dx
A + A−1 dA

dx
,

and consequently,
dA−1

dx
= −A−1 dA

dx
A−1 . (B.7)

Appendix C

Functions of matrices

Functions based on additions and multiplications can readily be defined for matrices. But
many more functions are used. In particular, the function ex is of importance. There
are two possible definitions.

Let a matrix A be given. The matrix eA is then defined by

eA =
∞∑

k=0

1

k!
Ak , (C.1)

where A0 = 1 . A second definition is

eA = lim
m→∞

(
1 +

1

m
A

)m

. (C.2)

The proof that the two definitions (C.1) and (C.2) coincide is just like it goes for ordinary
exponentials, by applying the binomial expansion of Eq. (C.2).

Eq. (C.2) allows us to derive an important relation:

Det(eA) = Limm→∞

{
Det(1 +

1

m
A)

}m

. (C.3)
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We compute the determinant between brackets by ignoring contributions of order 1/m2

or smaller. For instance, first consider a 2× 2 matrix. There:

1 +
1

m
A =

(
1 +

a11

m

a12

ma21

m
1 +

a22

m

)
.

If, in the calculation of the determinant, we ignore the contributions of order 1/m2

and higher, the off-diagonal elements can be ignored (in a determinant, there are no
terms containing only one off-diagonal element as a factor). In this approximation, the
determinant is simply the product of the diagonal elements:

Det
(
1 + 1

m
A

) ≈ (
1 +

a11

m

) (
1 +

a22

m

)
≈ 1 + 1

m

(
a11 + a22

)
+ O

(
1

m2

)
.

In general, one finds:

Det

(
1 +

1

m
A

)
= 1 +

1

m
Tr (A) + O

(
1

m2

)
,

where Tr (A) is the trace of the matrix A , that is, the sum of its diagonal elements:

Tr (A) =
∑

k

akk .

Substituting this in Eq. (C.3), gives

Det(eA) = lim
m→∞

{
1 +

1

m
Tr (A) + O

(
1

m2

)}m

= eTr(A) ,

and thus we arrive at:

Det(eA) = eTr(A) . (C.4)

Appendix D

The Campbell-Baker-Hausdorff formula

Let there be given two matrices A and B . The CBH formula tells us that there exists
a matrix C such that

eAeB = eC , (D.1)

where C = A + B + 1
2
[A,B] + repeated commutators of A en B .

Repeated commutators are expressions of the following type:

[[A,B], B] = [A,B]B −B[A,B]

= ABB −BAB −BAB + BBA ,
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[[A, [A,B]], B] , [[[A,B], B], B] , etc.

The numeric factors that come with the coefficients of these repeated commutators are
not so easy to find. For our purposes, it suffices to establish that C indeed is of the form
(D.1). We shall prove this and also derive the coefficients of the next order, containing
either commutators with two B ’s and one A , or two A ’s and one B .

To begin with, we introduce a variable x , and consider

exAexB = eC(x) . (D.2)

So, the x dependence at the l.h.s. of (D.2) is simple and explicit. However, C(x) will
be a complicated function of x . In fact, the series expansion of C(x) with respect to x
will at the same time be the expansion of C in powers of A and B . Therefore, it will be
useful to try to identify the function C(x) . This we do by differentiating Eq. (D.2) left
and right with respect to x . This gives us an equation from which C(x) can be solved,
yielding a power series. First, we need to prove some more identities.

Consider

H(y) = e−yF GeyF , (D.3)

where y is a variable and F and G are matrices not depending on y . H can be
written in the form of a power expansion:

H = H0 + yH1 +
y2

2!
H2 +

y3

3!
H3 + · · · . (D.4)

Here, the factors 2! , 3! , . . . have been included for later convenience. we shall compute
the matrices Hn . Differentiation of Eq. (D.3) to y yields:

dH(y)

dy
=

(
de−yF

dy

)
G eyF + e−yF G

deyF

dy
. (D.5)

Using
d

dy
eyF = F eyF = eyF F , (D.6)

we find

dH(y)

dy
= −Fe−yF GeyF + e−yF GeyF F = [H,F ] , (D.7)

and substituting this in the power series (D.4),

H1 + y H2 +
y2

2!
H3 + · · · = [H0, F ] + y[H1, F ] +

y2

2!
[H2, F ] + · · · . (D.8)

Since H0 = G , identifying the coefficients for equal powers of y gives us:

Hn = [Hn−1, F ] = [[[· · · [G,F ], F ], F ] · · ·F ] . (D.9)
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Substituting this in Eq. (D.4) gives for y = 1 :

e−F GeF = G+ [G,F ] + 1
2!
[[G,F ], F ] + 1

3!
[[[G,F ], F ], F ] + · · · . (D.10)

Let us introduce a shorthand notation:

Hn = {G,F n} , (D.11)

and, even shorter, we rewrite Eq. (D.10) as

e−F GeF = {G, eF} , (D.12)

with which we mean that eF must first be replaced by its power series expansion. Let
now F be some function of a variable x . Consider

e−yF (x) d

dx
eyF (x) . (D.13)

In a way similar to the above, one derives

e−F (x) d

dx
eF (x) = F ′ +

1

2!
[F ′, F ] +

1

3!
[[F ′, F ], F ] + · · ·

= {F ′,
eF − 1

F
} . (D.14)

In fact, Eq. (D.14) is what one gets if in Eq. (D.10), G is replaced by d
dx

, because in
that case,

[G,F ] =
d

dx
F − F

d

dx
(D.15)

Here, it was assumed that d/dx acts to the right on whatever else one has to the right
of the commutator [G,F ] .
According to the chain rule,

d

dx
F =

dF

dx
+ F

d

dx
= F ′ + F

d

dx
, (D.16)

so that
[G,F ] = F ′ . (D.17)

From Eq. (D.14), it follows that

d

dx
eF (x) = eF (x) {F ′,

eF − 1

F
} . (D.18)

We now return to Eq. (D.2). Differentiation with respect to x gives, in view of
Eq. (D.18):

exA AexB + exA BexB = eC(x) {C ′,
eC − 1

C
} , (D.19)

or

exA exB
(
e−xBAexB + e−xBBexB

)
= eC(x) {C ′,

eC − 1

C
} . (D.20)
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The factors outside the brackets are the same left and right, in view of Eq. (D.2). Because
BexB = exBB , the second term within the brackets is nothing but B . To the first term,
we can apply Eq. (D.12). Thus, we obtain:

{C ′,
eC − 1

C
} = {A, exB}+ B . (D.21)

From this equation, C can be solved as a power expansion. The strength of our
abstract notation shows if we temporarily call the r.h.s. of this equation H :

C ′ = {H,
C

eC − 1
} = {H, 1− C

2
+

C2

12
+ · · ·}

= H − 1

2
[H, C] +

1

12
[[H, C], C] + · · · , (D.22)

where we used the power expansion of C
eC−1

= 1

1+
1
2

C+
1
6

C2+···
= 1− 1

2
C + 1

12
C2 · · · .

Let us write

C = C0 + xC1 +
x2

2!
C2 +

x3

3!
C3 + · · · ,

C ′ = C1 + xC2 +
x2

2!
C3 + · · · ,

H = H0 + xH1 +
x2

2!
H2 = A + B + x[A,B] +

x2

2!
[[A,B], B] + · · · . (D.23)

We can then compare equal powers of x in Eqs. (D.22) and (D.23). First of all:

C0 = C(0) = 0 . (D.24)

The terms independent of x give

C1 = H0 = A + B , (D.25)

and the terms linear in x :

C2 = H1 − 1

2
[H0, C1] = [A,B] . (D.26)

Continuing this way, all other coefficients Cn can be found:

1

2
C3 =

1

2
H2 − 1

4
[H0, C2]− 1

2
[H1, C1] ,

C3 = [[A, B], B]− 1

2
[A + B, [A,B]]− [[A,B], A + B]

=
1

2
[A[A,B]] +

1

2
[[A,B], B] , (D.27)

(since [B, [A,B]] = −[[A,B], B] ).
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All further coefficients Ci obtained this way, can always be written in terms of multiple
commutators containing preceding Cj, j < i . Since these Cj only consist of multiple
commutators, so do Ci , by induction.

Substituting Eqs. (D.24), (D.25), (D.26), and (D.27) in the series expansion (D.23),
yields, for x = 1 :

eAeB = eC (D.28)

C = A + B +
1

2
[A,B] + 1

12
[A, [A,B]] + 1

12
[[A,B], B] + · · · . (D.29)

It is a nice challenge to further streamline the method described here for deriving the
series of commutators for C .

Appendix E

Complex inner product, unitary and hermitian matrices

Let an n -dimensional linear space be given with a basis e1, · · · , en , which is orthogonal
when regarding some well defined inner product. Every vector in this space can be
written as a linear combination of the e1, · · · , en . In general, the coefficients are complex
numbers.

Consider now two vectors α and β ,

α = α1e1 + α2e2 + · · ·+ αnen ,

β = β1e1 + β2e2 + · · ·+ βnen .

The coefficients αi and βi are just numbers. The inner product (α, β) is a complex
number given by

(α, β) = α∗1β1 + α∗2β2 + · · ·+ α∗nβn . (E.1)

Notice that we have
(β, α) = (α, β)∗ . (E.2)

One has the following axioms for the inner product:

(α, α) ≥ 0 , the equal sign only if α = 0 , (E.3)

(α, β + γ) = (α, β) + (α, γ) , (E.4)

(α, xβ) = x(α, β) , x = number , (E.5)

(xα, β) = x∗(α, β) . (E.6)

Here, β + γ is a vector with components βi + γi , and xβ is a vector with components
xβi .
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One can turn this argument around: if the above properties hold, then Eq. (E.1) implies
the orthogonality of the basis vectors:

(ei, ej) =
{ 1 if i = j

0 if i 6= j
. (E.7)

Let now be given a matrix A . this matrix defines a mapping of the space into itself:

α′ = Aα , (E.8)

which is symbolic for

α′i =
∑

k

aikαk . (E.9)

So, for every vector α , the matrix A defines an image α′ . Which are the conditions to be
imposed on A such that the inner product is invariant, in the sense that (α, β) = (α′, β′)
for any pair α, β ?
By expansion in components, one easily derives:

(α′, β′) =
∑

k

α′∗k β′k =
∑

klm

(aklαl)
∗akmβm

=
∑

k,l,m

α∗l a
∗
klakmβm .

If now Ã is the transpose of A then

(ã)lk = akl (E.10)

and if A† is the conjugate transpose of A :

(a†)lk = a∗kl and if B = A†A , (E.11)

then evidently

blm =
∑

k

a†lkakm

=
∑

k

a∗klakm

So:

(α′, β′) =
∑

`,m

α∗l blmβm (E.12)

with β = A†A . Let now β′′ be the vector obtained from β by applying B to it:

β′′ = Bβ (E.13)
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that is, according to Eq. (E.9)

β′′l =
∑
m

blmβm (E.14)

and Eq. (E.12) is simply the inner product (α, β′′) , so (α′, β′) = (α, β′′) . This must be
equal to (α, β) for all choices of α and β . This can only be the case if β′′ = β for all
β , and therefore, B must be the unit matrix.
we conclude that the inner product is invariant under the mapping with a matrix A
provided one has

A†A = 1 . (E.15)

or equivalently, A† = A−1 . A matrix obeying this condition is called unitary. In real
spaces, one has A† = Ã , and so A−1 = Ã . Such a matrix is orthogonal.

A brief symbolic display of the above derivation reads

(α′, β′) = (Aα, Aβ) = (α, A†Aβ) . (E.16)

Note that for inner products, we have

(Aα, β) = (α, A†β) , (E.17)

which holds for any matrix A .

An eigenvector of a matrix A is a vector with the property

Aα = λα , (E.18)

where λ is a real or complex number; i.e.

∑
aikαk = λαi . (E.19)

λ is the eigenvalue of A associated to the eigenvector α . Which are the conditions on
A that guarantee all λ to be real?
Consider the inner product (α, Aα) = λ(α, α) . Now, (α, α) is real and larger than zero
if α is not zero. Real λ apparently implies that (α, Aα) is real. That means

(α, Aα) = (α,Aα)∗ = (Aα, α) = (α,A†α) . (E.20)

This clearly holds if A† = A . A matrix obeying A† = A is called hermitian. Therefore:

A = hermitian, i.e., A† = A −→ only real eigenvalues. (E.21)

The converse is not necessarily true: there are many non-hermitian matrices with only
real eigenvalues.
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