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This talk is about a matrix describing the unitary evolution of a
black hole,

Apart from one assumption, agreed upon by almost everybody in
the field now, ths is not a new theory but a factual consequence of
GR. One can calculate this evolution matrix:
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Here, ` refers to the quantum numbers ` and m of a partial wave
expansion, κ refers to the momentum of in- and out- going waves
in the tortoise coordinates, and the signs ± tell us, roughly,
whether the wave moves in region I or II of the Penrose diagram –
they actually move in both – and I shall explain what this means.

The matrix you see here, is unitary.
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Consider a box with sides L+ × L− at the center of the black hole
Penrose diagram, Let both L+, L− � LPlanck

Particles going through there have either
|p+| � MPlanck or |p−| � MPlanck.

Product 2p+p− = p̃2 + m2 < M2
Planck.

p− is in-going particles, p+ is out-going particles.

Time dependence: p± = p±(0)e∓τ , Black hole: τ =
t

4M
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Classically: out-going particles are independent of in-going ones.

distant
time

local time
out

in

out

in

But not inside black holes. This used to be the BH information paradox.
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In a black hole, the out-going particles are determined by the
in-going ones (and vice versa). How does this work?

We assume a unitary relationship (S-matrix). Let one, given,
black hole be the result of a given pure quantum state of in-going
particles, and let that one evolve into some given pure out-state:

|BH0〉in → |BH0〉out .

Now, use a creation (or annihilation) operator, to create (or
remove) just one single particle going in:

|BH1〉in = |BH0〉in|δp−〉 .

|BH1〉in
def−−→ |BH1〉out .

We can calculate |BH1〉out. It is orthogonal to |BH0〉out.
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The extra particle going in interacts gravitationally with the
out-going particles:

u< u+
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out

in|BH0�
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The extra particle going in interacts gravitationally with the
out-going particles:

u< u+

out

in

out

in

bu<

bp<

|BH1�

δu−(x̃) = −4G δp−(x̃ ′) log |x̃ − x̃ ′| .
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δu−(x̃) = −4G δp−(x̃ ′) log |x̃ − x̃ ′| .

The logarithm is the Green
function for a flat (Rindler) sace-time. Obeys:

∂̃2 log |r̃ | = 2πδ2(r̃) .

In spherical black hole (R = 2GM) :

(1−∆Ω)f (Ω− Ω′) = 8πG R2δ2(Ω− Ω′) .

And now repeat: p−(x̃) ≡
∑

i δp−i δ
2(x̃ − x̃i ) ,

G. Dvali: on average, there will be no more than one particle per
square Planckian surface element.
In principle, the function p−(x̃) carries all information needed to
represent the in-state.

Which out-states do we get?
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u−(x̃) =

∫
d2x̃ ′f (x̃ − x̃ ′)p−(x̃ ′) , ∂̃2f (r̃) = −8πGδ2(r̃)

And: u−(x̃) carries all information needed to
represent the out-state ! How can that be? For the in-states,

p−(x̃) is an operator. [p−(x̃), p−(x̃ ′)] = 0, since they are spacelike
separated. Now, u−(x̃) is a position operator for the particles in
the out states, They also commute. Because wave functions are
proportional to e i(p−u++p+u−), we have the commutator algebra

[u−(x̃), p+(x̃ ′)] = [u+(x̃), p−(x̃ ′)] = iδ2(x̃ − x̃ ′) .

[u+(x̃), u−(x̃ ′)] = if (x̃ − x̃ ′) = −[u−(x̃ ′), u+(x̃)] = [u−(x̃), u+(x̃ ′)]

∂̃2u−(x̃) = −8πGp−(x̃) ; ∂̃2u+(x̃) = +8πGp+(x̃) ;

This algebra is extremely simple, but also tricky. How to interpret the sign

switch in↔ out ? (it is correct)
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All states, both in the initial and the final black hole, are a
representation of this algebra.

The relation between in- and out- is now not much more than a
Fourier transformation: u± ↔ p∓, with p = −i ∂∂u

Is that all ? NO !

There is a complication.

Let’s calculate the representation:

Do the partial wave expansion
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Partial waves on the spherical black hole:(u
p

)
(θ, ϕ) =

∑
`,m

(u`,m
p`,m

)
Y`,m(θ, ϕ)

(1−∆)f (Ω) = 8πGR2δ2(Ω) → (`2 + `+ 1)f`,m = 8πGR2 .

u±`,m = ∓ 8πGR2

`2 + `+ 1
p±`,m

In Rindler space (the limit R →∞ ; `2 → R2k̃2):(u
p

)
(x̃) = 1√

(2π)2

∫
d2k̃ e−k̃·x̃

(u(k̃)

p(k̃)

)

u±(k̃) = ∓8πG

k̃2
p±(k̃)
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different `,m or different k̃, do not mix !
Therefore, consider just one partial wave. Now, remember time
dependence:

p±(τ) = p±(0)e∓τ ; u±(τ) = u±(0)e∓τ .

This time is a Killing vector. Therefore, we should see plane
waves. In “position” space, take tortoise coordinates:

u+
in, `m(τ) = ±e %in(τ) , u−out, `m(τ) = ±e %out(τ) .

Clearly, we have not only the tortoise coordinates %in and %out,
but also their signs, call them σin = (±) and σout = [±].
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u+
in, `m(τ) = σine %in(τ) , u−out, `m(τ) = σoute

%out(τ) .

We get:

u−out, `m(τ) = λp−in, `m(τ) ; u+
in, `m(τ) = −λp+

out, `,m ;

λ =
8πGR2

`2 + `+ 1

If ψ(u±) are the Fourier transforms of ψ̂(p∓), how do the wave
functions in the corresponding tortoise coordinates % and σ relate?
That’s easy. We find, after correctly normalizing them,
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ψ(u) = ψ(|u|, σu) = e−
1
2
%uφ(%u, σu) , ψ̂(p) = e−

1
2
%p φ̂(%p, σp) ;

ψ(u) = 1√
2π
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Then putting the factor λ = 8πGR2

`2+`+1
in, we find the relation

between the wave functions on %out
u and %in

u :
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Note invariance under time translations:
%→ %u − τ ; %p → %p + τ .

We should use this, by writing these wave functions in plane waves
for the tortoise coordinates (σ = ±1):

ψin(%, σ) = ψin
σ e−iκ(%+τ) ; ψout(%, σ) = ψout

σ e iκ(%−τ)

By Fourier transforming previous equation,(ψout
+

ψout
−

)
= 1√

2π
Γ( 1

2 − iκ)e
−πi

4 −iκ log 8πGR2
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2
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2
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)
Unitarity follows from:

|Γ( 1
2 − iκ)|2 =

π

coshπκ

15 / 23



Homework: Euler Gamma function:

If σ = ±1 then

∞∫
0

dz√
z

e−σzz−iκ = Γ( 1
2 − iκ)e

−iσπ
4 −σ π

2 κ .
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To be read as follows:
Hilbert space is a product space for all `, m; at each `, m, we
have a wave function ψσ(κ), or ψσ(%, τ), or ψ(u, τ) or ψ(p, τ).

Thus, on (`, m), we have a 2nd quantized ‘field theory’, but for
every partial wave, we have a single particle at position u
(or tortoise coordinate % ).

But note that we have the two signs, σ = ±1. This means that our
particles fill region I as well as region II in the Penrose diagram.

The universe has two asymptotic regions.

I and II talk to each other !

What does this mean?
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bu

bu

bu
II I

u+u<

in

out

out

Note, that we have to keep time ordering w.r.t. distant time
variable τ = t/4M.
In-going particle in region I acts as annihilated in-going particle in
region II .
Hawking particle, due to vacuum fluctuation, will behave as
physical particle in I and in II .
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Suggestion: region II describes the points on the horizon that are
antipodal to the points in region I .

This may well be wrong, but, apart from moving these points
around a bit, I see no other solution to the unitarity problem.

Remarkable phenomenological consequence of this suggestion:

Hawking particles emerging from two antipodal points on the
horizon would be 100% entangled!

(If a rare event happens at one point, suppressed by Boltzmann
factor e−βHE , then the same event will be seen at the antipodal
point. The combined events would point at a temperature twice
that of Hawking.)

19 / 23



Discussion.
We think that the apparent entanglement of regions I and II of the Penrose diagram
is an important discovery. Before, we had been content with abstract functional
integral expresions, which did not disclose so clearly the fact that one cannot ignore
region II . Lesson learned: Whenever more explicit calculations are possible, we should
do them; they yield much more understanding of what goes on.
Work from other authors using ‘supertranslations’ did not lead to answers as explicit
as ours.

But our work is far from finished:
(1) We now have the microstates, and we can calculate the Hawking entropy, but a
cut-off is needed limiting ` to a maximum value (` < O(R) or |k̃| < O(1) in Planck
units). How can we understand this cut-off? L. Mersini-Houghton (8) suggests that
we ignored “quantum corrections” but we disagree, as the operators p−(x̃) at
different x̃ all commute. At small values of `, our expressions should be very precise,
but at ` close to the Planck length, we do expect deviations due to shifts arising from
the transverse momenta.
(2) The representation of our algebra is different from Fock space, and therefore
difficult to match with the Standard Model states. Trying to do this properly will be
extremely important. It could lead to constraints on the SM coming from quantum
gravity.
(3) Other forces between in- and out- particles can be considered: electro-magnetism
and non-Abelian forces. At the functional integral level, this was done in Ref. (4). We
could try to do this more explicitly now.
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Conclusion:

Antipodal identification of points on the horizon (only on the
horizon, not in the bulk!) leads to 100% entanglement of the
Hawking particles at antipodal ponts, in principle an observable
property.

We can calculate the BH microstates – except for the cut-off at
` ≈ MPlanck RBH . Taking discrete points (θ, ϕ) on the horizon,
black holes have hair: one hair at every θ, ϕ, with end points on
the tortoise coordinates: uout describes exponentially growing hair,
uin describes exponentially shrinking hair.
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On the scalp, there is a fermionic degree of freedom, the sign
function σin or σout. If one throws nothing in the black hole, the
fermionifc field σout is conserved in time (σin would only be
conserved as long as we don’t see anything coming out).

There is no black hole interior; region II of the Penrose diagram –
with causality reflected in time – describes the antipodal part.
When black hole forms, the interior region seems to be physical
but of course it is is invisible. Only when the black hole decays,
one realises that the interior was never there.

Particles crossing the black hole interchange
position with momentum and back.

The essential observation that the spherical partial waves of matter
all return their quantum information independently, allows for new
assessments of space-time properties that was not possible before.

All this could have been discovered decades ago.
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