
String Theory Exercises∗

March 19, 2004

Exercise 1

Let us consider the action describing a point particle of mass m moving freely in a
d+1 dimensional Minkowski space–time. It will be expressed as the invariant length
of the world–line

S =

∫ τ1

τ0

dτ L = −m
∫ τ1

τ0

ds = −m
∫ τ1

τ0

dτ
√
−ẋµẋµ. (1.1)

where xµ(τ) is the space–time position of the particle at the proper time τ and
ẋµ = dxµ/dτ . The space–time metric is ηµν = diag(−1,+1, . . . ,+1).

• Show that S is invariant with respect to reparametrization of the world line:
τ → τ ′ = τ ′(τ).

• Compute the momentum of the particle pµ = ηµν δL/δẋν and show that it
describes a particle of mass m.

• Find the equation of motion for xµ(τ) by minimizing the action with respect
to a variation xµ → xµ + δxµ and find the most general solution. In particular
show that, if we give a physical interpretation to τ as being the time, namely if
we set x0(τ) ∝ τ , the solution has vµ = ẋµ = const. Show that on the solutions
the action can be written in the form:

S = −m |x1 − x0|. (1.2)

|x1 − x0| =
√
−(xµ1 − xµ0)(x1µ − x0µ)

xµ0 = xµ(τ0) ; xµ1 = xµ(τ1)

xµ1 − xµ0 = vµ (τ1 − τ0). (1.3)

∗References to equations in the lecture notes refer to the 10/02/04 version of the notes.
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and that the momentum can be written as:

pµ = m
(xµ1 − xµ0)

|x1 − x0|
. (1.4)

(for later convenience we allow p0 to have also negative values and we interpret
the energy of the particle to be E = |p0|. According to this notation, in a
scattering process, the incoming particles will have p0 = E > 0 while the
outgoing will have p0 = −E < 0. )

• Now consider a different action on the same world line of the particle, but this
time function of two independent quantities, namely e(τ) and xµ(τ):

S ′ =
1

2

∫
dτ (e−1 ẋµẋµ − em2) (1.5)

Show that S ′ is invariant with respect to the reparametrization transformation
in τ which, in its infinitesimal form is:

δxµ = ε(τ) ẋµ

δe =
d

dτ
(ε(τ) e)

ε(τ0) = ε(τ1) = 0. (1.6)

[Hint: To show invariance of the action under the above infinitesimal transfor-
mations it suffices to show that the corresponding variation of the action is a
total derivative of the form written below:

L(e+ δe, ẋµ + δẋµ) = L(e, ẋµ) +
d

dτ
(εL) . (1.7)

for these transformations the above result follows without the use of the equa-
tions of motion. Since by hypothesis ε vanishes at the extrema of integration
the total derivative in eq. (1.7) does not contribute.]

Compute the field equations from S ′ corresponding to the fields e(τ) and xµ(τ)
and show that S ′ is classically equivalent to S.

• Consider a scattering process of N particles described by the world lines of
the particles which start at different points xµi (i = 1, . . . , N) and intersect
in the same scattering point yµ. Let the process be described by the total
action S =

∑N
i=1 Si, Si being the world line actions of the single particles, by

minimizing S with respect to the position yµ of the scattering point deduce the
momentum conservation condition for the process:

∑N
i=1 p

µ
i = 0 (recall that in

our notation the incoming particles have p0 > 0 and the outgoing have p0 < 0).
[Hint: Use eq. (1.2) to express the single actions as Si = −mi |y − xi|. Then
from the condition δS/δyµ = 0 and the expression (1.4) for the momenta deduce∑N

i=1 p
µ
i = 0.]
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Exercise 2

A generic surface S spanned by affine parameters τ, σ and embedded in a higher
dimensional space (ambient space) with coordinates Xµ, can be described by the
parametric equations Xµ = Xµ(τ, σ). An infinitesimal element of its surface dS
can be represented by a tensor dSµν(τ, σ) = (dXµ ∧ dXν)|S = Σµν(τ, σ)dτdσ which
defines the projection of dS on the plane (Xµ, Xν), the tensor Σµν(τ, σ) defines the
plane tangent to the surface S at the point (τ, σ) and is defined as follows:

Σµν = ∂τX
µ∂σX

ν − ∂τX
ν∂σX

µ .

The area of the surface A(S) is then defined by the integral:

A(S) =

∫
S

√
1

2
dSµνdSµν =

∫
S
dτdσ

√
1

2
ΣµνΣµν (2.1)

Compute the Σ tensor and the area of the surface given by:

X0 = Aτ

X1 = −Bτ
X2 = σ

where A and B are constants, τ ∈ (0, 1) and σ ∈ (0, 1). You may consider the metric
of the ambient space to be Euclidean. Compare the result of the integral with what
you would expect.

Exercise 3

Consider the Nambu–Goto action described by equation (2.9) of the lecture notes.
Show that the expression in the square root can be written as the determinant of a
2× 2 matrix (induced metric) hαβ defined as

hαβ = ∂αX
µ ∂βXµ (3.1)

In the Nambu–Goto action the only independent function is Xµ(σ, τ). It is possible
to reformulate the theory in a classically equivalent way using the Polyakov action
which describes hαβ(σ, τ) and Xµ(σ, τ) as independent fields and has the advantage
of not having the square root in the integral (see next exercise)
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Exercise 4

Consider the Polyakov action of a string moving on a D–dimensional Minkowski
background (with metric ηµν = diag(−1,+1, . . . ,+1)):

S = −T
2

∫
Σ

dσ2
√
h(σ)hαβ(σ) ∂αX

µ ∂βXµ (4.1)

σα = {σ, τ} ; Xµ = Xµ(σα) ; σ ∈ [0, π] ; τ ∈ (−∞, ∞)

Σ = world sheet ; hαβ(σ
γ) = metric on Σ

h(σγ) = −det(hαβ) ; α = 1, 2 ; µ = 0, . . . ,D− 1

where we have used the following short hand notation for partial derivatives: ∂γ =
∂
∂σγ . Moreover whenever repeated upper and lower indices occur summation is un-
derstood: vαwα =

∑
α v

αwα.

• Show that the local, i.e. σα–dependent, symmetry transformations are:

reparametrization: σα → σα′ = σα′(σ) (4.2)

Weyl transformations: hαβ → Ω2(σα)hαβ (4.3)

• Compute the energy momentum tensor Tαβ defined by:

hαβ → hαβ + δhαβ ⇒ S → S + δS

δS = −T
2

∫
Σ

dσ2
√
h(σ) δhαβ T

αβ (4.4)

which condition on Tαβ does invariance under Weyl transformations imply?

• Show that the global, i.e. σα–independent, transformations on the Xµ fields
which leave S invariant are the Poincaré transformations:

Xµ → X ′µ = Λµ
ν X

ν + aµ

ηµν Λν
ρ Λµ

γ = ηργ (4.5)

where both the Lorentz transformation Λ and the translation parameter aµ do
not depend on σα.

• Write the equations of motion for the fields hαβ(σ) and Xµ(σ) and show that
S is classically equivalent to the Nambu–Goto action S ′:

S ′ = −T
∫

Σ

dσ2
√
−det (∂αXµ ∂βXµ) (4.6)
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Exercise 5

By fixing reparametrization invariance let us reduce the world sheet metric to the
form:

hαβ(σ) = λ(σ) ηαβ = λ(σ)

(
−1 0
0 1

)
(5.1)

• write the action S with this metric

• consider an infinitesimal coordinate transformation on the world sheet:

σα → σα′ = σα + εα(σ) (5.2)

which implies that we transform Xµ as follows:

Xµ → Xµ + δXµ = Xµ + εγ ∂γX
µ

As it can be deduced from eq. (3.1), the metric hαβ will transform as follows:

δhαβ = (∂αε
γ)hγβ + (∂βε

γ)hγα + εγ∂γhαβ (5.3)

After fixing the metric to the form (5.1) there is still a residual invariance of the
action under conformal transformations. A conformal transformation is defined
as a coordinate transformation whose only effect is to rescale the metric, namely
such that the corresponding infinitesimal variation of the metric has the general
form:

δhαβ = C(σ)hαβ + εγ∂γhαβ (5.4)

where C(σ) is an infinitesimal function of σα which depends on the infinitesimal
coordinate shift ε. Using equ. (5.3) show that the conformal transformations
are generated by an infinitesimal parameter ε fulfilling the following condition:

(∂αε
γ)hγβ + (∂βε

γ)hγα = (∂γ ε
γ) hαβ (5.5)

recall the convention on repeated indices and partial derivation: (∂γ ε
γ =∑

γ
∂
∂σγ ε

γ) and find the expression of C(σ) in equ. (5.4) in terms of ε.

• using the light–cone coordinates:

σ± =
1√
2
(τ ± σ) (5.6)

show that conformal transformations are characterized by ε+ = ε+(σ+) and
ε− = ε−(σ−).

• Write Tαβ and the conditions on it due to energy–momentum conservation and
Weyl invariance, in light–cone coordinates.
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Exercise 6

Consider the global symmetries of S, i.e. the Poincaré transformations in their in-
finitesimal form:

Xµ → Xµ + δXµ (6.1)

δXµ = aµ (translations) (6.2)

δXρ = ωµν (Mµν)ρσX
σ (Lorentz) (6.3)

(Mµν)ρσ = ηνρ δµσ − ηµρ δνσ
ηµν = diag(−1,+1, . . . ,+1) (6.4)

where aµ and ωµν are σα–independent.

• Compute the corresponding conserved Noether currents Jµα and Jµνα by comput-
ing the variation of the Polyakov action S with respect to the transformations
(6.2) and (6.3) and expressing it (using the field equations) in the form:

δS =

∫
dσdτ ∂α (Jµα aµ + Jµνα ωµν) (6.5)

recall that we are using here and in all the following exercises hαβ = ηαβ

• Write the equations of motion for Xµ and solve them with the following bound-
ary conditions:

Neumann: ∂σX
µ(τ, σ = 0) = ∂σX

µ(τ, σ = π) = 0

Closed string: Xµ(τ, σ) ≡ Xµ(τ, σ + π) ∀σ

showing that the most general solution will have the form:

Xµ(σ) = Xµ
L(σ+) +Xµ

R(σ−) (6.6)

(express solution through Fourier mode expansion and impose the boundary
conditions as constraints on the coefficients)

• Show that for the above solutions the CM momentum:

P µ =

∫ π

0

dσ Jµτ (6.7)

is conserved.

• Write the expression of P µ for the above solutions.
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Exercise 7

Consider an open string satisfying the usual Neumann boundary conditions along the
directions X0, . . . XD−2, but a different one on XD−1. For the following two cases,
compute the mode expansion of XD−1 as in the previous exercise.

• Dirichlet boundary conditions at both endpoints (DD):

∂τX
D−1(τ, σ = 0) = 0 , ∂τX

D−1(τ, σ = π) = 0 . (7.1)

This has the interpretation of an open string with both ends on a D-brane,
where “D” stands for Dirichlet. Is the momentum PD−1 along this direction
conserved?

• Dirichlet boundary condition at one endpoint and Neumann at the other end-
point (ND):

∂τX
D−1(τ, σ = 0) = 0 , ∂σX

D−1(τ, σ = π) = 0 . (7.2)

This is an open string with one end on a D-brane and one free.

[Hint: Will the frequencies of the Fourier modes still be integer? ]

Exercise 8

Show that the following functions:

X0 = Aτ

X1 = A cos (τ) cos (σ)

X2 = A sin (τ) cos (σ)

X i>2 = 0

(8.1)

define a solution of the string field equations with the Neumann boundary conditions
(i.e. describe a free open string). In particular show that it can be written in the
form (6.6).

• Compute the energy E = P 0 and the angular momentum J for this solution.

• Show that the non linear constraints Tαβ = 0 are fulfilled as well, namely that:

(∂τX)2 + (∂σX)2 = 0 , ∂τX
µ ∂σXµ = 0 (8.2)

• Show that:

E2

|J |
= const. =

1

α′
(8.3)

and show that T = 1/(2πα′)

• Show that this solution describes an open string with the end points rotating
at the speed of light.
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Exercise 9

Consider the following parametric equations:

X0 = Aτ

X1 = A cos(τ) cos(σ)

X2 = A cos(τ) sin(σ)

(9.1)

Show that they describe a string solution, i.e. that one can write it in the form
(6.6) and that the non linear constraints in eq. (8.2) are fulfilled. Which boundary
conditions does the solution fulfill in the various space directions?

• Plot the solution on the X1, X2 plane in time for τ varying from 0 to 2π with
steps of π/4.

• Compute the conserved current Jµα associated with global translational invari-
ance in space–time (see problem 6). Show that the component P µ=2 of the
momentum defined by eq. (6.7) is not conserved.

• Compute the variation of the momentum between τ = 0 and τ = τ0 and prove
the following relation:

P µ=2
|τ=τ0 − P µ=2

|τ=0 =

∫ τ0

0

dτ
(
Jµ=2
σ (τ, π)− Jµ=2

σ (τ, 0)
)

(9.2)

the above equation derives from the momentum conservation condition ∂αJµα =
0 and the right hand side can be interpreted as the momentum flow in the
direction µ = 2 across the end–points of the string.

Exercise 10

Consider the following parametric equations:

X0 = 2Aτ

X1 = A cos 2τ cos 2σ

X2 = A sin 2τ cos 2σ

(10.1)

Show that they describe a closed string solution and that one can write it in the form
(6.6) and that it fulfills (8.2). Plot the solution on the X1, X2 plane in time for τ
varying from 0 to π with steps of π/8.

Now consider the following parametric equations:

X0 = Aτ

X1 = A cos(2τ) sin(2σ)

X2 = A sin(4τ) sin(4σ)

(10.2)

Show that although they can be written in the form (6.6) they do not fulfill the
constraint (8.2).

8



Exercise 11

Write the components T++ and T−− of the energy momentum tensor in terms of
the parameters xµ, pµ, αµn and α̃µn defining the open and closed string solutions. In
particular in the two cases find the corresponding expressions of the coefficients Ln
and L̃n defined as follows:

open string: T++ =
`2

2

∞∑
n=−∞

Ln e
−inσ+

closed string: T++ = 2`2
∞∑

n=−∞

L̃n e
−2inσ+

T−− = 2`2
∞∑

n=−∞

Ln e
−2inσ− (11.1)

The constraints Tαβ = 0 can be restated as Ln = L̃n = 0 for all n. From the conditions
L0 = L̃0 = 0 derive an expression for the mass squared M2 = −pµpµ in terms of the
coefficients αµn and α̃µn in both the open and closed string cases.

Exercise 12

Compute in terms of the parameters xµ, pµ, αµn and α̃µn defining the open and closed
string solutions the Hamiltonian associated with the Polyakov action:

H(τ) =

∫
dσ

(
Ẋµ dPµ

dσ

)
− L(τ) (12.1)

where dPµ

dσ
and L(τ) are defined in eqs. (3.43) and (4.1) of the lecture notes. What is

the relation between H and L0, L̃0 in the open and closed string cases?

Exercise 13

Let us restrict ourselves to the quantized open string case in the light-cone gauge.
Derive the commutation relations between xi, pi and αin from equations (4.5) and (4.3)
of the lecture notes. Let us define the vacuum state |pµ, 0〉 such that αin|pµ, 0〉 = 0 for
n > 0 and αi0|pµ, 0〉 = pi|pµ, 0〉. A generic open string state is obtained by applying
the creation operators αin (n < 0) a finite number of times to |pµ, 0〉. Consider the
operator N defined as follows:

N =
∞∑
n=1

D−2∑
i=1

αi−nα
i
n (13.1)
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Show that on the following state:

|pµ, Ni,n〉 =

Ni,n︷ ︸︸ ︷
αi−n . . . α

i
−n |pµ, 0〉 (13.2)

the operator N has the following value:

N |pµ, Ni,n〉 = nNi,n|pµ, Ni,n〉 (13.3)

Exercise 14

A solution of the string equations of motion can be written in the form (6.6). For
the open string we have the further constraint that Xµ

L(τ) = Xµ
R(τ) and that Xµ

L(σ+)
and Xµ

R(σ−) are respectively periodic in σ+ and σ− of period 2π a part for a constant
shift while for the closed string Xµ

L and Xµ
R need only be periodic in σ ∈ (0, π) at

fixed τ . The theory is also invariant under conformal transformations which can be
written in the following infinitesimal form:

σ+ → σ+ + ε+(σ+)

σ− → σ− + ε−(σ−) (14.1)

where ε+(σ+) and ε−(σ−) are periodic in σ+ and σ− of period 2π. For the open string
we further require that ε+ = ε−. In this exercise we will compute the infinitesimal
generators of conformal transformations and their algebraic properties. Being peri-
odic of period 2π in their argument, the infinitesimal functions can be expanded in
Fourier series:

ε±(σ±) = i
+∞∑

n=−∞

ε±n e
inσ± (14.2)

where the reality condition implies that ε±−n = −(ε±n )?.

A generic scalar function Y (σ±) will transform under (14.1) as follows:

Y (σ±) → Y (σ± + ε±) ∼ Y (σ±) + δY (σ±)

δY (σ±) = ε±∂±Y (σ±) = i
+∞∑

n=−∞

ε±n e
inσ±∂±Y (σ±) (14.3)

where we have used eq. (14.2) to derive the last expression. Let us define the following
differential operators L(±)

n on functions of σ± respectively:

L(+)
n

(
Y (σ+)

)
= ieinσ

+

∂+Y (σ+)

L(−)
n

(
Y (σ−)

)
= ieinσ

−
∂−Y (σ−)

L(+)
n

(
Y (σ−)

)
= 0

L(−)
n

(
Y (σ+)

)
= 0 (14.4)
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the product of two of these operators is defined by their consecutive action on a same
function Y : Ln Lm (Y ) ≡ Ln (Lm (Y )). The operators L

(±)
n are the generators of the

infinitesimal conformal transformations (14.3), indeed we can write:

δY (σ±) =
+∞∑

n=−∞

ε±n L(±)
n (Y ) (14.5)

• Show that taking Y (σ±) = σ± and considering the definitions (14.4) the in-
finitesimal conformal transformation (14.1) follows from (14.5).

• Show that on a generic function Y (σ±) the following relations hold:(
L(+)
n L(+)

m − L(+)
m L(+)

n

) (
Y (σ+)

)
= (n−m)L

(+)
n+m

(
Y (σ+)

)(
L(−)
n L(−)

m − L(−)
m L(−)

n

) (
Y (σ−)

)
= (n−m)L

(−)
n+m

(
Y (σ−)

)(
L(+)
n L(−)

m − L(−)
m L(+)

n

) (
Y (σ±)

)
= 0 (14.6)

• Consider the following two constant infinitesimal transformations:

δτ = c ; δσ = 0 time shift

δτ = 0 ; δσ = c world sheet rotation (14.7)

Show that they are generated respectively by the following differential opera-
tors:

Ot = −i c (L
(+)
0 + L

(−)
0 )

Os = −i c (L
(+)
0 − L

(−)
0 ) (14.8)

namely that for the time shift δτ = Ot(τ) = c and δσ = Os(σ) = 0 while for
the world sheet rotation δτ = Os(τ) = 0 and δσ = Os(σ) = c

Exercise 15

Let us define the following operators on the closed string states:

Ln =
1

2

+∞∑
m=−∞

D−2∑
i=1

: αimα
i
n−m :

L̃n =
1

2

+∞∑
m=−∞

D−2∑
i=1

: α̃imα̃
i
n−m : (15.1)

where as usual αn and α̃n denote the right and left moving mode operators. Show
that they fulfill the following commutation relations:

[Ln, Lm] = (n−m)Ln+m +
D − 2

12
n(n2 − 1)δn+m[

L̃n, L̃m
]

= (n−m)L̃n+m +
D − 2

12
n(n2 − 1)δn+m[

Ln, L̃m
]

= 0 (15.2)
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these relations, apart from the term D−2
12

n(n2 − 1)δn+m on the left hand sides, are
analogous to the relations (14.6) characterizing the generators of conformal transfor-
mations (Virasoro algebra).

Consider now the quantum version of the solution to the constraints in the light-come
gauge, namely:

open string:

α−n =
1

p+`
(Ln − a δn) ; α+

n = 0 (n 6= 0)

closed string:

α−n =
2

p+`
(Ln − a δn) ; α+

n = 0 (n 6= 0)

α̃−n =
2

p+`

(
L̃n − a δn

)
; α̃+

n = 0 (n 6= 0) (15.3)

Recalling that in the open string case αµ0 = `pµ while in the closed string case αµ0 =
α̃µ0 = `pµ/2, express in both cases M2 = −pµpµ as function of αin , α̃

i
n and a and in

terms of the operator N defined for the open string case in equation (13.1) and for
the closed string case by:

N =
∞∑
n=1

D−2∑
i=1

(
αi−nα

i
n + α̃i−nα̃

i
n

)
(15.4)

What is the lowest value of M2 in both cases? Show that in the case a = 1 these
states are tachyons.

Derive in the open string case all the commutation relations between xµ, pµ and αµn
represented in the table in section 4.3 of the lecture notes.

Consider now the following quantum version of the expressions found in exercise 11 for
the coefficients Ln and L̃n of the Fourier expansion of T±± in terms of the coefficients
αn and α̃n:

Ln =
1

2

+∞∑
m=−∞

: αµmαn−mµ :

L̃n =
1

2

+∞∑
m=−∞

: α̃µmα̃n−mµ : (15.5)

Using equations (15.3) show that in the light-cone gauge Ln = L̃n = a δn.

Consider the open string case in which Ln = L̃n. Show that the following relations
hold: [

α−n , α
−
m

]
= (n−m)

α−n+m

p+`
+

1

(p+`)2

(
D − 2

12
n(n2 − 1) + 2na

)
δn+m

(15.6)
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Exercise 16

Find values of the mass squared M2 for the following states using the value a = 1:

open string:

|ψ1〉 = αi−1|0〉
|ψ2〉 = αi−1α

i
−1α

j
−2|0〉

closed string:

|χ1〉 = αi−1α̃
j
−1|0〉

|χ2〉 = αi−1α
i
−1α̃

j
−2|0〉 (16.1)

Exercise 17

Consider the transverse components of the open string operator X tr(τ, σ) = X i(τ, σ),
(i = 1, . . . , D−2). We wish to compute the propagator associated with the transverse
modes of an open string. Let us extend for convenience the definition of normal
ordering to the operators pi, xi in the following way:

: αinα
j
−n : = : αj−nα

i
n : = αj−nα

i
n ; (n > 0)

: pixj : = : xjpi : = xjpi (17.1)

Show that:

X i(τ, σ)Xj(τ ′, σ′) = : X i(τ, σ)Xj(τ ′, σ′) : + δij G(τ, τ ′, σ, σ′)

G(τ, τ ′, σ, σ′) = −1

4
log
[
(eiσ

′+ − eiσ
+

)(eiσ
′− − eiσ

−
)
]

+

R(τ → τ ′, σ → σ′) (17.2)

where “R (τ → τ ′, σ → σ′)” denotes terms which are not divergent in the limit
τ → τ ′, σ → σ′. Find the expressions of G and therefore of R (τ → τ ′, σ → σ′).

[Hint: Write the open string solution X i(τ, σ) in the form (taking the scale ` = 1):

X i(τ, σ) = xi(τ) + Ai(τ, σ) + Ai†(τ, σ)

xi(τ) = xi + piτ

Ai(τ, σ) = i
∞∑
n=1

αin
n
e−inτ cos(nσ)

Ai†(τ, σ) = −i
∞∑
n=1

αi−n
n

einτ cos(nσ) (17.3)

show that the only non normal ordered terms in the product X i(τ, σ)Xj(τ ′, σ′) are
pixjτ and Ai(τ, σ)Ai†(τ ′, σ′). These terms will be rewritten in terms of their normal
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products and of the following commutators: [pi, xj] τ and
[
Ai(τ, σ), Aj†(τ ′, σ′)

]
. Using

the formula:

∞∑
n=1

xn

n
= − log (1− x) (17.4)

from the expression of these commutators deduce G(τ, τ ′, σ, σ′).]

Show that for τ 6= τ ′ and σ 6= σ′, G(τ, τ ′, σ, σ′) fulfills the equation of motion:(
∂2
τ − ∂2

σ

)
G(τ, τ ′, σ, σ′) = 0 (17.5)

where the partial derivation is ment only with respect to τ, σ and not with respect
to τ ′, σ′. From equations (17.2) show that the function G is the propagator of each
transverse mode from the point (τ ′, σ′) to the point (τ, σ), namely show that for
τ > τ ′:

〈0|X i(τ, σ)Xj(τ ′, σ′)|0〉 = δij G(τ, σ, τ ′, σ′) (τ > τ ′) (17.6)

In the following we shall always consider τ > τ ′.

We wish to show that G(τ, τ ′, σ, σ′) in the whole τ, σ plane fulfills the following
equation: (

∂2
τ − ∂2

σ

)
G(τ, τ ′, σ, σ′) = iπ δ(τ − τ ′)δ(σ − σ′) (17.7)

Only the terms in G which diverge for τ → τ ′ and σ → σ′ (see equation (17.2))
contribute to the delta functions on the right hand side while the regular terms in
R (τ → τ ′, σ → σ′) are fixed by other boundary conditions which we shall not consider
here. Let us introduce the Green function G̃(τ − τ ′, σ − σ′) of the open string field
equation: (

∂2
τ − ∂2

σ

)
G̃(τ − τ ′, σ − σ′) = δ(τ − τ ′)δ(σ − σ′) (17.8)

It is useful to express a solution of the above equation in terms of Fourier transforms
with respect to the variables τ − τ ′ ∈ (−∞, ∞) and σ − σ′ ∈ (−π, π). Let us define
the following new variables: ξ0 = (τ − τ ′)∆, ξ1 = (σ − σ′)∆ where ∆ is a scale
which we shall send to infinity in order to work with coordinates ξα which run from
−∞ to +∞ (indeed ξ1 will take values in the interval (−π∆, π∆) which becomes
(−∞, ∞) in the limit ∆ →∞). The momenta associated with ξα are denoted by kα.
In particular k1 is quantized as n/∆ (n integer) and in the limit ∆ →∞ becomes a
continuous variable. Therefore the following approximation holds:

∞∑
n=0

f(σ − σ′) ein(σ−σ′) ∼ ∆

∫ ∞
0

dk1 f(ξ1/∆) eik
1ξ1 (17.9)
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Show that the following function:

G̃(τ − τ ′, σ − σ′) = −
∫ ∞
−∞

dk1

2π

∫ ∞
−∞

dk0

2π

e−ik
0ξ0+ik1ξ1

(k0)2 − (k1)2 + iε

ξα = ∆(σα − σ′α) (17.10)

fulfills equ. (17.8) by using the following useful relations:∫ ∞
−∞

dxeixy = 2π δ(y)

δ(ay) =
1

a
δ(y) (17.11)

(ε is an infinitesimal parameter used for regularizing the integral).

Let us show that the singular parts of G and of G̃ as given by equ. (17.10) are
proportional. In this way we would show that G is proportional to the Green function
of the open string equation of motion.

We start by computing G̃ from equ. (17.10) as a function of the world sheet coordi-
nates. Show that:∫ ∞

−∞

dk0

2π

e−ik
0ξ0+ik1ξ1

(k0)2 − (k1)2 + iε
= − i

2(|k1| − iε)
e−i|k

1|ξ0+ik1ξ1 (17.12)

[Hint: Compute the integral in the complex k0 plane and write the denominator as
the product of two simple poles:

(k0)2 − (k1)2 + iε =
[
k0 − (|k1| − iε)

] [
k0 − (−|k1|+ iε)

]
(17.13)

since ξ0 > 0 we should close the contour of integration in the lower plane so to include
the pole |k1| − iε and then compute the integral as the residue in that pole using the
formula: ∮

Cz0

dz
f(z)

z − z0

= −2πif(z0) (17.14)

where f(z) is a regular function in z0 and Cz0 is a contour around z0 oriented clock-
wise.]

We are left with the integral over k1 which is divergent in k1 = 0 in the limit ε→ 0.
It is useful to express this integral in terms of its principal part by using the relation:

1

z ± iε
= PP

(
1

z

)
∓ iδ(z) (17.15)

Show that the second term on the right hand side contributes to G̃ with a constant
term. Since we are interested only in the singular part of G̃ we shall ignore this term

15



and simply substitute the integral in k1 with its principal part which can be expressed
as follows:

PP

∫ ∞
−∞

dk1 f(k1) = lim
∆→∞

(∫ ∞
1/∆

dk1 f(k1) +

∫ −1/∆

−∞
dk1 f(k1)

)

Show that:

G̃(τ − τ ′, σ − σ′) = PP

∫ ∞
−∞

dk1

2π

i

2|k1|
e−i|k

1|ξ0+ik1ξ1

=
i

4π

(
∞∑
n=1

1

n
e−in(σ−−σ′−) +

∞∑
n=1

1

n
e−in(σ+−σ′+)

)
(17.16)

[Hint: Use the property that k1 = n/∆ and therefore one has∫ ∞
1/∆

dk1 ∼ (1/∆)
∞∑
n=1

for large ∆.]

From (17.16) show that the functions G̃ and G are proportional a part from terms
which are not divergent in the limit τ → τ ′ and σ → σ′ and from this deduce that
equation (17.7) holds.

Exercise 18

Show that:

: eik
i
1X

i(τ,0) :: eik
i
2X

i(0,0) : = : eik
i
1X

i(τ,0) eik
i
2X

i(τ,0) : e−(k1·k2)G(τ, 0, 0, 0) =

(1− x)k1·k2 x−k1·k2

x = e−iτ (18.1)

by using the expression for the propagator G found in the previous exercise and the
basic formulas in section 6 of the lecture notes.
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Exercise 19

Anticommuting c-numbers. Consider anticommuting c-numbers θi, satisfying

θiθj = −θjθi .

The numbers θi are taken to be real, i.e. θ†i = θi.

• Define a function F (θ1, θ2, θ3), where the θi are 3 anticommuting variables,
called Grassmann variables. Show that there are 8 terms (monomials) in the
polynomial decomposition of the function in terms of the θ variables. How
many independent terms do you expect in the decomposition of a function of
n Grassmann variables? We first look at differentiation. The left derivative
of a function is obtained by differentiating its monomials and resumming the
result. To calculate the left derivative with respect to θi we must, in every
monomial, permute θi to the left and then drop it. Let ε[i] be the sign of the
permutation needed to bring θi to the left, and ε[i] = 0 when θi does not occur
in the monomial. The left derivative of a monomial can then be written in the
following way,

→
∂

∂θik

(
θi1 · · · θik−1

θikθik+1
· · · θim

)
= ε[ik]

(
θi1 · · · θik−1

θik+1
· · · θim

)
. (19.1)

Analogously, one can define a right derivative.

• Define a function F (θ1, θ2), calculate

→
∂

∂θ1

F (θ1, θ2), and

→
∂

∂θ2

F (θ1, θ2).

The definition of the left derivative corresponds to the variational statement

δθF (θ) = δθ

→
∂

∂θ
F (θ), (19.2)

where δθ is a Grassmann parameter. Note the order of the terms in the above
expression.

• For the right derivative write down the corresponding variational statement.

• Consider a ψ(θi) which is a function of the θi (i = 1, . . . , n) variables. Work
out →

∂

∂θj
F (ψ(θi));

←
∂

∂θj
(F (ψ(θi))) .
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Again, the order in which the terms appear is important. This is an immediate
consequence of working with anticommuting variables. Now look at Leibniz’
rule:

• Work out →
∂

∂θ
(F (θ) G(θ)) .

• Calculate →
∂

∂θ
exp(θ)

We now construct the analogue of the indefinite one-dimensional integral,∫ ∞
−∞

dx f(x),

for the case of anticommuting c-numbers, which we denote by∫
dθF (θ).

We want it to obey the following property of the integral over commuting
variables, ∫ ∞

−∞
dx f(x) =

∫ ∞
−∞

dx f(x+ a) (19.3)

with a finite.

• Consider a function F (θ) of one Grassmann variable θ. Show that requiring
the property (19.3) to hold leads to the requirement∫

dθ [any element not depending on θ] = 0.

Compare with differentiating a function of commuting variables. We are then
left with an integral over θ, which we normalize to unity,∫

dθ θ ≡ 1.
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Exercise 20

Let us consider the change of variables from τ, σ to z, z. After a Wick rotation we
write τ = iσ2 where σ2 is the real Euclidean time and we rename σ as σ1. If we define
w = σ+ = iσ2 + σ1 so that w = −σ− = −iσ2 + σ1 then z, z are defined as follows:

open string: z = eiw ; z = e−iw

closed string: z = e2iw ; z = e−2iw (20.1)

• For σ2 ∈ (−∞,+∞) and σ1 ∈ (0, π) describe the space spanned by z for the
open and closed string cases and draw the equal–time curves. Which points
correspond to σ2 → ±∞?

• Write as functions of the complex variables the open and closed string solu-
tions Xµ(z, z) together with their holomorphic and anti–holomorphic deriva-
tives ∂zX

µ(z, z), ∂zX
µ(z, z).

• Rewrite the Green function G(τ, τ ′, σ, σ′) computed in exercise 17 as a function
G(z, z, z′, z′) in the complex variables. Compute it for the closed string as well.

• Consider the variable ẑ = log(z). For σ2 ∈ (−∞,+∞) and σ1 ∈ (0, π)
describe the space spanned by ẑ for the open and closed string cases and draw
the equal–time curves.

Exercise 21

Let us consider conformal transformations in the complex coordinate notation. In
these coordinates conformal transformations have the form: z → z′(z) and z → z′(z).
We shall denote in the sequel by Φh,h̄(z, z) a tensor with h holomorphic and h̄ anti–
holomorphic lower indices. Under a conformal transformation Φh,h̄ transforms as
follows:

Φh,h̄(z, z) → Φ′h,h̄(z, z) =

(
∂z′

∂z

)h (
∂z′

∂z

)h̄
Φh,h̄(z

′(z), z′(z)) (21.1)

• Write the transformation property of Φh,h̄ under z → eiθ z, z → e−iθ z where θ
is a constant angle.

• Write the transformation property of Φh,h̄ under z → z′ = log(z), z → z′ =
log(z).

Consider an infinitesimal conformal transformation z → z′ = z + ε(z) and z → z′ =
z + ε(z). Show that:

Φ′h,h̄ = Φh,h̄ + δΦh,h̄

δΦh,h̄ = (h (∂ε) + h̄ (∂ε) + ε ∂ + ε ∂) Φh,h̄ (21.2)
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where we have used the notation: ∂ = ∂/∂z and ∂ = ∂/∂z.

Consider now the quantized closed string and let Φh,h̄ be an operator on the Hilbert
space of states which transforms under conformal transformations as in eq (21.1)
(primary operator) . We wish to define generators of infinitesimal conformal trans-
formations Tε, T ε on the Hilbert space such that:

δΦh,h̄ = [Tε, Φh,h̄] + [T ε, Φh,h̄] (21.3)

Let us consider the Laurent expansion of ε, ε:

ε =
∞∑

n=−∞

εn z
n+1 ε =

∞∑
n=−∞

εn z
n+1

and define Tε, T ε in terms of some operators `n and ¯̀
n as follows:

Tε =
∞∑

n=−∞

εn `n T ε =
∞∑

n=−∞

εn ¯̀
n (21.4)

Show that if the following commutation relations hold:[
`n, Φh,h̄

]
= zn(z∂ + h(n+ 1))Φh,h̄[

¯̀
n, Φh,h̄

]
= zn(z∂ + h̄(n+ 1))Φh,h̄ (21.5)

formula (21.3) yields the transformation rule (21.2). Compare formulas (21.5) and
(21.4) with the analogous formulae of exercise 14. Observe the differences with respect
to exercise 14: there conformal transformations were considered for simplicity only on
scalar functions Y (which have h = h̄ = 0); the infinitesimal generator had the same
form as in (21.4), but its action on the function Y is a differential operation, while
in the present exercise its action on operators is expressed in terms of commutators
(21.5); the light cone indices ± are substituted by holomorphic/anti–holomorphic
indices in the present exercise.

Operators on free closed string states are expressed in terms of αin and α̃in. An
asymptotic string state emitted from a point z, z of the world sheet is described by a
local primary operator V (z, z) (i.e. transforming as in equ.(21.1) with definite values
of h, h̄) which is called vertex operator.

Consider the vertex operator V (z, z) =: eik
iXi(z,z) : (from now on, for the vertex

operators, we shall consider only space–like momenta kµ ≡ ki) describing the emission
of a tachyon of momentum ki (verify indeed that [pi, V ] = ki V ). If for `n and ¯̀

n we
take Ln and L̃n defined in exercise 15, show that the commutator of these operators
with V have the expression on the right hand side of eqs. (21.5) for suitable values
of h, h̄. Find these values. Repeat this exercise for the vertex operator V (z, z) =:
∂ Xj ∂ X i eik·X(z,z) :.

In general infinitesimal conformal transformations on the closed string Hilbert space
are generated by Tε, T ε which are expressed in terms of Ln and L̃n.
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There is a remark to be done about conformal transformations and the light–cone
gauge. In the light–cone gauge the reparametrization invariance of the string action
is totally fixed and with it also the conformal transformations which are generated by
T++ and T−−. Indeed on the Hilbert space the Fourier modes of T++ and T−−, which
are Ln and L̃n and are the generators of the conformal transformations are fixed to
the value δn,0 (see exercise 15). The generators Ln and L̃n have the same expression
as Ln and L̃n but involve only oscillators along transverse directions. They close a
Virasoro algebra as well but with a different central charge given by c = D − 2, and
thus are generators of conformal transformations though we do not expect the action
to be invariant with respect to it (since all reparametrization invariance have been
fixed).

In the framework of covariant quantization the constraint Tαβ = 0 is imposed on the
physical states and translated into the conditions: Ln|phys〉 = L̃n|phys〉 = 0 (n > 0);
(L0 − 1)|phys〉 = (L̃0 − 1)|phys〉 = 0. To summarize the {Ln, L̃n} and {Ln, L̃n}
conformal algebras are different and with respect to them physical states will have
different conformal weights {h, h̄}. In particular the conformal weights with respect
to the first are bound by the constraints written above to be (1, 1), while the conformal
weights corresponding to the action of the second algebra are not constrained.

Exercise 22

There is a one to one correspondence between vertex operators V (z, z) and asymp-
totic in–coming or our–going states of a string (free states). The in–coming string
state |V, in〉 associated with the operator V (z, z) is defined through the asymptotic
limit σ2 → ∞ of V (z, z)|0〉 (recall that |0〉 is the vacuum state with vanishing CM
momentum), similarly the corresponding out–going free state 〈V, out| is obtained by
performing on the state 〈0|V (z, z) the opposite limit σ2 → −∞. Use the complex
notation and find the in–coming and out–going states corresponding to the following
vertex operators (for simplicity in what follows the momentum kµ is always space-
like):

open string: : eik
iXi(z,z) :

: ∂ Xj eik·X(z,z) :

closed string: : eik
iXi(z,z) :

: ∂ Xj ∂ X i eik·X(z,z) : (22.1)

Compute the mass squared M2 of the in–coming asymptotic states computed above
either through direct evaluation of M2 on |V, in〉 or by performing the limit σ2 →∞
on M2(V (z, z)|0〉).
[Hint: Express M2(V (z, z)|0〉) as [M2, V (z, z)] |0〉+ V (z, z)M2|0〉]
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Exercise 23

Representations of the Clifford algebra. The Clifford algebra of Dirac matrices:

{γµγν} = −2ηµν (23.1)

cannot be represented in any dimensions. Show, that for representing the γµ matrices
in 2n spacetime dimensions we need at least 2n × 2n matrices. To do that, construct
n linear operators out of the γ matrices, eg.

ai :=
1√
2
(γ2i−2 + iγ2i−1) i = 1..n

use a representation1 for which

γ† = γ0 γi† = −γi i = 1..2n− 1.

Show that
{an, a†m} = δm,n,

define a vacuum |0〉 and determine the number of different states which the creation
operators can create from the vacuum. If we want to impose further conditions
(like Weyl or Majorana spinor) we will find further constraints. Check that for two
dimensions the following definition

γ0 = σ2 γ1 = iσ1

(where σi means the i-th Pauli matrix) satisfies the algebra (23.1). Now with an in-
ductive procedure we can construct a representation of 2n dimensions if the spacetime
has 2n dimensions (that is we will have 2n 2n × 2n matrices). Suppose that we have
the algebra for d = 2n− 2.(γ̂µ’s are given for µ = 0...2n− 3 and (23.1) is satisfied).
Then we define two more matrices according to the following:

γ2n−2 = i1× σ1 γ2n−1 = i1× σ2 (23.2)

and extend the first 2n− 2 as

γµ = γ̂µ × (−σ3) µ = 1..2n− 1

1 is the unit matrix in 2n−1 dimensions. ((A×B)ijkl = AikBjl is the formula for the
indices of the direct product matrix.) That is these two matrices are blockdiagonal
ones, each entry of the appropriate Pauli matrix is the entry times the 2n−1×2n−1 γ̂µ

or unit matrix. Check that (23.1) is then satisfied in 2n dimensions. What about the
case of odd dimensions ? Show that in 2n + 1 dimensions 2n × 2n matrices still can
represent the algebra. [Hint: Extend the case of 2n with γ2n = γ defined as (23.5)
further in the exercise.]

1One needs to prove that this representation always exists.

22



Since the right hand side of (23.1) is real the relation for the anticommutator of the
complex conjugate γ’s are the same:

{γµ∗γν∗} = −2ηµν

The complex conjugate representation is equivalent, that is

γµ∗ = BγµB−1 µ = 1...2n− 1 (23.3)

where both B1 and B2 are unitary. An explicit construction for such a matrix is the
following:

B1 = γ3γ5...γ2n−1 B2 = γ0γ1γ2γ4...γ2n−2 (23.4)

Show that
B1γ

µB−1
1 = (−1)nγµ∗ B2γ

µB−1
2 = (−1)n−1γµ∗

that is one of them always satisfies (23.3).

Define now
γ = cγ0γ1...γ2n−1 (23.5)

Determine the value of c by the requirement that (γ)2 = 1. Can we generalize the
relations (23.4) to odd (2n+ 1) dimensions ?

The spinors on which the γµ matrices act are representations of the Lorentz group
with the generator

σµν = − i
4
[γµ, γν ]

where the bracket is the commutator. With respect to the full Lorentz group these
are not always irreducible representations, the familiar projections,

PL =
1− γ

2
PR =

1 + γ

2

project out irreducible subspaces. In physical language we can find chiral (left and
right handed) fermions, which are not mixed under the action of the Lorentz group.
They are then called Weyl spinors.

When can one find real spinor representations ? In other words one wants to impose
the following condition

ψ = Bψ∗ (23.6)

Show that ψ and Bψ∗ transforms according to the same representation of the Lorentz
group. Show, that from the above condition requirement B∗B = 1 follows. Verify
the following formulae for the explicit B1 and B2:

B1B
∗
1 = (−1)

n(n−1)
2 B2B

∗
2 = (−1)

(n−1)(n−2)
2

The spinors for which (23.6) holds are called Majorana spinors.
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Verify that

Bi(
1± γ

2
ψ)∗ =

1± (−1)(n+1)

2
Biψ

∗ i = 1, 2

that is the in certain spacetime dimensions

(ψL)∗ = ψL (ψR)∗ = ψR

that is in certain spacetime dimensions ψ∗L = ψL, ψ∗R = ψ∗R. In which spacetime
dimensions are there Weyl, Majorana, Weyl-Majorana spinors ? [Hint: Use the
given explicit representation of B’s and γµ’s.]

Exercise 24

Check explicitly the calculations leading to (11.22) and (11.23) of the lecture notes.

Exercise 25

Supersymmetric particle. Consider the action of a massless super particle propa-
gating in D–dimensional Minkowski space, which is obtained from the particle world
line action by adding to the D bosonic fields xµ(τ), the contribution from D Ma-
jorana fermions ψµ(τ) (ψµ? = ψµ) which describe the corresponding super partner:

S = −1

2

∫
dτ e

(
(ẋµ)2 − iψµψ̇µ

)
(25.1)

Compute the field equations for the fields xµ, ψµ, e and show that the field equa-
tion for e amounts to a constraint on the other fields. Consider the following super
symmetry transformation:

δxµ = iεψµ ; δψµ = εẋµ (25.2)

where ε is an infinitesimal real Grassmann parameter (recall that on Grassmann vari-
ables the complex conjugation is defined to have the property that (ε1ε2)

∗ = ε∗2ε
∗
1 just

like Hermitian conjugation for matrices. Therefore you can show that the product
of two real Grassmann variables acts as an imaginary c–number). The fields xµ and
ψµ are called super partners because they transform into each other by super sym-
metry. If we denote by δ1 and δ2 two infinitesimal super symmetry transformations
parametrized by ε1 and ε2 respectively, using (25.2), show that:

δ1(δ2x
µ)− δ2(δ1x

µ) = δτ
dxµ

dτ
(25.3)

and find the expression of δτ . From the above result we see that the commutator
of two super symmetry transformations amounts to a space–time coordinate trans-
lation. If the action were invariant under local super symmetry then (25.3) would
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guarantee its invariance under local reparametrization as well. Show that under the
transformation (25.2) if ε depends on τ we can write:

δS = −2

∫
dτ

(
iε̇J − ie

2

d

dτ
(εẋψ) + field equations

)
(25.4)

and find the expression for J . Is the action S invariant under global super symmetry
transformations (i.e. ε̇ = 0)? Under which constraint is the action invariant under
local super symmetry transformations? Since our action is invariant under local
reparametrization, in view of (25.3), we would like this invariance to be a consequence
of local super symmetry, then we shall impose the local super symmetry constraint
computed above. This constraint, as explained in the lecture notes, allows to have
finite fermionic mass spectrum, and the consequent local super symmetry will allow
to gauge away non–physical longitudinal modes of ψµ.

Consider the canonical quantization of the super particle setting for simplicity e = 1.
Show form the canonical commutation relations that {ψµ(τ), ψν(τ)} = ηµν .

[Hint: In order to work with a well defined canonical momentum Πψ associated with
ψ it is advisable to follow the procedure described in section 11.4 of the lecture notes.]
What can you conclude about the states generated by ψµ?

We can construct a locally super symmetric action by introducing a new auxiliary
Grassmann valued field ν to be regarded as the super partner of the auxiliary field e
and modifying the action as follows:

S = −1

2

∫
dτ
(
e(ẋµ)2 − ieψµψ̇µ − 2iνẋµψµ

)
(25.5)

Show that this action is invariant under the following local super symmetry transfor-
mations:

δxµ = iεψµ ; δψµ = εẋµ ; δe = −2iεν ; δν = ε̇e− 1

2
εė . (25.6)

Compute the field equations for the various fields and verify that the field equation
for ν yields the local super symmetry constraint derived previously. If we regard the
physical states of this theory as space–time fields what condition does the local super
symmetry constraint imply on these fields?
Locally super symmetric theories are called super gravity theories since they include
invariance under general coordinate transformation, which is the symmetry of General
Relativity, as a consequence of local super symmetry. The field e is called the graviton
and its superpartner ν the gravitino. In one and two dimensions both these fields are
non–propagating.
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Exercise 26

Consider the superstring action (eq. (11.45) of the lecture notes):

S = − 1

2π

∫
d2σ

(
∂αX

µ∂αXµ − iψ
µ
ρα∂αψµ

)
(26.1)

Show that under the super symmetry trnsformations in eq. (11.44) of the lecture
notes the action transforms as in (11.46). What is the constraint for local super
symmetry?
Also in this case this constraint can be derived from a locally super symmetric action
as the field equation of an auxiliary gravitino χα, super partner of the graviton eaα.
The construction of this action follows the same lines as in the super symmetric
particle case, i.e. with the addition of a term of the form χα Jα. In this case however
the addition of a further quadratic term in the gravitino field is required by local
super symmetry invariance. The derivation of this action is described in detail in
section 4.3.5 of the Green–Schwarz–Witten book. It is lengthy and we shall not deal
with it in this exercise. However there are some properties of Majorana spinors in
two dimensions which are needed for this derivation and are useful to derive. Show
that:

ψ
µ
ρα∇αψµ = ψ

µ
ρα∂αψµ ; ψµAψBµ = −1

2
ψµψ

µ δAB . (26.2)

Exercise 27

Given local left–moving and right–moving fields Φ(τ + σ), Φ̃(τ − σ) on the world
sheet of a string (Φ ≡ Φ̃ for the open string), which are expanded in Fourier modes
as follows:

open string: Φ(τ ± σ) =
1

∆

∑
n

Φn e
−in(τ±σ)

closed string: Φ(τ + σ) =
1

∆

∑
n

Φn e
−2in(τ+σ)

Φ̃(τ − σ) =
1

∆

∑
n

Φ̃n e
−2in(τ−σ) (27.1)

where ∆ is a normalization factor. Show that the following inverse relations hold:

open string: Φn =
∆

2π

∫ π

0

dσ
[
Φ(τ − σ) ein(τ−σ) + Φ(τ + σ) ein(τ+σ)

]
closed string: Φn =

∆

π

∫ π

0

dσΦ(τ + σ) e2in(τ+σ)

Φ̃n =
∆

π

∫ π

0

dσ Φ̃(τ − σ) e2in(τ−σ) (27.2)

26



Let Φ and Φ̃ be fermionic fields with Neveu-Schwarz boundary conditions, express
them as Fourier series and find the inverse transformations yielding the coefficients.

Using the above relations derive the expressions for the Fourier coefficients αµn, d
µ
n, b

µ
r ,

Ln, Fn, Gr as functions of ∂+X
µ, ψµ+(Ramond), ψµ+ (Neveu–Schwarz), T++, J+ (Ra-

mond), J+ (Neveu–Schwarz) respectively and the corresponding left–handed quanti-
ties, for open and closed strings. Recall that:

open string: ∂±X
µ =

1

2

∑
n

αµne
−in(τ±σ)

ψµ± (R) =
1√
2

∑
n

dµne
−in(τ±σ)

ψµ± (NS) =
1√
2

∑
r∈Z+1/2

bµr e
−ir(τ±σ)

T±± =
1

2

∑
n

Ln e
−in(τ±σ)

J± (R) =
1

2
√

2

∑
n

Fn e
−in(τ±σ)

J± (NS) =
1

2
√

2

∑
r∈Z+1/2

Gr e
−ir(τ±σ)

closed string: ∂+X
µ =

∑
n

αµne
−2in(τ+σ) ∂−X

µ =
∑
n

α̃µne
−2in(τ−σ)

ψµ+ (R) =
∑
n

dµne
−2in(τ+σ) ψµ− (R) =

∑
n

d̃µne
−2in(τ−σ)

ψµ+ (NS) =
∑

r∈Z+1/2

bµr e
−2ir(τ+σ) ψµ− (NS) =

∑
r∈Z+1/2

b̃µr e
−2ir(τ−σ)

T++ = 2
∑
n

Ln e
−2in(τ+σ) T−− = 2

∑
n

L̃n e
−2in(τ−σ)

J+ (R) =
∑
n

Fn e
−2in(τ+σ) J− (R) =

∑
n

F̃n e
−2in(τ−σ)

J+ (NS) =
∑

r∈Z+1/2

Gr e
−2ir(τ+σ) J− (NS) =

∑
r∈Z+1/2

G̃r e
−2ir(τ−σ)

Use the above definitions to express the constraints Ln, Fn, Gr and the corresponding
tilded quantities in terms of field coefficients for both open and closed strings.
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Exercise 28

From the canonical commutation/anti–commutation relations:[
Ẋµ(σ, τ), Xν(σ′, τ)

]
= −iπηµνδ(σ − σ′)

[Xµ(σ, τ), Xν(σ′, τ)] =
[
Ẋµ(σ, τ), Ẋν(σ′, τ)

]
= 0

{ψµ±(σ, τ), ψν±(σ′, τ)} = πηµνδ(σ − σ′)

{ψµ±(σ, τ), ψν∓(σ′, τ)} = 0 (28.1)

using the results and conventions of the previous exercise, deduce the commutation/anti–
commutation relations among αµn, d

µ
n, b

µ
r and the corresponding left–moving quanti-

ties (see eqs. (11.39), (11.40) of the lecture notes) as operators in the unconstrained
Hilbert space. Write the constraints Ln, Fn, Gr, L̃n, F̃n, G̃r as normal ordered op-
erators ( recall that the definition of normal order for fermionic operators is the
same as in the bosonic case except for a minus sign required every time the order
of two operators is inverted: : dnd−n := −d−ndn = − : d−ndn : ). Deduce the
commutation/anti–commutation relations among Ln, Fn, Gr, L̃n, F̃n, G̃r.

When a constraint is expressed as a quadratic function of quantities which, as oper-
ators, do not commute (bosonic operators) or anti–commute (fermionic operators),
then their implementation at the quantum level suffers from an ordering ambigu-
ity and therefore requires the introduction of a constant. For the bosonic string we
saw that the only constraint with this ambiguity was L0 and therefore a constant a
was introduced so that in the light–cone quantization the constraints had the form
Ln − aδn = 0. In the superstring case, which of the constraints requires an ordering
constant in the R and NS sectors? The ordering constants in the two sectors are in
general unrelated. Consider the R sector and suppose we implement the constraint
F0 in the form F0−µ = 0, µ being a c–number, find the relation between the constant
a for L0 and µ (use the relation {F0, F0} ∼ L0). Is it consistent to set µ = 0? What
consequence dose this have on the value of a for the R sector?

Let us denote by |0〉R and |0〉NS the vacua of the R and NS sectors (for the open
string or for a single left or right mover sector of the closed string) respectively, show
that |0〉NS has degeneracy one while for D = 2n |0〉R has degeneracy 2n and therefore
describes a fermionic state (show that the action of dµ0 on |0〉R does not change the
energy of the state and use the anti–commutation relations among the dµ0 . ). How
many sectors does the closed string have? Write the vacua for each closed string
sector.
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Exercise 29

Light–cone quantization. Consider the gauge fixing conditions X+ = x+ + p+τ
and ψ+ = 0. Show that they are consistent with supersymmetry transformations
(equations (11.44) of the lecture notes). Solve them in terms of the α+

n , d
+
n , b

+
r ,

α̃+
n , d̃

+
n , b̃

+
r in the R, NS, left and right–moving sectors. Use these conditions to solve

the constraints by expressing α−n , d
−
n , b

−
r , α̃−n , d̃

−
n , b̃

−
r in terms of the corresponding

transverse components for the relevant sectors in the open and closed string cases
using a = 0 in the R sector (see previous exercise) and a = 1/2 in the NS sector
(recall that αµ0 = pµ for the open string and αµ0 = α̃µ0 = pµ/2 for the closed string).
Write the formula for M2 in the various sectors of the open and closed string. Write
explicitly the tachyonic and massless open and closed string states.

Exercise 30

Find the expression of the vacuum expectation value GF µν of the product of two
fermionic fields:

〈0|ψµ(τ, σ)ψν(τ ′, σ′)|0〉 = GF µν(τ, σ, τ ′, σ′) (30.1)

as for the bosonic case, the function GF is the Green function of the fermionic field
equation and, when time ordered, yields the fermion propagator.
[Hint: Express the product of the two fields in terms of its normal ordered expression:

ψµ(τ, σ)ψν(τ ′, σ′) =: ψµ(τ, σ)ψν(τ ′, σ′) : + GF µν(τ, σ, τ ′, σ′)

]

Exercise 31

On SO(1, 9) and SO(8). The groups SO(1, 9) and SO(8) are defined as those groups
of transformations whose action on the corresponding vector representations V µ, vi

(µ = 0, . . . , 9, i = 1, . . . , 8) leaves the metrics ηµν and δij invariant:

Uµ
ν ∈ SO(1, 9) ⇔ Uρ

µ ηρσ U
σ
ν = ηµν (31.1)

Ũ i
j ∈ SO(8) ⇔ Ũk

i δkn Ũ
n
j = δij (31.2)

ηµν = diag(−, +, . . . , +)

The vector representation of SO(8), described by vi, is usually denoted by 8v. Let
us define the following matrices:

Mµ
ν = wρσ (Mρσ)µν ; (Mρσ)µν = ησµ δρν − ησν δρµ

M̃i
j = wkn (M̃kn)ij ; (M̃kn)ij = δni δkj − δki δnj (31.3)
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where wµν and its restriction wij to the i, j indices are antisymmetric matrices of
parameters. Show that Mµ

ν and M̃i
j are infinitesimal generators of SO(1, 9) and

SO(8) respectively in their vector representations, i.e. that Uµ
ν = δµν + Mµ

ν and
Ũ i

j = δij + M̃i
j fulfill equations (31.1) and (31.2) respectively to first order in w.

How many independent generators do SO(1, 9) and SO(8) have? Using the defini-
tions (31.3) show that the SO(1, 9) infinitesimal generators Mµν fulfill the following
commutation relations:

[Mµν , Mρσ] = ηµρM νσ + ηνσMµρ − ηνρMµσ − ηµσM νρ (31.4)

and that the SO(8) generators M̃ ij fulfill relations obtained by restricting eq. (31.4)
to the i, j indices.

Consider the SO(1, 9) and SO(8) spinorial representations. What are the dimensions
of an SO(1, 9) and an SO(8) spinors? Let us introduce the SO(1, 9) and SO(8)
Clifford algebras Γµ, γi fulfilling {Γµ, Γν} = −2 ηµν and {γi, γj} = −2 δij (notice
here a sign difference with respect to the definition of the SO(8) gamma matrices given
in the lecture notes). Show that the matrices Mµν = Γµν/2 = (Γµ Γν − Γν Γµ)/4
and M̃ ij = γij = (γi γj − γj γi)/4 are the generators of SO(1, 9) and of SO(8) in
the spinorial representation respectively, namely that they fulfill the corresponding
commutation relations. To give an explicit representation to these matrices it is
useful to introduce the tensor product notation: given two matrices An×n = (aij)
and Bm×m = (aij), the matrix Cnm×nm = An×n ⊗ Bm×m is an nm × nm which is
obtained by substituting each entry bij of Bm×m with the n × n block bij An×n. For
example consider:

τ 1 ⊗ τ 2 =

(
02×2 −iτ 1

iτ 1 02×2

)
=


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 (31.5)

where τ i are the Pauli matrices. This product can be iterated by defining A⊗B⊗C =
A⊗ (B ⊗ C). Show that:

(A1 ⊗B1) · (A2 ⊗B2) = (A1 · A2)⊗ (B1 ·B2) (31.6)

Show that the γi can be expressed as the tensor product of two by two matrices in
the following way:

γ1 = iτ 1 ⊗ 11⊗ 11⊗ 11 γ2 = iτ 2 ⊗ 11⊗ 11⊗ 11

γ3 = iτ 3 ⊗ τ 1 ⊗ 11⊗ 11 γ4 = iτ 3 ⊗ τ 2 ⊗ 11⊗ 11

γ5 = iτ 3 ⊗ τ 3 ⊗ τ 1 ⊗ 11 γ6 = iτ 3 ⊗ τ 3 ⊗ τ 2 ⊗ 11

γ7 = iτ 3 ⊗ τ 3 ⊗ τ 3 ⊗ τ 1 γ8 = iτ 3 ⊗ τ 3 ⊗ τ 3 ⊗ τ 2 (31.7)

The above representation is different from the one given in the lecture notes in which
all the γi are imaginary and the SO(8) generators already appear in a block diagonal
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form according to the decomposition into chiral representations. In the representation
(31.7) however the generators which we will need to diagonalize in the sequel are
diagonal to start with.
Compute the matrix γ = γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 and show that it is the chirality matrix
for the SO(8) spinor representation, namely that (γ)2 = 1116×16 and that {γ, γi} =
0. Is γ diagonal? What are its eigenvalues? Show that the matrix B = τ 2⊗τ 1⊗τ 2⊗τ 1

fulfills (B)2 = 1116×16 and B−1 γiB = γi∗. Using the results of exercise 23 and the
matrices B and γ express the Majorana and the Weyl conditions on an SO(8) spinor
λ and show that they are compatible, so that a Majorana–Weyl spinor can be defined.

Now show that the following matrices realize the SO(1, 9) Clifford algebra:

Γ0 = γ ⊗ τ 2

Γi = γi ⊗ 112×2

Γ9 = iγ ⊗ τ 1 (31.8)

Compute the chirality matrix Γ. Is Γ diagonal? What are its eigenvalues? Show that
the matrix B′ = τ 2⊗ τ 1⊗ τ 2⊗ τ 1⊗ τ 3 fulfills (B′)2 = 1132×32 and B′−1 ΓµB′ = Γµ∗.
In terms of B′ and Γ write the Majorana and the Weyl conditions on an SO(1, 9)
spinor ξ and show that they are compatible, so that a Majorana–Weyl spinor can be
defined. The group SO(8) is contained inside SO(1, 9). The subset of the SO(1, 9)
generators which are also SO(8) generators are represented by the 32× 32 matrices
M ij = Γij/2. Write these generators in terms of the SO(8) generators given by the
16× 16 matrices M̃ ij = γij/2 using the tensor product notation.

Just as for states in quantum mechanics, in order to describe a basis of the SO(1, 9)
spinorial representation we need to define a complete set of SO(1, 9) generators, i.e.
a maximal set of commuting generators, so that each element of the basis of can be
labeled by the simultaneous eigenvalues of these operators. A complete set of SO(1, 9)
generators consists of five elements {Ha} a = 0, . . . , 4. Show that the following
SO(1, 9) generators commute:

H0 =
1

2
Γ0Γ9 ; H1 =

1

2
Γ1Γ2 ; H2 =

1

2
Γ3Γ4 ; H3 =

1

2
Γ5Γ6

H4 =
1

2
Γ7Γ8 (31.9)

Compute their expression as tensor product of two by two matrices and show that as
32×32 matrices they are diagonal. Show that H0 has real eigenvalues, to be denoted
by s0, as opposite to Hk=1,2,3,4 which have imaginary eigenvalues, to be denoted by
isk, sk being real. You may also convince yourself that this abelian set cannot be
enlarged, i.e. that there is no other SO(1, 9) generator commuting with all of them.
A basis for the SO(1, 9) spinorial representation can therefore be written in the form
{|s0, s1, s2, s3, s4〉}, each element being a Majorana spinor, simultaneous eigenvector
of the Ha:

Ha |s0, s1, s2, s3, s4〉 = sa |s0, s1, s2, s3, s4〉 (31.10)
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Write the elements of this basis explicitly according to the various combinations of
values sa. Show that all these spinors have definite chirality and that

Γ |s0, s1, s2, s3, s4〉 = 32 s0s1s2s3s4 |s0, s1, s2, s3, s4〉 (31.11)

Let us apply the same procedure for constructing a basis of the SO(8) spinorial
representation. Show that a complete set of generators in SO(8) is provided by the
following four:

h1 =
1

2
γ1γ2 ; h2 =

1

2
γ3γ4 ; h3 =

1

2
γ5γ6 ; h4 =

1

2
γ7γ8 (31.12)

compute the expression of hk as tensor product of two by two matrices and show that
as 16 × 16 matrices they are diagonal with imaginary eigenvalues isk. A basis for
the SO(8) spinorial representation can therefore be written in the form of Majorana
spinors {|s1, s2, s3, s4〉}. Write these basis explicitly with the various labels sk. Show
that all these spinors have definite chirality and that

γ |s1, s2, s3, s4〉 = 16 s1s2s3s4 |s1, s2, s3, s4〉 (31.13)

group the elements |s1, s2, s3, s4〉 according to their chirality and show that each
chiral representation is generated by 8 elements. The representation with positive
chirality is conventionally denoted by 8s, the one with negative chirality by 8c. Show
that Hk = hk ⊗ 112×2 and therefore they belong to the SO(8) subgroup of SO(1, 9).
Using this property show that the spinors |s0, s1, s2, s3, s4〉 can be grouped in SO(8)
representations 8s and 8c. For each of these representations write the eigenvalues of
Γ and of H0 (s0).
[Hint: Prove that the SO(1, 9) generator H0 commutes with the SO(8) subgroup of
SO(1, 9). Therefore H0 has a fixed eigenvalue s0 on each irreducible representation
of SO(8) contained in the SO(1, 9) spinorial representation, by Shur’s lemma.]

Consider the vacuum of the Ramond sector |k, 0〉R with momentum kµ. It was
shown to be an SO(1, 9) spinor, and therefore is can be expanded in the basis
|s0, s1, s2, s3, s4〉. Let us implement on this state the constraint pµ Γµ |k, 0〉R = 0.
Since this state was shown to be massless (kµkµ = 0) we can consider a frame in
which k0 = k, k9 = k and ki = 0. Find the elements of the basis |s0, s1, s2, s3, s4〉
fulfilling in this frame the constraint pµ Γµ |k, 0〉R = 0. Which SO(8) representations
do they belong to? Label them by the s0 eigenvalue and the SO(1, 9) chirality.
[Hint: Write the constraint in the chosen frame as a projector on H0 eigenspaces:

pµ Γµ = −2 k Γ0 (
1

2
−H0)

]

After imposing the GSO condition on |k, 0〉R, namely the condition on the vacuum
to have a definite SO(1, 9) chirality, write the spinors |s0, s1, s2, s3, s4〉 contributing
to this state for the two different eigenvalues of Γ. Which SO(8) representations do
they belong to?
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Exercise 32

In the present exercise we shall show that the world sheet of a propagating closed
string is conformally equivalent to a sphere with the asymptotic states coinciding
with the two polar points.

Consider a closed string propagating in space–time. Represent its world–sheet as
a cylinder parametrized by the complex coordinate w = iσ2 + σ1, where as usual
σ2 is the Euclidean time coordinate which runs from −∞ (incoming string) to +∞
(outgoing string) and σ1 the angular coordinate in the interval (0, π). Since we are
dealing with a closed string the points with σ1 = 0 and σ1 = π are identified. In
the conformal gauge the metric in the coordinates w, w̄ can be written as:

ds2 = eφ dw dw̄ (32.1)

write the metric in the coordinates z = e2iw, z̄. Represent in these coordinates the
points corresponding to the asymptotic incoming and outgoing string. Now let us
make a suitable choice for the conformal factor, namely:

eφ = 16
|z|2

(1 + |z|2)2
(32.2)

show that the corresponding ds2 is the metric on a sphere described by stereographic
coordinates and that the asymptotic states coincide with the two polar points. [Hint:
Perform the change of variables z, z̄ → θ, ϕ where z = cot( θ

2
) eiϕ]

In general, for a more complicated process involving several incoming and outgoing
strings, it can be shown that, at tree level (that is if the surface described by the
interacting strings has no holes), the conformal factor of the metric can be chosen so as
to map the surface of the initial diagram into a sphere in which the asymptotic states
are represented by points or punctures, where the corresponding vertex operators are
inserted. Analogously higher loop diagrams will be mapped into two dimensional
surfaces with a certain number of holes (counted by the genus g of the surface) and
punctures corresponding to the asymptotic states.

Exercise 33

Consider type IIA and IIB superstring theories. Write the explicit state realization of
the NS–NS massless modes, namely of the scalar field φ, the ten dimensional metric
Gij and the two form Bij (also called Kalb–Ramond field). As far as the R–R sector
is concerned, the zero mode states are expressed as tensor product of the left and
right mover sector ground states (we shall use the notation of the lecture notes and
denote by |ψL〉, |ψR〉 the R ground states with positive and negative SO(8) chirality
respectively (which we have called 8s, 8c in exercise 31). The states corresponding
to the left or right moving sector are distinguished only by their positions (to the
left or to the right) in the tensor products). For type IIA and IIB the zero modes
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of the R–R sector are |ψL〉〈ψR| and |ψL〉〈ψL|. These states have to be considered as
8 × 8 matrices in the spinor space and therefore can be decomposed in a complete
basis of generators of this space, namely Γi1i2...ik for k = 1, . . . , 8. Show that only
the matrices Γi1i2...ik for k = 1, . . . , 4 contribute to the expansions of |ψL〉〈ψR| and
|ψL〉〈ψL|.
As a first exercise let us consider the simpler case of bi–spinors ξα, χβ. Show that, if
we denote by Mαβ = ξα χβ, the following expansion is true:

M =
∑
i

ci Tr(MT τ i) τ i

ci =
1

Tr(τ iT τ i)
(33.1)

where τ i are the Pauli matrices and Tr(MT τ i) = ξT τ i χ.

Similarly we can write:

|ψL〉〈ψR| =
∑
k

ck C
A
i1...ik

Γi1i2...ik

|ψL〉〈ψL| =
∑
k

ck C
B
i1...ik

Γi1i2...ik

CA
i1...ik

= 〈ψL|Γi1i2...ik |ψR〉
CB
i1...ik

= 〈ψL|Γi1i2...ik |ψL〉 (33.2)

where ck are numerical constants. Show that the fields CA
i1...ik

are non vanishing
only for k = 1, 3 and CB

i1...ik
are non vanishing only for k = 0, 2, 4. Which SO(8)

representations do the CA and CB tensors belong to?

Write the explicit state realization of the NS–R and R–NS massless modes. Perform
the counting of fermionic and bosonic degrees of freedom.

Exercise 34

In the present exercise we shall study the unoriented closed superstring theory. Un-
oriented theories are invariant under the transformation Ω : σ → π − σ. What is
the effect of this transformation on the left and right mode operators? Show that
only type IIB theory can be made invariant under Ω. Show that the NS–NS fields
φ, Gij are even under Ω and that Bij is odd [Hint: Write the corresponding states
as components of bi−1/2 b̃

j
−1/2 |0, 0〉 and show that the action of Ω amounts to i↔ j.]

As far as the R–R sector is concerned, show that under Ω Cij is even and Cijkl is odd.
As far as the fermion fields are concerned show that the effect of Ω is to switch NS-R
↔ R–NS and therefore only a symmetric combination of the two survives (is even).
Perform a counting of the fermionic and bosonic degrees of freedom and motivate the
fact that the amount of supersymmetry is N = 1.
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