Computational Thinking Interventions in Higher Education

A Scoping Literature Review of Interventions Used to Teach Computational Thinking

Imke de Jong
i.dejongl@uu.nl
Utrecht University
Utrecht, The Netherlands

ABSTRACT

Computational Thinking is seen as a crucial skill in an increas-
ingly digital society. Researchers and educators in higher education
therefore aim to improve the Computational Thinking (CT) skills
of students using appropriate interventions. However, there is cur-
rently no overview of interventions used to teach CT and how
effective they are. With this scoping literature review, we provide
such an overview by identifying articles that discuss interventions
used to teach CT in higher education. We identify the teaching ap-
proaches used in these interventions, and discuss their effectiveness
and how this is assessed. Furthermore, we look at the use of adap-
tive interventions. Our search of three academic databases (Scopus,
ACM and ERIC) resulted in 1839 articles. After screening, 49 articles
remained. A detailed examination of the interventions discussed in
these articles showed that CT is still often taught through program-
ming assignments. The interventions are evaluated in a myriad
of ways, making it difficult to compare the effectiveness of inter-
ventions. We therefore suggest making use of more standardized
instruments to evaluate the effectiveness. Finally, although scaf-
folding is applied, interventions are not often adapted to the actual
proficiency level of a student.

CCS CONCEPTS

« Social and professional topics — Computer science educa-
tion; Information science education; Computational think-
ing.

KEYWORDS

Computational thinking, higher education, interventions, effective-
ness

ACM Reference Format:

Imke de Jong and Johan Jeuring. 2020. Computational Thinking Interven-
tions in Higher Education: A Scoping Literature Review of Interventions
Used to Teach Computational Thinking. In Koli Calling ’20: Proceedings
of the 20th Koli Calling International Conference on Computing Education
Research (Koli Calling °20), November 19-22, 2020, Koli, Finland. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3428029.3428055

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Koli Calling °20, November 19-22, 2020, Koli, Finland

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8921-1/20/11...$15.00
https://doi.org/10.1145/3428029.3428055

Johan Jeuring
j.tjeuring@uu.nl
Utrecht University
Utrecht, The Netherlands

1 INTRODUCTION

Computational Thinking (CT) skills are viewed as a set of essential
problem-solving skills that individuals need in the 21st century
[18, 70]. Computing technologies have become an integral part of
society. They are used to tackle complex problems, and to collect
and visualize data. Being able to think computationally is essential
to optimally make use of these technologies. The underlying skills
of CT (such as decomposition and algorithmic thinking) enable
problem solvers to optimally recognize and utilize the possibilities
offered by computational tools. Organizations are therefore looking
for graduates who can apply these skills [55]. In turn, educators
and researchers aim to find suitable ways to help students develop
these problem-solving skills. In the Netherlands, improving stu-
dents’ computational skills is therefore one of the focus areas for
universities, applied universities, and the Ministry of Education,
Culture and Science [68].

Different interventions and approaches to teach CT are being
developed. However, a comprehensive overview of interventions
and their effectiveness is currently lacking. Few overview studies
are available that present evidence for the effectiveness of inter-
ventions used to teach CT in higher education; literature reviews
often focus on primary and secondary education [25, 62]. Recently,
Agbo et al. [1] did provide an overview of interventions in higher
education. However, this study does not offer an inventory of CT
interventions aimed at a broad audience, but focuses on program-
ming education. Because CT is seen as a skill set that is important
for a broader population of students, not just computer scientists, a
literature study with a broader focus is needed.

With this scoping literature review we aim to fill this gap by
providing an overview of experiments with CT interventions in
diverse higher education contexts. We show how their effectiveness
is assessed and what results are obtained with these interventions.
This overview study gives lecturers and researchers more insight
into tested ways of incorporating CT. Furthermore, we are also
interested in examining whether interventions for teaching CT
are adapted to students’ proficiency levels to optimally support
the learner. For related domains like problem solving [9, 29] and
programming [54], it has been noted that scaffolding and adapting
interventions to students’ proficiency levels is beneficial, and this
may also improve the development of CT skills.

The research questions (RQs) underlying this study are therefore:

(1) What interventions are used to teach Computational Think-
ing in higher education?

(2) How is the effectiveness of Computational Thinking inter-
ventions in higher education assessed?

(3) How effective are Computational Thinking interventions in
higher education?

https://doi.org/10.1145/3428029.3428055
https://doi.org/10.1145/3428029.3428055

Koli Calling *20, November 19-22, 2020, Koli, Finland

(4) To what extent, and if so in what way, are Computational
Thinking interventions in higher education adapted to stu-
dents’ proficiency levels?

In this article, we will first give a brief introduction of CT and
the underlying skills, and then discuss the method of our scoping
review and its results.

2 COMPUTATIONAL THINKING

If we want to help students develop their Computational Thinking
skills, we first need to define what those skills are. But, although
being able to think computationally is deemed important, what this
entails exactly and how to teach it are both still subject to debate.

2.1 Defining Computational Thinking

Different definitions for CT have been proposed over the years [7,
56, 62]. One of the first definitions was proposed by Wing [71], who
defined CT as "[...] the thought processes involved in formulating
problems and their solutions so that the solutions are represented
in a form that can be effectively carried out by an information-
processing agent". Here, the processing agent could be a computer
or a human. In other definitions, the computer plays a more central
role, for example in the more recent definition of Denning and
Tedre [21] who define CT as "the mental skills and practices for
designing computations that get computers to do jobs for us, and
explaining and interpreting the world as a complex of information
processes”. In general, researchers and educators agree that CT
leads to new ways of thinking about problems and their solutions,
by providing problem solvers with additional tools (e.g. computing
devices) and strategies or skills (e.g. algorithms, decomposition) to
solve complex problems.

Besides the definition, the skills needed to make someone a
Computational Thinker are also subject to debate. Hsu et al. [25]
have looked at different studies and identified 19 different com-
petences involved in CT, among which abstraction, data analysis,
pattern recognition, algorithm design, debugging and error detec-
tion, and problem solving. Selby and Woollard [56] combined the
results of different studies and conclude that CT consists of the
ability to think in abstraction, decomposition, algorithms, evalua-
tion, and generalization. Meanwhile, Shute et al. [62] identify six
general facets: decomposition, abstraction, algorithms, debugging,
iteration, and generalization. The Computer Science Teachers As-
sociation (CSTA) and the International Society for Technology in
Education (ISTE) propose that CT also encompasses dispositions
and predispositions like confidently dealing with complexity, be-
ing able to handle open-ended questions, and perseverance when
solving difficult problems [18]. In line with this, a distinction is
sometimes made between knowing computational concepts (e.g.
loops, operators, conditionals), applying computational practices
(e.g. abstracting and modularizing, testing and debugging) and hav-
ing computational perspectives (e.g. questioning, expressing) [11].

2.2 Teaching Computational Thinking

Looking at the competences or skills that are part of CT and the
proposed definitions, it seems CT involves more than instructing
a computer by means of a programming language. Among other

Imke de Jong and Johan Jeuring

things, it involves abstracting the relevant information from a prob-
lem, knowing which tools to use to solve a problem, and creating
solutions that are reusable [62]. However, an analysis of the CT lit-
erature by Hsu et al. [25] shows that before 2018 the most important
teaching instrument used to teach children and young adults was
still a programming language, even though unplugged alternatives
(like Bebras tasks [6]) have also been developed. One can question
whether the more generic problem solving skills involved in CT
can be taught through programming only. The literature on this
topic shows conflicting results. Some researchers who investigated
whether programming assignments can lead to increased cognitive
skills like reasoning and planning found no or only limited increase
[34]. On the other hand, a meta-analysis by Liao and Bright [39]
showed programming education can increase skills like reasoning,
logical thinking, planning, and more general problem solving. It is,
however, questioned whether this is the most efficient or effective
way to teach these skills. Thus, it seems preferable to not solely rely
on programming assignments to develop CT skills. With this litera-
ture review, we aim to uncover what approaches are currently used
in higher education, and provide an overview of the effectiveness
of both programming and non-programming interventions.

2.3 Adaptive interventions for Computational
Thinking

We also want to investigate if, and if so how, interventions are
adapted to the skill level of the students. As mentioned above, for
children in the K-12 age range, a set of different non-programming
assignments has been created for the so-called Bebras challenges
[6]. The Bebras tasks consist of different unplugged assignments
through which children and young adults can learn specific CT
skills. Different Bebras have been developed for different age groups
or school grades. The developers of these assignments are thereby
catering for the expected proficiency level of students of particular
age groups. These assignments do not take the individual, actual
skill level of the student into account. They are rather static; every
student in a class receives the same assignment. However, research
has shown that the current proficiency level of a student influ-
ences what teaching method is most appropriate [29]. Scaffolding
or adapting the teaching method to a student’s proficiency has
positive learning effects in programming education [42]. Matching
the teaching method to the proficiency level of the student may
therefore also be important when teaching CT. Tedre and Denning
[65], for example, highlight the importance of distinguishing dif-
ferent proficiency levels while teaching and assessing CT skills. In
recent years, some researchers have taken concepts like scaffolding
and proficiency levels and applied them to CT. Pollock et al. [50]
created a rubric for higher education that distinguishes proficiency
levels. Also, Basu et al. [5] have used the concept of scaffolding to
create a framework with which to assist students in accomplishing
CT assignments. Finally, Basawapatna et al. [4] applied scaffolding
techniques and found that they help to keep students engaged in
learning. We therefore expect it would be beneficial for the stu-
dents if their current skill level is taken into account when CT
interventions are presented, and we are interested to find out if this
technique is currently being used. This is one of the elements we
investigate in this literature review.

Computational Thinking Interventions in Higher Education

3 METHOD

This review is set-up using the methodology proposed by the
PRISMA extension for scoping literature reviews [66], and the
Joanna Briggs Institute review guidelines [48]. The next sections
describe the setup of the review.

3.1 Information sources

In this scoping review, we used a number of different databases:
one focused on the domain of education, one focused on Computer
Science and one generic academic database. Doing so, we aim to
provide a comprehensive overview of the interventions currently
used to teach Computational Thinking. The databases used in this
review are:

e ERIC (journal database aimed at research into education -
https://eric.ed.gov/)

e SCOPUS (Elsevier journal database - https://www.scopus.com)

e ACM digital library (article database aimed at research into
computing - https://dl.acm.org/)

3.2 Inclusion criteria

The articles identified through the literature search were screened
and only selected if they match the following criteria:

(1) The year of publication is 2006 or later. Although the individ-
ual CT skills have been the focus of research before 2006,
the article of Jeannette Wing published in this year [70]
(re)introduced CT as an important skill set.

(2) The interventions must be aimed at teaching CT. Articles were
only included when the authors indicate that the interven-
tions used in the article are aimed at teaching CT. This means
articles discussing general programming education were ex-
cluded.

(3) The research domain is higher education. We aim to identify
interventions that can be used to teach CT to undergraduate
students. These students have received multiple years of
elementary and high school education, which means that
interventions for the K-12 levels will probably be too simple.

(4) The effect of the intervention should be measured. We aim to
present an overview of interventions and their effectiveness
in influencing CT skills. Therefore, the article must discuss
how the effect(iveness) of the intervention was measured.
The only exceptions to this criterion are papers describing
interventions adapted to the proficiency level of the student.
These papers were always included due to our interest in
adaptive CT interventions.

(5) The paper must be published in a peer-reviewed journal or
peer-reviewed proceedings of a conference.

(6) Only full papers, i.e. no panel announcements, work-in-progress
papers, workshop overviews etc.

(7) The paper must be written in English.

3.3 Search method & search strategy

We selected the papers in three steps. Before the start of the search,
a number of available articles were analyzed to determine which
keywords should be used to find articles discussing CT interven-
tions in higher education. This resulted in the following keywords:

Koli Calling *20, November 19-22, 2020, Koli, Finland

Table 1: Query result count

Database Number of results
ERIC 12

SCOPUS 391

ACM 1811

Total 2214

e Computational Thinking, AND

e K-16 OR higher education, AND

e interventions OR tool OR intervention tool OR teaching
method OR assignment OR activity OR activities OR learning
strategy OR learning strategies OR instructional strategy OR
teaching tool OR learning method OR exercise

As a second step we used these search terms and the inclusion
criteria (discussed in Section 3.2) to devise a search strategy (i.e.
search queries) for each database. The number of search results per
database can be found in Table 1. A complete overview of the papers
found is available from the first author upon request. After removal
of duplicates and an initial title screening (e.g. titles referencing
only K-12 were excluded), one of the authors screened the resulting
1839 articles using the inclusion criteria. First, the relevance was
determined by examining the title. If the article was likely to be
relevant, or the result was inconclusive, the abstract of the article
was screened. As a third step, the remaining articles were screened
more extensively by reading (parts of) the papers.

3.4 Coding and extracting information

An initial coding scheme was set up to extract information on rele-
vant categories from the articles and classify them. The first author
coded the papers and used emergent coding, which means that addi-
tional sub-codes were created based on the contents of the articles.
The academic discipline, higher education level (undergraduate,
graduate or post-graduate) and the CT definition (specifically men-
tioning CT skills or generic) were coded to get some background
information on the context of CT research in higher education.
Then, we coded specific information in each article to answer our
research questions. The final coding scheme for the RQs can be
found in Table 2.

For RQ1 we investigated the intervention type (e.g. assignments,
lectures with short activities), the learning objectives, the inter-
vention length, and the scope of the intervention (e.g. a course or
workshop, a curriculum, stand-alone assignments). If the interven-
tion consisted of assignments, we examined the type of assignments
used. We made a distinction between programming assignments
(both text- and bock-based) and other, non-programming assign-
ments. The latter can be unplugged assignments or assignments
using computers but without the need to program.

To answer RQ2 and RQ3, we coded two aspects of the evaluation
of the interventions: (1) how evidence of the effectiveness was
collected and (2) what kind of evidence the evaluation focused on.
We did not use sub-codes to code the outcomes of the evaluations.

Finally, for RQ4 we examined if adaptation was applied and
how the student’s level was assessed (the adaptation strategy). If

Koli Calling *20, November 19-22, 2020, Koli, Finland

applicable, we also coded the form of adaptation to understand
what the adaptation entailed.

To confirm the reliability of the coding, the second author coded
5 articles (10% of the selected papers) as well. Because one-to-many
or non-exclusive coding was applied (more than one sub-code of
a category could apply to a paper), inter-reliability measures like
Cohen’s Kappa and Krippendorff could not be used. We therefore
used fuzzy Kappa as a measure of coding reliability [33]. The results
showed substantial agreement (fuzzy x = 0.66). Out of the 60 items,
on 37 items both coders completely agreed, for 7 items there was
partial agreement, and on 16 items the coders disagreed. After
discussion between the authors, the agreement with the coding
of the first author was raised to almost perfect agreement (fuzzy
k = 0.93), with 5 out of 60 codes needing (partial) re-adjustment.
It was therefore concluded that the coding of the first author was
sufficiently reliable.

4 RESULTS

The screening and eligibility checks discussed in section 3.3 resulted
in the selection of 49 papers. Details of the screening process can
be found in Figure 1. Table 3 provides an overview of the final
selection of papers.

) Records identified through
= database searching
'E (ACM = 1811; ERIC = 12,
e SCOPUS = 391)
E
g |
p-
Records after duplicates
— removed and titles
screened
] (1839)
'g Records excluded
e 1
A Aimed at K-12 = 444
Records screened /' Not aimed at CT interventions =
(1839) 850
Other =52
£
i= . Full-text articles excluded, with
B Full-text articles
o reasons
o assessed for
E"(i';;']lltv ™ Full-text not found = 23
No eval. of CT interventions = 114
K-12 =53
s Other = 254
3 Studies included
g
N =49

—

Figure 1: PRISMA diagram [66] showing the evolution of the
search

In this section we will first present the types of CT interventions
used in higher education (RQ 1) and then discuss the effectiveness
of these interventions and how this is assessed (RQ 2 and 3). Finally,
we will elaborate on the use of adaptive interventions (RQ 4).

Imke de Jong and Johan Jeuring

Table 2: Coding scheme

RQ

Category

Sub-codes

RQ1

RQ1

RQ1

RQ1

RQ1

RQ2

RQ2

RQ3 Evaluation - outcome
RQ4 Adaptation strategy

RQ4

Intervention scope

Intervention length

Intervention type

Assignment type

Learning objective

Evaluation - how

Evaluation - what

Form of adaptation

Stand-alone assignment
Course

Curriculum

Other

Not specified

Less than a day

One day to a week

More than a week to a month
More than a month to a year
More than a year

Not specified

Assignments

Lectures (with activities)
Lectures and assignments
Other

Not specified

Programming

Other

Not specified

General CT skills

Misc. computing skills
Programming skills

Other

Not specified

Anecdotal

Empirical - course grades
Empirical - interviews
Empirical - pre- and post-test
Empirical - survey

Usage, particip. & effort analytics
Other

Not specified

Attitude towards CS

Attitude towards CT

Course grades

CT knowledge

CT skills

Programming knowledge
Programming skills

Usage, particip. & effort analytics
Other

Not specified

Measurement of student’s level
Self-assessment of level by student
No adaptation

Order of assignments
Programming level of assignment
Type of instruction

Computational Thinking Interventions in Higher Education

Koli Calling *20, November 19-22, 2020, Koli, Finland

Table 3: Overview of papers - intervention and assignment types

Authors Year Intervention type Assignment type
Alrashidi et al.[2] 2017 Assignments Programming
Aristawati et al.[3] 2018 Assignments Programming
Basawapatna et al.[4] 2019 Assignments Programming
Behnke et al.[8] 2016 Not specified Not specified, Programming
Benakli et al.[10] 2017 Assignments Programming

Cabo and Lansiquot[12] 2016 Assignments Other, Programming
Cai et al.[13] 2018 Lectures and assignments Not specified
Calderon[14] 2018 Lectures and assignments Other

Calderon et al.[15] 2020 Assignments Other

Cetin and Andrews-Larson[16] 2016 Lectures and assignments Programming
Choi[17] 2019 Not specified Other, Programming
Corral[19] 2018 Lectures and assignments Programming
Curzon et al.[20] 2014 Lectures (with activities)

Dodero et al.[22] 2017 Assignments Programming
Gabriele et al.[23] 2019 Lectures and assignments Other, Programming
Gao et al.[24] 2019 Assignments Other, Programming
Jaipal-Jamani and Angeli[26] 2017 Assignments Programming

Jung et al.[27] 2017 Lectures and assignments Other, Programming
Kafura et al.[28] 2015 Lectures and assignments Other, Programming
Kazimoglu et al.[30] 2012 Not specified Programming

Kim et al.[31] 2013 Lectures and assignments Other

Kim and Kim[32] 2017 Lectures and assignments Programming

Kwon and Sohn[35] 2018 Lectures and assignments Other, Programming
L’Heureux et al.[41] 2012 Assignments Other, Programming
Lamprou and Repenning[36] 2018 Lectures and assignments Programming

Lee and Lovvorn([38] 2016 Assignments Programming

Lee et al.[37] 2019 Assignments Programming
Libeskind-Hadas and Bush[40] 2013 Lectures and assignments Other, Programming
Meysenburg et al.[43] 2018 Lectures and assignments Programming

Miller et al.[44] 2014 Assignments Other

Pala and Tiirker[45] 2019 Lectures and assignments Programming
Pasquinelli and Joines[46] 2011 Assignments Other, Programming
Peteranetz et al.[47] 2019 Lectures and assignments Not specified, Other
Philip et al.[49] 2013 Lectures and assignments Other

Pollock et al.[50] 2019 Assignments, Lectures and assignments, Other Other, Programming
Pulimood et al.[51] 2016 Assignments Other, Programming
Qin[52] 2009 Lectures and assignments Other, Programming
Senske[57] 2017 Not specified Other, Programming
Settle[58] 2011 Lectures and assignments Other

Shanmugam et al.[59] 2019 Assignments Other, Programming
Shell et al.[60] 2017 Assignments Other

Shih et al.[61] 2014 Assignments Programming
Socher et al.[63] 2019 Assignments Other, Programming
Sung and Jeong[64] 2019 Lectures and assignments Programming

Van Dyne and Braun[67] 2014 Lectures and assignments Not specified, Programming
Walden et al.[69] 2013 Not specified

Wu et al.[72] 2019 Assignments Programming

Yadav et al.[74] 2011 Lectures (with activities)

Yadav et al.[73] 2014 Lectures (with activities)

Koli Calling *20, November 19-22, 2020, Koli, Finland

Table 4: Overview of academic disciplines

Academic discipline Papers

Architecture [57]

Biochemistry [43]

Biology [43],[40]

Business Administration [59]

Communication [69]

Computer Science [60],[691,[2],[32],[44].[10],[43]
(14],[3],[511,[301,[63],[15],[37]

Teacher Education [73],[74],[201,[32],[36],[26],[35]
(22].[16].[31].[72].[64].[45].[23]

Emergency management [61]

Engineering [10],[14],[38],[49],[15], [46]

Fine arts [19]

General [81,[67],[44].[13],[24].[12],[28]
(58],(27],[17]

Information Systems [69],[41]

Journalism [51]

Life Sciences [52]

Mathematics [50],[10]

Music [50]

Not specified [4],[47]

Sociology [50]

Tourism [63]

4.1 CT interventions in higher education

As can be seen in Table 4, our selection of papers discuss CT inter-
ventions applied in a range of different academic disciplines. A total
of 18 different disciplines are mentioned. Most interventions are
aimed at Computer Science (N = 14) or pre- or post-service Teacher
Education (N = 14). In 10 articles a generic intervention not aimed
at a specific target audience (often described as CS for non-majors)
is presented.

The selected papers mostly discuss CT interventions targeted
at undergraduate students (N = 39), and often describe the design
or redesign of a course (N = 32) or a stand-alone assignment (N =
13). We also examined the length of the interventions. Although
17 articles did not explicitly specify this, most articles (N = 22)
indicated the length of the intervention was between a month and
a year. Usually those interventions were applied for the duration
of one semester, which matches our finding that the interventions
are often course (re)designs. We encountered only two studies that
describe interventions in which a curriculum for CT (i.e. more than
a single course) is addressed, and no interventions that lasted longer
than one year.

The learning objectives of the interventions vary, although most
papers (N = 30) indicate that developing one or more CT skills
was indeed the objective. Learning objectives also include program-
ming (N = 14) and other or miscellaneous (computer) skills (N =
19) like using Microsoft Office applications [13, 46] and Git [43], or
computer literacy [69]. Fourteen papers indicate a combination of
these learning objectives. Three papers did not specify the learning
objectives of the interventions. We also examined the definitions
of CT used in the papers. Here, we discovered that although the

Imke de Jong and Johan Jeuring

specific definition used varies, most papers (N = 34) apply or build
upon generally agreed skills (e.g. abstraction, decomposition, algo-
rithms). Ten of the papers provide a more generic definition, for
example "a kind of logical thinking" [31], "an outlook and set of
skills that will help our students use computing well today and help
them adapt to changes in computing as future professionals" [57],
and "Computational thinking involves solving problems, designing
systems, and understanding human behavior, by drawing on the
concepts fundamental to computer science." [67].

One of the main goals of this scoping review is to determine
the types of interventions used. As can be seen in the overview
in Table 2, while classifying the papers we noticed a distinction
between programming and non-programming assignments as (part
of) interventions. In our selection of papers, 18 papers use only
programming assignments and 7 papers use only non-programming
assignments (see Table 3). Also, 16 studies use a combination of
programming and non-programming assignments.

Taking a closer look at the programming assignments, a variety
of languages and tools are used to develop CT skills. In some studies,
students directly write code in Python [2, 40, 43, 45, 50], R [10],
HTML/JavaScript [19], C++ [45, 72], SQL [52], VBA [46], and Java
[17]. Others interventions use graphical or block-based program-
ming environments like Scratch [23, 32, 36, 64], MIT App Inventor
[41, 59, 61], AgentCubes [4, 36], Alice [12, 41], VEDIL [22], Blockly
[24], or Program your Robot [30]. Also, robotics kits like LEGO
WeDo [26], LEGO Mindstorms [3], Finch [38], and Arduino [45] are
used. Finally, some studies use a combination [27, 28, 57, 67], for
example starting with a graphical environment and then moving
to a text-based environment [67]. The artefacts being created dur-
ing these assignments are very diverse, although it is not always
clear from articles what exactly is being programmed. Some pro-
gramming assignments focus more general on the creation of an
application (e.g. [23, 59]). Others ask students to program a game
[4, 38] or a robot [2, 45, 67]. More domain-specific programming
assignments are also discussed, e.g. image processing [43], solving
mathematical problems [10], web design for Fine Arts students [19]
or an app for emergency management [61].

This diverse spectrum of tools and techniques is also visible when
looking at the non-programming assignments. Different options
to teach CT without programming have been used in the studies.
Examples of these are using computational creativity exercises
[47, 60], paper-and-pencil or unplugged activities [15, 31, 40, 59],
and simulation environments [28]. Content-wise the assignments
are again very different. Students are asked to analyze datasets
and visualize their findings in graphs [50], or practice algorithmic
thinking through Marching Orders Activities [15].

Combinations of programming and non-programming assign-
ments are also used. In some papers, interventions are described
that involved giving different types of interventions to students
of academic disciplines working together on shared projects. For
example, the Computer Science majors would be asked to program,
while the Journalism majors [51] or Tourism majors [63] were given
non-programming assignments like gathering user requirements.

Computational Thinking Interventions in Higher Education

4.2 Determining the effectiveness of
interventions

A myriad of interventions has been developed to teach CT, and the
same holds for the ways in which the effectiveness of interventions
is determined. Table 2 shows that we have identified at least 7
different evaluation methods. Empirical methods like course grades,
pre- and post-tests of knowledge or skills, surveys and interviews
are used. Also, the participation or effort put in by the students is
examined, and anecdotal evidence is gathered from researchers or
teachers.

The implementation of these methods varies a lot between the
studies. As an example, researchers using pre- and post-tests often
devise their own set of questions to determine the effectiveness of
the interventions. Out of the 23 pre- and post-tests, 22 different
measurements instruments are used, details of which are not always
included in the papers. Only one of the measurement instruments
was used twice. This is probably because those papers had an author
in common and examined the same kind of intervention [44, 60]

The studies not only differ in how, but also in what they measure.
Though the selected papers all present interventions that aim to
develop students’ CT skills, when evaluating the results, the focus
is not always on those CT skills. We refer to Table 2 again for the
different measurements used. Half of the studies (N = 25) use two
or more of these measurement types to examine the effect of their
interventions. However, in only 19 out of the 49 papers the students’
actual CT skills are measured in some way. Other measurements
specifically aimed at CT include knowledge about CT (N = 14) or
attitude towards CT (N = 8). And even though most researchers
seem to agree that programming is not equivalent to CT, there are
studies using programming skills or knowledge as measurement
without looking at CT skills or knowledge (N = 7).

4.3 Results on effectiveness of CT
interventions

For our third RQ, we examined how effective CT interventions
in higher education are. Due to the different evaluation methods
used, it is difficult to compare and contrast the effectiveness of
interventions used in current studies. However, below we present
some of the findings regarding CT skills, knowledge and the attitude
towards CT.

Most studies describe positive effects of their interventions. A
number of studies evaluated the CT skills and found improvement
on post-tests (both self-assessment and actual skill tests) [2, 15,
17, 32, 45, 47, 49, 51, 63, 67, 69], a relation between the number
of assignments completed and an increase in CT skills [44, 60],
increased awareness of using CT skills [37, 41], and evidence of CT
skills through an investigation of programming concepts used in
Scratch [23]. Studies also describe improved understanding of CT
[13,17, 20, 31, 47, 50, 73, 74], and conclude that the attitude towards
CT was improved by the intervention [47, 57, 59, 64, 73, 74].

Less positive results are also reported. The interest in CT did not
always increase after the intervention [50], nor the knowledge of
CT [36]. Also, Pasquinelli and Joines [46] noted that the use of com-
puting tools distracted students from learning the domain-specific
problem solving, in their case in the domain of thermodynamics.

Koli Calling *20, November 19-22, 2020, Koli, Finland

Some studies compared different approaches to teach CT. Kim
et al. [31] compared a Paper-and-pencil Programming Strategy
(PPS) with a LOGO based course, and found that the PPS increased
the students’ self-reported understanding of CT more than LOGO.
Also, the interest in learning CS increased significantly more in the
PPS-course. In a study comparing Arduino and C++ as program-
ming tools, Pala and Tiirker [45] found that Arduino influenced
computational thinking skills, but C++ did not.

4.4 Adapting interventions to the learner

To answer our fourth and final RQ, we examined the use of adaptive
interventions. In our selection, very few studies applied interven-
tions with some form of adaptation to the students’ skill levels.
Some studies did indicate that scaffolding was part of the way the
course or assignment was set up. This scaffolding was fixed and
the same for each student, however. Out of the 49 studies, only 3
studies [4, 8, 38] reported that the interventions were adapted to the
actual current proficiency level of the student. This adaptation was
always based on the self-reported proficiency level of a student. We
encountered three forms of adaptation of the interventions: Behnke
et al. [8] varied the order of assignments, Lee and Lovvorn [38] ad-
justed the programming level of the assignment, and Basawapatna
et al. [4] differentiated the type of instruction students of different
levels received.

5 DISCUSSION AND CONCLUSION

With this scoping review, we aim to provide insight into the inter-
ventions used to teach CT in diverse disciplines in higher education,
and the ability of these interventions to actually improve students’
CT skills. We searched three academic databases and screened the
results using seven inclusion criteria. This resulted in the selection
of 49 papers, published since 2006, in which an intervention to de-
velop CT skills in higher education was described. We found that CT
interventions are developed for students of numerous disciplines,
but also for the general student population (CS for non-majors).
Most of the interventions are targeted at students in Computer
Science and Teacher Education.

For our first research question, we examined what kind of in-
terventions are used to teach CT. Just like Hsu et al. [25], we con-
clude that programming assignments are still the most often used
approach. However, we also noted the use of non-programming
assignments, often in combination with the former. The assign-
ments themselves are very diverse: both domain-specific (e.g. solve
a mathematical problem using R) and more generic assignments
(e.g. program a game) are used. We only encountered two studies
that describe the creation of a curriculum for CT, and no interven-
tions that lasted longer than one year. As CT is seen as a problem
solving skill, and problem solving skills take time to develop [53],
we hypothesize it would be useful to create longer interventions.
This enables students to better develop their computational think-
ing skills. Also, re-examining the CT skills of students some time
after the interventions may provide valuable information about the
persistence of the developed skills.

Regarding methods used to evaluate the effectiveness of inter-
ventions (RQ2), we conclude that a lot of work still needs to be
done to incorporate standardized measurements of CT into the

Koli Calling *20, November 19-22, 2020, Koli, Finland

research. In current studies, numerous different instruments are
used to examine the outcome of interventions. Most often this en-
tails researchers developing their own tests to assess elements like
CT skills and knowledge. From the articles we examined, it is not
always clear what these tests entail exactly (for example which
questions were asked). It would benefit the CT research community
and educators to start developing and using standardized instru-
ments, as this would enable comparison of results and effectiveness
between interventions for example by comparing effect sizes.

Looking at the effectiveness of the interventions (RQ3), we can
conclude from our current review that the articles describe positive
effects of their interventions on a myriad of different constructs.
These range from direct measurement of CT skills and knowledge,
to the assessment of programming skills and knowledge, or atti-
tudes towards CS and CT. All papers provide indications that their
solution works in relation to CT, but this is measured in so many
different ways (both the instruments used and the type of data
gathered) that it is sometimes difficult to objectively state that CT
skills are actually improved after the interventions.

Finally, for RQ4, we investigated the use of interventions adapted
to the proficiency levels of students. Only three papers in our selec-
tion apply some form of adaptation and tailor the intervention to a
student’s current proficiency level, even though this has shown to
be beneficial for problem solving skills [29]. The types of adaptation
applied are different in these studies, but the current level of the
student was always assessed in the same way, namely through self-
assessment by the student. The question is whether this method is
reliable. It may be interesting to investigate other ways of assessing
the student’s current proficiency level, or to find a more dynamic
way of tailoring interventions to the student.

With this review, we give a high-level overview of articles in
which CT interventions for higher education are proposed and eval-
uated. We believe our research is an important addition to the field
of CT education. For example, our review includes just six papers
also included in the review by Agbo et al. [1]. It would be inter-
esting to look more in-depth at the interventions and evaluations
described in the final selection of papers. Examining the elements
used in the interventions to develop specific CT skills, for instance,
could provide additional insight into the operationalization of CT
in higher education. A deeper investigation into the link between
the applied definition of CT, the learning goals of the intervention,
and the evaluation methods used could be valuable as well. It is
important that these are aligned. Also, in our literature review we
encountered numerous articles in which CT interventions are pro-
posed but not evaluated (see Figure 1). Investigating those articles
further, and evaluating their interventions, will provide additional
insight into ways to teach CT.

For both researchers and educators, our review can be a valuable
resource when searching for CT interventions in higher education.
The articles in our selection offer a description of interventions
aimed at developing CT skills, and evaluate those interventions.
However, from this review we must also conclude that a lot of
work still needs to be done if educators and researchers want to
be able to compare and contrast the effectiveness of interventions.
Many different interventions are applied in a lot of different settings
and they are evaluated using numerous different tools and tests.
It would be beneficial for the CT community if consensus could

Imke de Jong and Johan Jeuring

be reached on the definition of CT and its underlying skill set,
and if standardized tests to measure CT skills would be developed.
This would aid us in developing and testing interventions that help
students develop their CT skills optimally.

REFERENCES

[1] Friday Joseph Agbo, Solomon Sunday Oyelere, Jarkko Suhonen, and Sunday
Adewumi. 2019. A Systematic Review of Computational Thinking Approach for
Programming Education in Higher Education Institutions. In Proceedings of the
19th Koli Calling International Conference on Computing Education Research (Koli,
Finland) (Koli Calling ’19). Association for Computing Machinery, New York, NY,
USA, Article 12, 10 pages. https://doi.org/10.1145/3364510.3364521

[2] Malek Alrashidi, Michael Gardner, and Vic Callaghan. 2017. Evaluating the
Use of Pedagogical Virtual Machine with Augmented Reality to Support Learn-
ing Embedded Computing Activity. In Proceedings of the 9th International
Conference on Computer and Automation Engineering (Sydney, Australia) (IC-
CAE ’17). Association for Computing Machinery, New York, NY, USA, 44-50.
https://doi.org/10.1145/3057039.3057088

[3] Feri Ardiana Aristawati, Cucuk Budiyanto, and Rosihan Ari Yuana. 2018. Adopt-
ing Educational Robotics to Enhance Undergraduate Students’ Self-Efficacy Levels
of Computational Thinking. Journal of Turkish Science Education 15, Special Issue
(2018), 42-50.

[4] Ashok Basawapatna, Alexander Repenning, and Mark Savignano. 2019. The

Zones of Proximal Flow Tutorial: Designing Computational Thinking Cliffhang-

ers. In Proceedings of the 50th ACM Technical Symposium on Computer Science

Education (Minneapolis, MN, USA) (SIGCSE ’19). Association for Computing Ma-

chinery, New York, NY, USA, 428-434. https://doi.org/10.1145/3287324.3287361

Satabdi Basu, Gautam Biswas, and John S. Kinnebrew. 2017. Learner modeling

for adaptive scaffolding in a Computational Thinking-based science learning

environment. User Modeling and User-Adapted Interaction 27, 1 (2017), 5-53.

https://doi.org/10.1007/s11257-017-9187-0

[6] Bebras. 2019. Bebras, International challenge on Informatics and computational
thinking. Retrieved August 23, 2020 from https://www.bebras.org/

[7] Karl Beecher. 2017. Computational Thinking : A Beginner’s Guide to Problem-
solving and Programming. BCS, The Chartered Institute for I'T, Swindon, UK.

[8] Kara Alexandra Behnke, Brittany Ann Kos, and John K. Bennett. 2016. Com-

puter Science Principles: Impacting Student Motivation & Learning Within

and Beyond the Classroom. In Proceedings of the 2016 ACM Conference on In-
ternational Computing Education Research (Melbourne, VIC, Australia) (ICER

’16). Association for Computing Machinery, New York, NY, USA, 171-180.

https://doi.org/10.1145/2960310.2960336

Brian R. Belland. 2014. Scaffolding: Definition, current debates, and future direc-

tions. In Handbook of research on educational communications and technology,

M. Spector, M.D. Merrill, J. Elen, and M.J. Bishop (Eds.). Springer-Verlag, New

York, 505-518. https://doi.org/10.1007/978-1-4614-3185-5

Nadia Benakli, Boyan Kostadinov, Ashwin Satyanarayana, and Satyanand Singh.

2017. Introducing computational thinking through hands-on projects using

R with applications to calculus, probability and data analysis. International

Journal of Mathematical Education in Science and Technology 48, 3 (2017), 393-427.

https://doi.org/10.1080/0020739X.2016.1254296
[11] Karen Brennan and Mitchel Resnick. 2012. New frameworks for studying and
assessing the development of computational thinking. In Proceedings of the 2012
annual meeting of the American Educational Research Association, Vol. 1. 1-25.

[12] Candido Cabo and Reneta D Lansiquot. 2016. Integrating Creative Writing and
Computational Thinking to Develop Inter-disciplinary Connections. In Proceed-
ings of the 2016 ASEE Annual Conference.

[13] Jin Cai, Harrison Hao Yang, Di Gong, Jason MacLeod, and Yao Jin. 2018. A

Case Study to Promote Computational Thinking: The Lab Rotation Approach. In

Blended Learning. Enhancing Learning Success, Simon K.S. Cheung, Lam-for Kwok,

Kenichi Kubota, Lap-Kei Lee, and Jumpei Tokito (Eds.). Springer International

Publishing, Cham, 393-403.

Ana Calderon. 2018. Susceptibility to Learn Computational Thinking Against

STEM Attitudes and Aptitudes. Springer International Publishing, Cham, 279-299.

https://doi.org/10.1007/978-3-319-93566-9_14

[15] Ana C Calderon, Deiniol Skillicorn, Andrew Watt, and Nick Perham. 2020. A dou-

ble dissociative study into the effectiveness of computational thinking. Education
and Information Technologies 25, 2 (2020), 1181-1192.

[16] Ibrahim Cetin and Christine Andrews-Larson. 2016. Learning sorting algorithms

through visualization construction. Computer Science Education 26, 1 (2016),

27-43. https://doi.org/10.1080/08993408.2016.1160664

Sook-Young Choi. 2019. Development of an Instructional Model based on Con-

structivism for Fostering Computational Thinking. International Journal of

Innovative Technology and Exploring Engineering (IJITEE) 8, 3C (2019), 381-385.

Computer Science Teachers Association (CSTA), and International Society for

Technology in Education (ISTE). 2011. Computational Thinking Leadership

—
)

—
)

[10

[14

[17

(18

https://doi.org/10.1145/3364510.3364521
https://doi.org/10.1145/3057039.3057088
https://doi.org/10.1145/3287324.3287361
https://doi.org/10.1007/s11257-017-9187-0
https://www.bebras.org/
https://doi.org/10.1145/2960310.2960336
https://doi.org/10.1007/978-1-4614-3185-5
https://doi.org/10.1080/0020739X.2016.1254296
https://doi.org/10.1007/978-3-319-93566-9_14
https://doi.org/10.1080/08993408.2016.1160664

Computational Thinking Interventions in Higher Education

[19

[20

[21
[22

[23

[24

[25

[26

[27

[28

[29

[30

[31

[32

[33

[34

[35

[36

[38

]
)

]

]

]

]

]

]

Toolkit. Retrieved February 4, 2020 from http://www.iste.org/docs/ct-documents/
ct-leadershipt- toolkit.pdf

Luis Corral. 2018. Experience Report of a Software Development Course in a
Faculty of Fine Arts. In CC-TEL/TACKLE@ EC-TEL.

Paul Curzon, Peter W. McOwan, Nicola Plant, and Laura R. Meagher. 2014. Intro-
ducing Teachers to Computational Thinking Using Unplugged Storytelling. In
Proceedings of the 9th Workshop in Primary and Secondary Computing Education
(Berlin, Germany) (WiPSCE ’14). Association for Computing Machinery, New
York, NY, USA, 89-92. https://doi.org/10.1145/2670757.2670767

Peter] Denning and Matti Tedre. 2019. Computational thinking. MIT Press.
Juan Manuel Dodero, José Miguel Mota, and Ivan Ruiz-Rube. 2017. Bringing Com-
putational Thinking to Teachers’ Training: A Workshop Review. In Proceedings of
the 5th International Conference on Technological Ecosystems for Enhancing Multi-
culturality (Cadiz, Spain) (TEEM 2017). Association for Computing Machinery,
New York, NY, USA, Article 4, 6 pages. https://doi.org/10.1145/3144826.3145352
Lorella Gabriele, Francesca Bertacchini, Assunta Tavernise, Leticia Vaca-
Cardenas, Pietro Pantano, and Eleonora Bilotta. 2019. Lesson Planning by Compu-
tational Thinking Skills in Italian Pre-Service Teachers. Informatics in Education
18, 1 (2019), 69-104.

Peipei Gao, Mingxiao Lu, Hong Zhao, and Min Li. 2019. A New Teaching Pattern
Based on PBL and Visual Programming in Computational Thinking Course.
In 2019 14th International Conference on Computer Science Education (ICCSE).
304-308.

Ting-Chia Hsu, Shao-Chen Chang, and Yu-Ting Hung. 2018. How to learn and
how to teach computational thinking: Suggestions based on a review of the
literature. Computers & Education 126 (2018), 296-310. https://doi.org/10.1016/].
compedu.2018.07.004

Kamini Jaipal-Jamani and Charoula Angeli. 2017. Effect of robotics on elementary
preservice teachers’ self-efficacy, science learning, and computational thinking.
Journal of Science Education and Technology 26, 2 (2017), 175-192.

Andrew Jung, Jinsook Park, Andrew Ahn, and Mira Yun. 2017. CS for ALL:
Introducing Computational Thinking with Hands-On Experience in College.
In 2017 International Conference on Computational Science and Computational
Intelligence (CSCI). IEEE Computer Society, Los Alamitos, CA, USA, 1073-1078.
https://doi.org/10.1109/CSC1.2017.187

Dennis Kafura, Austin Cory Bart, and Bushra Chowdhury. 2015. Design and
Preliminary Results From a Computational Thinking Course. In Proceedings of the
2015 ACM Conference on Innovation and Technology in Computer Science Education
(Vilnius, Lithuania) (ITiCSE ’15). Association for Computing Machinery, New
York, NY, USA, 63-68. https://doi.org/10.1145/2729094.2742593

Slava Kalyuga. 2007. Expertise Reversal Effect and Its Implications for Learner-
Tailored Instruction. Educational Psychology Review 19, 4 (Dec 2007). https:
//doi.org/10.1007/s10648-007-9054-3

Cagin Kazimoglu, Mary Kiernan, Liz Bacon, and Lachlan MacKinnon. 2012. Learn-
ing Programming at the Computational Thinking Level via Digital Game-Play.
Procedia Computer Science 9 (2012), 522 — 531. https://doi.org/10.1016/j.procs.
2012.04.056

Byeongsu Kim, Taechun Kim, and Jonghoon Kim. 2013. Paper-and-Pencil Pro-
gramming Strategy toward Computational Thinking for Non-Majors: Design
Your Solution. Journal of Educational Computing Research 49, 4 (2013), 437-459.
https://doi.org/10.2190/EC.49.4.b

Jeong Ah Kim and Hee Jin Kim. 2017. Flipped Learning of Scratch Programming
with Code.Org. In Proceedings of the 2017 9th International Conference on Edu-
cation Technology and Computers (Barcelona, Spain) (ICETC 2017). Association
for Computing Machinery, New York, NY, USA, 68-72. https://doi.org/10.1145/
3175536.3175542

Andrei P Kirilenko and Svetlana Stepchenkova. 2016. Inter-coder agreement in
one-to-many classification: fuzzy kappa. PloS one 11, 3 (2016). https://doi.org/10.
1371/journal.pone.0149787

D. Midian Kurland, Roy D. Pea, Catherine Clement, and Ronald Mawby. 1984. On
the cognitive effects of learning computer programming. New Ideas in Psychology
2,2 (1984), 137-168. https://doi.org/10.1016/0732-118X(84)90018-7

Kil Young Kwon and Won-Sung Sohn. 2018. Software Education Model for Non-
major Undergraduate Students using DBSEM. International journal of advanced
science and technology 114 (2018), 35-48.

Anna Lamprou and Alexander Repenning. 2018. Teaching How to Teach Com-
putational Thinking. In Proceedings of the 23rd Annual ACM Conference on
Innovation and Technology in Computer Science Education (Larnaca, Cyprus)
(ITiCSE 2018). Association for Computing Machinery, New York, NY, USA, 69-74.
https://doi.org/10.1145/3197091.3197120

Lap-Kei Lee, Tsz-Kin Cheung, Lok-Tin Ho, Wai-Hang Yiu, and Nga-In Wu. 2019.
Learning Computational Thinking Through Gamification and Collaborative
Learning. In Blended Learning: Educational Innovation for Personalized Learning,
Simon K. S. Cheung, Lap-Kei Lee, Ivana Simonova, Tomas Kozel, and Lam-For
Kwok (Eds.). Springer International Publishing, Cham, 339-349.

SB Lee and H Lovvorn. 2016. Building computational thinking skills using robots
with first-year engineering students. In Proceedings of the 2016 ASEE Annual
Conference.

(39]

[40]

[41]

[42

[43]

[44]

S
&

(46

[47

[48

N
)

[50

[51

o
2

o
=

[58

[59

Koli Calling *20, November 19-22, 2020, Koli, Finland

Yuen-Kuang Cliff Liao and George W. Bright. 1991. Effects of Computer Program-
ming on Cognitive Outcomes: A Meta-Analysis. Journal of Educational Computing
Research 7, 3 (1991), 251-268. https://doi.org/10.2190/E53G- HH8K- AJRR-K69M
Ran Libeskind-Hadas and Eliot Bush. 2013. A first course in computing with
applications to biology. Briefings in Bioinformatics 14, 5 (02 2013), 610-617.
https://doi.org/10.1093/bib/bbt005

Jaime L’Heureux, Deborah Boisvert, Robert Cohen, and Kamaljeet Sanghera.
2012. IT Problem Solving: An Implementation of Computational Thinking in
Information Technology. In Proceedings of the 13th Annual Conference on In-
formation Technology Education (Calgary, Alberta, Canada) (SIGITE ’12). As-
sociation for Computing Machinery, New York, NY, USA, 183-188. https:
//doi.org/10.1145/2380552.2380606

Lauren E Margulieux, Brian Dorn, and Kristin A Searle. 2019. Learning Sciences
for Computing Education. Cambridge University Press, Chapter 8, 208-230.
Mark Meysenburg, Tessa Durham Brooks, Raychelle Burks, Erin Doyle, and Tim-
othy Frey. 2018. DIVAS: Outreach to the Natural Sciences through Image Process-
ing. In Proceedings of the 49th ACM Technical Symposium on Computer Science Ed-
ucation (Baltimore, Maryland, USA) (SIGCSE ’18). Association for Computing Ma-
chinery, New York, NY, USA, 777-782. https://doi.org/10.1145/3159450.3159537
L. D. Miller, Leen-Kiat Soh, Vlad Chiriacescu, Elizabeth Ingraham, Duane F. Shell,
and Melissa Patterson Hazley. 2014. Integrating Computational and Creative
Thinking to Improve Learning and Performance in CS1. In Proceedings of the
45th ACM Technical Symposium on Computer Science Education (Atlanta, Georgia,
USA) (SIGCSE ’14). Association for Computing Machinery, New York, NY, USA,
475-480. https://doi.org/10.1145/2538862.2538940

Ferhat Kadir Pala and Piar Mih¢i Tirker. 2019. The effects of different pro-
gramming trainings on the computational thinking skills. Interactive Learning
Environments (2019). https://doi.org/10.1080/10494820.2019.1635495

Melissa A. Pasquinelli and Jeff Joines. 2011. Integrating computing into thermo-
dynamics: Lessons learned. In Proceedings of the 2011 ASEE Annual Conference
and Exposition.

Markeya S. Peteranetz, Leen-Kiat Soh, and Elizabeth Ingraham. 2019. Building
Computational Creativity in an Online Course for Non-Majors. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education (Minneapolis,
MN, USA) (SIGCSE ’19). Association for Computing Machinery, New York, NY,
USA, 442-448. https://doi.org/10.1145/3287324.3287346

Micah DJ Peters, Christina M Godfrey, Hanan Khalil, Patricia McInerney, Deborah
Parker, and Cassia Baldini Soares. 2015. Guidance for conducting systematic
scoping reviews. International journal of evidence-based healthcare 13, 3 (2015),
141-146. https://doi.org/10.1097/XEB.0000000000000050

Mintu Philip, VG Renumol, and R Gopeekrishnan. 2013. A pragmatic approach to
develop computational thinking skills in novices in computing education. In 2013
IEEE International Conference in MOOC, Innovation and Technology in Education
(MITE). IEEE, 199-204.

Lori Pollock, Chrystalla Mouza, Kevin R. Guidry, and Kathleen Pusecker. 2019.
Infusing Computational Thinking Across Disciplines: Reflections & Lessons
Learned. In Proceedings of the 50th ACM Technical Symposium on Computer Science
Education (Minneapolis, MN, USA) (SIGCSE ’19). Association for Computing Ma-
chinery, New York, NY, USA, 435-441. https://doi.org/10.1145/3287324.3287469
Sarah Monisha Pulimood, Kim Pearson, and Diane C. Bates. 2016. A Study on
the Impact of Multidisciplinary Collaboration on Computational Thinking. In
Proceedings of the 47th ACM Technical Symposium on Computing Science Education
(Mempbhis, Tennessee, USA) (SIGCSE ’16). Association for Computing Machinery,
New York, NY, USA, 30-35. https://doi.org/10.1145/2839509.2844636

Hong Qin. 2009. Teaching Computational Thinking through Bioinformatics to
Biology Students. SIGCSE Bull. 41, 1 (March 2009), 188-191. https://doi.org/10.
1145/1539024.1508932

Lauren B Resnick. 1987. Education and learning to think. National Academies.
Anthony V Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and
Teaching Programming: A Review and Discussion. Computer Science Education
13, 2 (2003), 137-172. https://doi.org/10.1076/csed.13.2.137.14200

Cynthia Selby. 2015. Relationships: computational thinking, pedagogy of pro-
gramming, and Bloom’s Taxonomy. In Proceedings of the workshop in primary
and secondary computing education. 80-87.

Cynthia Selby and John Woollard. 2010. Computational thinking: the developing
definition. University of Southampton (E-prints). https://eprints.soton.ac.uk/
346937/

Nick Senske. 2017. Evaluation and Impact of a Required Computational Thinking
Course for Architecture Students. In Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education (Seattle, Washington, USA) (SIGCSE
’17). Association for Computing Machinery, New York, NY, USA, 525-530. https:
//doi.org/10.1145/3017680.3017750

Amber Settle. 2011. Computational Thinking in a Game Design Course. In
Proceedings of the 2011 Conference on Information Technology Education (West
Point, New York, USA) (SIGITE ’11). Association for Computing Machinery, New
York, NY, USA, 61-66. https://doi.org/10.1145/2047594.2047612

Letchumanan Shanmugam, Siti Fatimah Yassin, and Fariza Khalid. 2019. En-
hancing students’ motivation to learn computational thinking through mobile

http://www.iste.org/docs/ct-documents/ct-leadershipt-toolkit.pdf
http://www.iste.org/docs/ct-documents/ct-leadershipt-toolkit.pdf
https://doi.org/10.1145/2670757.2670767
https://doi.org/10.1145/3144826.3145352
https://doi.org/10.1016/j.compedu.2018.07.004
https://doi.org/10.1016/j.compedu.2018.07.004
https://doi.org/10.1109/CSCI.2017.187
https://doi.org/10.1145/2729094.2742593
https://doi.org/10.1007/s10648-007-9054-3
https://doi.org/10.1007/s10648-007-9054-3
https://doi.org/10.1016/j.procs.2012.04.056
https://doi.org/10.1016/j.procs.2012.04.056
https://doi.org/10.2190/EC.49.4.b
https://doi.org/10.1145/3175536.3175542
https://doi.org/10.1145/3175536.3175542
https://doi.org/10.1371/journal.pone.0149787
https://doi.org/10.1371/journal.pone.0149787
https://doi.org/10.1016/0732-118X(84)90018-7
https://doi.org/10.1145/3197091.3197120
https://doi.org/10.2190/E53G-HH8K-AJRR-K69M
https://doi.org/10.1093/bib/bbt005
https://doi.org/10.1145/2380552.2380606
https://doi.org/10.1145/2380552.2380606
https://doi.org/10.1145/3159450.3159537
https://doi.org/10.1145/2538862.2538940
https://doi.org/10.1080/10494820.2019.1635495
https://doi.org/10.1145/3287324.3287346
https://doi.org/10.1097/XEB.0000000000000050
https://doi.org/10.1145/3287324.3287469
https://doi.org/10.1145/2839509.2844636
https://doi.org/10.1145/1539024.1508932
https://doi.org/10.1145/1539024.1508932
https://doi.org/10.1076/csed.13.2.137.14200
https://eprints.soton.ac.uk/346937/
https://eprints.soton.ac.uk/346937/
https://doi.org/10.1145/3017680.3017750
https://doi.org/10.1145/3017680.3017750
https://doi.org/10.1145/2047594.2047612

Koli Calling *20, November 19-22, 2020, Koli, Finland

application development module (M-CT). International Journal of Engineering
and Advanced Technology 8, 5 (2019), 1293-1303.

Duane F. Shell, Leen-Kiat Soh, Abraham E. Flanigan, Markeya S. Peteranetz,
and Elizabeth Ingraham. 2017. Improving Students’ Learning and Achievement
in CS Classrooms through Computational Creativity Exercises That Integrate
Computational and Creative Thinking. In Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education (Seattle, Washington, USA)
(SIGCSE ’17). Association for Computing Machinery, New York, NY, USA, 543-548.
https://doi.org/10.1145/3017680.3017718

HuiRu Shih, Jacqueline M Jackson, Cassandra L Hawkins Wilson, and Pao-Chiang
Yuan. 2014. Using MIT app inventor in an emergency management course
to promote computational thinking. In Proceedings of the 2014 ASEE Annual
Conference & Exposition (Indianapolis, Indiana, USA). https://peer.asee.org/23269
Valerie J. Shute, Chen Sun, and Jodi Asbell-Clarke. 2017. Demystifying com-
putational thinking. Educational Research Review 22 (2017), 142-158. https:
//doi.org/10.1016/j.edurev.2017.09.003

Gudrun Socher, Sarah Ottinger, Veronika Thurner, and Ralph Berchtenbreiter.
2019. Future Skills: How to Strengthen Computational Thinking in all Software
Project Roles.. In SEUH 2019. 56-64.

Young-Hoon Sung and Young-Sik Jeong. 2019. Development and Application of
Programming Education Model Based on Visual Thinking Strategy for Pre-service
Teachers. Universal Journal of Educational Research 7, 5A (2019), 42-53.

Matti Tedre and Peter Denning. 2016. The long quest for computational thinking.
In Proceedings of Koli Calling 2016 (Koli Calling ’16). ACM, 120-129. https:
//doi.org/10.1145/2999541.2999542

Andrea C Tricco, Erin Lillie, Wasifa Zarin, Kelly K O’Brien, Heather Colquhoun,
Danielle Levac, David Moher, Micah D] Peters, Tanya Horsley, Laura Weeks,
et al. 2018. PRISMA extension for scoping reviews (PRISMA-ScR): checklist
and explanation. Annals of internal medicine 169, 7 (2018), 467-473. https:
//doi.org/10.7326/M18-0850

Imke de Jong and Johan Jeuring

[67] Michele Van Dyne and Jeffrey Braun. 2014. Effectiveness of a Computational

Thinking (CS0) Course on Student Analytical Skills. In Proceedings of the 45th
ACM Technical Symposium on Computer Science Education (Atlanta, Georgia,
USA) (SIGCSE ’14). Association for Computing Machinery, New York, NY, USA,
133-138. https://doi.org/10.1145/2538862.2538956

Vereniging van Universiteiten, Vereniging Hogescholen, and SURF. 2018. Ver-
snellingsplan onderwijsinnovatie met ICT [Acceleration plan education innova-
tion with ICT]. Retrieved August 12, 2020 from https://versnellingsplan.nl/wp-
content/uploads/2019/11/Versnellingsplan-2018.pdf

James Walden, Maureen Doyle, Rudy Garns, and Zachary Hart. 2013. An In-
formatics Perspective on Computational Thinking. In Proceedings of the 18th
ACM Conference on Innovation and Technology in Computer Science Education
(Canterbury, England, UK) (ITiCSE ’13). Association for Computing Machinery,
New York, NY, USA, 4-9. https://doi.org/10.1145/2462476.2483797

Jeannette Wing. 2006. Computational thinking. Commun. ACM 49, 3 (2006),
33-35. https://doi.org/10.1145/1118178.1118215

Jeannette Wing. 2010. Computational thinking: What and Why. Retrieved August
23, 2020 from https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf
Bian Wu, Yiling Hu, AR. Ruis, and Minhong Wang. 2019. Analysing com-
putational thinking in collaborative programming: A quantitative ethnogra-
phy approach. Journal of Computer Assisted Learning 35, 3 (2019), 421-434.
https://doi.org/10.1111/jcal.12348

Aman Yadav, Chris Mayfield, Ninger Zhou, Susanne Hambrusch, and John T.
Korb. 2014. Computational Thinking in Elementary and Secondary Teacher
Education. ACM Trans. Comput. Educ. 14, 1, Article 5 (March 2014), 16 pages.
https://doi.org/10.1145/2576872

Aman Yadav, Ninger Zhou, Chris Mayfield, Susanne Hambrusch, and John T. Korb.
2011. Introducing Computational Thinking in Education Courses. In Proceedings
of the 42nd ACM Technical Symposium on Computer Science Education (Dallas,
TX, USA) (SIGCSE ’11). Association for Computing Machinery, New York, NY,
USA, 465-470. https://doi.org/10.1145/1953163.1953297

https://doi.org/10.1145/3017680.3017718
https://peer.asee.org/23269
https://doi.org/10.1016/j.edurev.2017.09.003
https://doi.org/10.1016/j.edurev.2017.09.003
https://doi.org/10.1145/2999541.2999542
https://doi.org/10.1145/2999541.2999542
https://doi.org/10.7326/M18-0850
https://doi.org/10.7326/M18-0850
https://doi.org/10.1145/2538862.2538956
https://versnellingsplan.nl/wp-content/uploads/2019/11/Versnellingsplan-2018.pdf
https://versnellingsplan.nl/wp-content/uploads/2019/11/Versnellingsplan-2018.pdf
https://doi.org/10.1145/2462476.2483797
https://doi.org/10.1145/1118178.1118215
https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf
https://doi.org/10.1111/jcal.12348
https://doi.org/10.1145/2576872
https://doi.org/10.1145/1953163.1953297

	Abstract
	1 Introduction
	2 Computational Thinking
	2.1 Defining Computational Thinking
	2.2 Teaching Computational Thinking
	2.3 Adaptive interventions for Computational Thinking

	3 Method
	3.1 Information sources
	3.2 Inclusion criteria
	3.3 Search method & search strategy
	3.4 Coding and extracting information

	4 Results
	4.1 CT interventions in higher education
	4.2 Determining the effectiveness of interventions
	4.3 Results on effectiveness of CT interventions
	4.4 Adapting interventions to the learner

	5 Discussion and Conclusion
	References

