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Abstract. Intelligent Tutoring Systems (ITSs) determine the quality
of student responses by means of a diagnostic process, and use this in-
formation for providing feedback and determining a student’s progress.
This paper studies how ITSs diagnose student responses. In a systematic
literature review we compare the diagnostic processes of 40 ITSs in vari-
ous domains. We investigate what kinds of diagnoses are performed and
how they are obtained, and how the processes compare across domains.
The analysis identifies eight aspects that ITSs diagnose: correctness, dif-
ference, redundancy, type of error, common error, order, preference, and
time. All ITSs diagnose correctness of a step. Mathematics tutors diag-
nose common errors more often than programming tutors, and program-
ming tutors diagnose type of error more often than mathematics tutors.
We discuss a general model for representing diagnostic processes.
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1 Introduction

More than a decade ago, VanLehn published his paper on the behaviour of In-
telligent Tutoring Systems (ITSs) [60]. An ITS consists of an outer loop, which
serves tasks to a student matching her progress, and an inner loop, which gives
a student feedback and hints about steps she takes towards solving a task. Com-
pleting a task in an ITS often requires multiple steps, where “a step is a user
interface action that the student takes in order to achieve a task” [60]. An im-
portant responsibility of the inner loop is what VanLehn calls step analysis.

Diagnosing student steps is essential for determining progress, and for giv-
ing feedback and hints. Feedback and hints are important factors supporting
learning [28]. How do different ITSs diagnose a student step? We perform a sys-
tematic literature review of available step-based ITSs to classify the diagnostic
processes of these systems. We determine the various components that play a
role in diagnosing student steps, and study how these components are combined
to perform a full diagnosis. Furthermore, we compare the diagnoses of ITSs from
different domains (such as mathematics, programming, and physics), and ITSs



2 Renate van der Bent, Johan Jeuring, and Bastiaan Heeren

using different approaches (such as constraint-based tutoring [50], model trac-
ing [5], example tracing [43], and intention-based tutoring [39]). The results of
our study inform the design of ITSs, and might in the future be combined with
results from effectiveness studies [61] to get a better understanding of what kind
of diagnostic processes are likely to be more effective.

The research question we address in this paper is: How do ITSs determine
the quality of student responses? To answer this question, we will look at the
aspects that can be distinguished in the diagnosis of a student response, how
these aspects are combined in various ITSs, and if there are patterns or perhaps
even a general scheme that can be identified in the diagnostic processes of the
different ITSs. The contributions of this paper are:

– we distinguish eight aspects that are used in various tutors in diagnosing a
student step;

– we describe patterns in combining these aspects;
– we compare how diagnosing differs between domains and tutoring approaches.

This paper is organised as follows. Section 2 discusses related work. Section 3
describes the research method, and the resulting diagnostic aspects and processes
are presented in Section 4. Section 5 concludes.

2 Related work

We are not aware of research on comparing diagnostic processes of ITSs across
various domains and using different tutoring approaches. In the 1970s and later,
research focused on diagnosing a particular aspect of students’ work, namely
misconceptions [14]. Diagnosing misconceptions requires collecting and check-
ing for buggy rules, which sometimes leads to overwhelming and impractical
numbers of buggy rules, even for simple domains such as fractions [31]. Modern
approaches, such as algorithmic debugging [68], automatically distinguish buggy
rules. Heeren and Jeuring present an advanced diagnose service, which is used
in ITSs for mathematics, logic, and programming [29].

Diagnosis of student steps has been studied extensively in ITSs and assess-
ment systems for mathematics, such as Stack [54] and ActiveMath [24]. El-Kechäı
et al. [21] evaluate the diagnosing behaviour of PépiMep, a diagnosis system for
algebra that is part of a web-based mathematics platform. This system can dis-
tinguish 13 different patterns in student responses. Chanier et al. [16] review how
errors are analysed in several ITSs for second-language learning. More related
work on diagnosing student steps is described later in this paper.

3 Research method

For our review we selected papers describing an ITS that is capable of providing
feedback at the level of individual steps and that has been used in classrooms, or
tested on data from real students. These inclusion criteria ensure that the ITS
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has an inner loop with a step analysis, and ensure ecological validity, i.e. that
the ITS makes realistic diagnoses.

We searched for relevant papers in two ways. First, we considered systems
discussed in three relevant reviews. Keuning et al. [41] classify the types of feed-
back given in programming tutors. Specifically, we included papers describing
systems that are labelled as providing feedback on task-processing steps, be-
cause these papers are assumed to meet the first two criteria. VanLehn’s review
on the effectiveness of tutoring systems [61] classifies systems as answer-based,
step-based, or substep-based. The step-based and substep-based systems sat-
isfy our inclusion criteria. Finally, Cheung and Slavin’s review [17] discusses the
effectiveness of educational software in mathematics. From these reviews, we in-
cluded 14, 17, and 0 papers, respectively (i.e. 31 papers in total). The papers in
Cheung and Slavin’s review [17] did not meet the inclusion criteria, or lacked a
description of the system’s working.

Second, we searched for papers using a literature search. A preliminary search
in several search engines (Google Scholar, Scopus, and ERIC) revealed that Sco-
pus produces the most relevant search results. See Van der Bent’s thesis [12] for
different search terms and the resulting number of papers. We judged relevance
of papers by reading the abstract and, when necessary, by skimming through
the article. The search term that produced the most relevant results was

intelligent AND (tutoring OR tutor) AND systems

AND ((step AND based) OR stepwise)

in Scopus, giving 195 papers. Using the same terms in ERIC resulted in fewer pa-
pers, largely a subset of documents found in Scopus. Searching in Google Scholar
resulted in many more, but less relevant, papers. The papers found in Scopus
were also found in Google Scholar. Hence, we used the 195 documents found in
Scopus. Note that using the search term (step AND based) OR stepwise may
have resulted in finding fewer papers from less-structured domains.

Next, we checked this initial selection of papers for the inclusion criteria. The
first author read the abstracts. If the information in the abstract was insufficient
to determine whether a system meets all criteria, she read the full paper. If this
did not result in a decision, the second author read the paper, and discussed the
paper’s relevance with the first author. The literature search resulted in 16 more
papers that meet the inclusion criteria.

We categorized the ITSs described in the selected papers by their tutoring
approach (model tracing, example tracing, constraint-based, or intention-based:
Aleven et al. [2] explain the differences between the first three of these paradigms)
and by domain. Then, starting with a small subset of papers (around 10), we
iteratively designed a system for labelling the diagnostic processes and diagnosed
aspects. With this labelling system we categorized the rest of the selected ITSs.

After labelling the diagnostic processes, we checked whether there are any
noticeable differences between approaches or domains, by comparing the fre-
quency at which aspects are diagnosed per approach and per domain. We also
described the diagnostic processes in diagrams and tried to abstract a general
model from the labelling system.
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4 Diagnostic aspects and processes

We found 47 papers on 40 ITSs that satisfy our inclusion criteria. Table 1 gives
an overview of the ITSs, including references, domain, and tutoring approach.
We found 26 model tracing tutors, 8 example tracing tutors, 11 constraint-based
tutors, and 1 intention-based tutor. An ITS can make use of multiple approaches,
for example, Andes [63] and Mathtutor [1] use constraints in combination with
the example tracing approach. We could not determine the approach used by
the Technical Troubleshooting tutor [38].

Subsection 4.1 describes the diagnostic aspects we found based on a small
sample of papers, which we used to label the rest of the ITSs. Subsection 4.2
describes the frequency of aspects per approach and domain. Subsection 4.3
discusses models representing the diagnostic processes of some tutoring systems,
followed by a general model for diagnostic processes in Subsection 4.4.

4.1 Diagnostic aspects

We found that ITSs use the following aspects to diagnose a student step: cor-
rectness, difference, redundancy, type of error, common error, order, preference,
and time. We explain and illustrate these aspects below. Whenever relevant, the
running example will be the following algebra problem: “Solve for x: 5x+6 = 7x”.

Correctness (C) determines whether or not a student step matches an expected
step, or does not violate any constraint. Possible outcomes are correct and
incorrect. For instance, if a student submits 2x+6 = 0, this step is diagnosed
as incorrect because it does not match the expected next step 5x−7x+6 = 0.
The equation 5x+6−7x = 0 is considered correct because it is semantically
equivalent to the expected answer.

Difference (D) is similar to correctness, in that it determines whether or not a
step matches an expected step. The result is a measure such as a number or
percentage that indicates the edit distance between the student step and an
expected step. When the difference is zero, the step is correct. For example,
if we use the edit distance, the above incorrect response results in a difference
value of 1, since it requires one edit operation (replace “+” by “−”) to change
the incorrect step into the expected step.

Redundancy (R) refers to a superfluous step: this includes steps that are too
small to be recognized as a meaningful step. Possible outcomes are redundant,
not redundant, and unknown. For example, the rewrite step from 5x−7x+6 =
0 into −7x + 5x + 6 = 0 can be considered redundant.

Type of Error (ToE) refers to a classification of errors. Possible outcomes differ
per problem domain or ITS. For example, 5x− (7x+ 6 = 0 can be classified
as a syntax error.

Common Errors (CE) or buggy rules are misconceptions that a student may
have. Possible outcomes differ per problem domain or ITS. An example of
a buggy rule is forgetting to change the sign when moving an expression
from one side of the equation to the other side, for instance, rewriting an
expression of the form 5x + 6 = 7x into 5x + 6 + 7x = 0.
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ITS Domain and approach C D R ToE CE O P T

(Why2-)Atlas [62] Qualitative physics mt • • •
(Why2-)Autotutor [26, 25] Physics & Computer literacy mt • • •
ACT Programming Tutor [18] Programming mt • •
AITS [27] Search algorithms ex • • • •
Andes [63] Physics mt,cb • • • •
ANGLE [44] Geometry mt • •
APROPOS2 [49] Prolog programming ex • • • • • • •
Ask-Elle [34] Haskell programming mt,cb • • • •
Assistment [51] Mathematics mt • •
AzAR 3.0 [20] Foreign language pronunciation ex • • • •
CIMEL ITS [13] OO design and programming mt • •
CIRCSIM-TUTOR [42, 23] Circulatory physiology mt • • •
C-Tutor [57] C programming ib • •
Design-A-Plant [46, 47] Botany cb •
Dragoon [66] Dynamic systems ex • • •
ELM-ART [64] LISP programming mt • •
Geometry Explanation [4, 3] Geometry mt • • •
Geomtery Tutor [6] Geometry mt • •
HBPS [9, 10] Algebra word problems mt • • •
Hong04 [32] Prolog programming mt • •
iList [22] Computer Science cb • • •
ITAP [52] Python programming ex • •
Jin12 [35] Programming ex • •
Jin14 [36] Programming ex • •
JITS [59] Java programming mt • •
KERMIT [58] Database design cb • •
Keuning14 [40] Imperative programming mt • • • •
Mathesis [55, 56] Algebra mt • • • •
Mathtutor [1] Mathematics ex,cb • • •
Ms. Lindquist [30] Algebra word problems mt • • •
Newton’s Pen [45] Statics mt,cb • •
PAT2Math [33] Algebra mt • •
PHP ITS [65] PHP programming cb • • •
PLATO [15] Arithmetic cb • • • •
Quantum Accounting [37] Accounting mt • •
RMT [11] Psychology research methods mt • •
Technical Troubleshooting [38] Aircraft engineering mt,cb? •
The Invention Lab [53] Scientific inquiry mt,cb • • •
The LISP Tutor [19, 7] LISP programming mt • •
Zatarain-Cabada13 [67] Arithmetic mt • •

Table 1. Overview of the 40 systems with their domain, tutoring approach (mt: model
tracing, ex: example tracing, cb: constraint-based, ib: intention-based), and diagnosed
aspects; the eight aspects are correctness (C), difference (D), redundancy (R), type of
error (ToE), common errors (CE), order (O), preference (P), and time (T)
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Order (O) refers to the order in which a student takes steps. Possible outcomes
are correct order, incorrect order, and unknown. Note that this is a diagnosis
over multiple steps.

Preference (P): some solutions may be preferable over others. Possible out-
comes are preferred, not preferred, and unknown. For instance, in a program-
ming tutor, a particular algorithm may produce the correct result, but be
less efficient than the preferred algorithm. A teacher can express a preference
for pedagogical reasons, if she wants students to use a particular approach
rather than another.

Time (T) refers to the time a student takes to submit a step or solve a problem,
measured in (milli)seconds. This aspect was only labelled when time was used
for diagnostic purposes. While many systems measure time, only few use it
for diagnostic purposes.

Table 1 gives an overview of the diagnosed aspects per ITS.
Of the eight aspects that ITSs diagnose, correctness is the most common

aspect, and is used in all systems. Most other aspects depend on its outcome.
For example, type of error relies on correctness, because errors can only be
found in steps that are known to be incorrect. Likewise, preference also depends
on correctness, because it can only determine preference between correct steps.
Aside from correctness, the most commonly diagnosed aspects are the type of
error and common errors.

Only one ITS [67] diagnoses time with the assumption that the time it takes
to answer a question reflects the difficulty of the question. Why are other ITSs
not diagnosing time? Most ITSs can be accessed at home, without supervision.
This makes it difficult to monitor how much time is actually spent on answering
a question. For example, a student might take a long time to answer because she
is taking a break or doing something else. Perhaps this is why most ITSs do not
use time for diagnosis.

4.2 Diagnostic aspects per approach and domain

We distinguish four ITS approaches: model tracing (mt), example tracing (ex),
constraint-based (cb), and intention-based (ib). There is some overlap between
these categories: five ITSs combine model tracing and the constraint-based ap-
proach, and one ITS (Mathtutor) uses example tracing and the constraint-based
approach. Only one ITS uses the intention-based approach. Table 2 (left-hand
side) shows the frequency of the occurrence of aspects in the various ITS ap-
proaches. The results do not show very different patterns for the approaches.

The ITSs we study deal with tasks in a large variety of problem domains.
At an abstract level, we can group them into four domains: mathematics, pro-
gramming, physics, and other domains. Mathematics includes topics such as
algebra, arithmetic, and geometry. Programming includes programming in spe-
cific languages, and more general topics such as object-oriented design and data
structures. Physics includes qualitative physics and statics. The remaining ITSs
involve topics such as botany, foreign language pronunciation, database design,
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approach domain

Aspect mt ex cb ib math progr physics other

Correctness 26 8 11 1 11 15 4 12
Type of Error 16 7 8 1 5 13 3 8
Common Errors 14 3 5 10 5 2 4
Preference 3 1 3 1 3 1
Difference 2 3 1 1 1 4
Order 2 2 1 2 1 1
Redundancy 1 3 1 3 2
Time 1 1

Table 2. Frequency of diagnostic aspects per tutoring approach and problem domain,
both in absolute numbers and their relative frequency of occurrence (as bars)

and aircraft engineering. The domains partially overlap. (Why2-)Autotutor is in
both the physics and ‘other domains’ category, because it teaches both physics
and computer literacy. iList is in both the programming and ‘other domains’
category, because it teaches students about lists, which is an important data
structure in programming, but not programming per se. Table 2 (right-hand
side) also shows the frequency of the occurrence of aspects in the various ITS
domains.

Table 2 shows that ITSs in the domain of mathematics more often diagnose
common errors than ITSs in the other domains: 91% of the math tutors diagnose
common errors, compared to only 33% of programming tutors, 50% of physics
tutors, and 33% of the tutors in other domains. In mathematics, problems typi-
cally have a single correct solution, and there are only a few ways to reach that
solution. Many errors in student steps can be explained by buggy rules, also be-
cause the solution space is relatively small. This partially explains why common
errors are relatively often diagnosed in ITSs for mathematics.

In the domain of programming, ITSs diagnose the type of error more often
than in other domains: 87% of the programming tutors diagnose the type of
error, compared to 46% of the mathematics tutors, 75% of the physics tutors,
and 67% of the tutors in other domains. This is perhaps due to the solution
space in the domains. In programming tutors, the solution space is usually very
large, which makes diagnosing common errors infeasible. Programs may have
errors on different levels: syntax, dependency, typing, semantics, and more. This
makes type of error a more informative diagnosis than in situations where only
syntax and semantics play a role, as is usual in mathematics.

Redundancy is diagnosed in three programming tutors and two other domain
tutors, but not in any mathematics or physics tutor. Because of the small sample
size, we did not perform a statistical test to determine the significance of these
results. The rest of the aspects seem to be diagnosed at a lower frequency across
domains.
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Student step and
correct step

Correctness
Student matches correct?

Incorrect

Correct

no

yes

Fig. 1. Diagnostic process of Assistment, Design-a-Plant, and Quantum Accounting

4.3 Diagnostic processes

Most ITSs use multiple aspects for diagnosing student responses. How are these
aspects combined in a diagnosis? We discuss how the different aspects are com-
bined by the different ITSs to arrive at a diagnosis, and what the commonalities
are between these systems. Not all ITSs are covered here, because some papers
do not provide enough detail to extract the precise diagnosing process.

Figure 1 shows the most basic diagnostic process. Ovals represent input, grey
nodes represent diagnostic ITS components, and rounded rectangles represent
a diagnosis. This diagram represents the diagnostic processes in Assistment,
Design-a-Plant, and Quantum Accounting. A student step is checked against
a single good step. If it matches, the response is correct; if not, the response
is incorrect. Although Assistment and Quantum Accounting have an additional
diagnostic aspect, namely type of error, this is not shown in the diagram, because
it is unclear where the type of error is determined. RMT’s diagnostic process is
very similar, except that it uses cosine similarity to check whether a step matches
an expected step.

The basic diagram in Figure 1 can be extended in several ways. The diagnos-
tic processes of the ACT Programming Tutor, LISP Tutor, Geometry Tutor, and
PAT2Math add a second diagnostic component (i.e. a grey block) after correct-
ness has determined that the student step does not match a good step. In this
second component, common errors are searched for by using a set of buggy rules.
Dragoon, on the other hand, extends the diagram with a diagnostic component
that determines redundancy before checking correctness.

We give a single example of a more involved diagnostic process, and refer the
reader to Van der Bent’s thesis [12] for many more diagrammatic representations
of diagnostic processes that were found in ITSs.

The diagnostic process of AITS is illustrated in Figure 2. AITS calculates
the difference using edit distance. This information is used to infer correctness.
If the edit distance is zero, the node sequence is correct. Otherwise, AITS checks
the number of nodes and the content of the nodes in the submitted answer, and
uses this to determine redundancy and type of error: AITS treats redundancy as
one type of error. The complete and accurate diagnoses are labelled as types of
errors. In AITS, a type of error is a combination of completeness and accuracy,
so a step can be complete but inaccurate, incomplete but accurate, or incomplete
and inaccurate. The diagnosis complete and accurate never occurs since then the
edit distance would be zero, and the step would have been diagnosed as correct.
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Step
Node sequence

Difference
Edit distance to ideal answer

Correct

Redundancy
& Type of Error
Number of nodes

ToE
Complete

ToE
Incomplete

ToE
Redundant

Type of Error
Nodes match ideal answer?

ToE
Inaccurate

ToE
Accurate

= 0

> 0

= Ideal answer

< Ideal answer

> Ideal answer

no

yes

Fig. 2. Diagnostic process of AITS

4.4 Patterns in diagnostic processes

Figure 3 illustrates the general diagnostic process. A dashed border indicates
that the components are optional. All tutors check whether a step is correct
using correctness or difference. Before this is done, however, some tutors check
the order of steps or how much time was taken to submit a step. After it has
been determined that a step is correct, some tutors check whether the correct
step is also a preferred step. Some tutors also check whether a correct step is
redundant. For incorrect steps, some tutors check whether the step contains
common errors, and what type of error was made. Lastly, some tutors check
whether an incorrect step is redundant. Note that, as was mentioned before,
some tutors consider redundancy as an error, while others treat it as correct.

Some ITSs make more fine-grained diagnoses than the ones discussed in this
study [8, 48]. For example, in Arends’ ITS [8] expressions can be semantically
equivalent after an incorrect step. To signal such a step, the system can diagnose
expressions that are semantically equivalent while also following a buggy rule,
or expressions that are expected by a strategy despite not being semantically
equivalent. Since these types of diagnoses only appear in this particular ITS,
and seem to be very particular to the domain, we did not include them in our
research.
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Step

Order
or Time

Correctness
or Difference

Preference
or Redundancy

Common Errors
or Redundancy
or Type of Error

Correct or 0 Incorrect or not 0

Fig. 3. General diagnostic process

5 Conclusion

As an answer to our research question, we found eight diagnostic aspects of stu-
dent responses in Intelligent Tutoring Systems: correctness, difference, redun-
dancy, type of error, common error, order, preference, and time. The diagnostic
aspects are combined in various ways in the full diagnoses of the ITSs. Although
these processes vary widely between systems, we distilled a general, abstract pro-
cess that is used in all ITSs. All ITSs diagnose correctness, and although there are
differences between domains, common errors and the type of error are also often
diagnosed. The main difference between domains is that common errors is the
second most frequently diagnosed aspect in mathematics tutors, whereas type
of error is the second most frequently diagnosed aspect in programming tutors.
Our analysis found no difference between four common tutoring approaches.

A limitation of our work is that the analysis of diagnostic processes is based
on the information given in the papers written about the ITSs, rather than
on the source code of the ITSs. Not all papers provide an in-depth description
of how student steps are diagnosed, which made it impossible to describe the
diagnostic processes of some systems. Sometimes we had to interpret the text to
determine the diagnostic process.

Our analysis of diagnostic processes in ITSs contributes to a better under-
standing of the diagnosing behaviour of ITSs. For future research, the results of
this study could be combined with results from evaluations of the effectiveness of
tutoring systems [61]. This would give insight into which diagnostic processes are
most effective at improving learning. This insight could then inform the design
and development of tutoring systems in the future.
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