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Digital learning environments that offer well-designed feedback have the potential to enhance 
mathematics education. Building such a system is typically a huge and complex undertaking. 
Generating informative feedback at the level of steps a student takes requires the encoding of expert 
knowledge about the problem domain in software. The software component that processes this 
knowledge is traditionally called a domain reasoner. Such a reasoner can produce various types of 
feedback, for example about the correctness of a step, common errors, hints about how to proceed, 
or complete worked-out solutions. 

In this paper, we highlight the main domain reasoner components that are responsible for generating 
feedback: rules, problem-solving procedures, normal forms, buggy rules, and constraints. Examples 
are drawn from the Digital Mathematics Environment (DME), which uses feedback generated by 
specialized domain reasoners for solving equations and structuring hypothesis tests. Similar 
techniques have also been used in tutoring systems for domains outside mathematics. 
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INTRODUCTION 
An intelligent tutoring system (ITS) helps students with learning a particular topic. It typically does 
this by offering learning material to study, tasks to solve, and by providing various kinds of help. The 
help provided by an ITS may take several forms: it might be through sequencing the tasks in a way 
that suits the student, providing scaffolding at the level of the student, giving elaborated feedback on 
the steps a student takes towards a solution for a task, helping a student take a next step towards a 
solution, etc. 
Most ITSs do not need a teacher to provide help to a student: they automatically calculate the feedback 
on the work of a student, or a hint for a student. What do these systems need for calculating feedback, 
and how do they do this? A typical ITS has an expert knowledge module that contains the information 
necessary to calculate feedback and hints. In the last decade we have developed an approach to 
construct expert knowledge modules for a variety of ITSs, based on problem-solving strategies and 
rewriting and refinement steps. This paper describes our approach to developing expert knowledge 
modules, which we call domain reasoners. We show which components we need in our domain 
reasoners, and how we use domain reasoners in various ITSs. We will not describe how to design a 
full-blown environment for learning and practicing mathematics (such as the Digital Mathematical 
Environment (Drijvers, Boon, Doorman, Bokhove, & Tacoma, 2013)), nor how or when the 
calculated feedback is presented to a student (VanLehn, 2006), nor which kind of feedback is most 
effective (Bokhove & Drijvers, 2012). 
We believe that explicitly describing the expert knowledge module concepts of an ITS can help 
designers and developers of ITSs, which often are complex software systems. Our approach can be 
applied in many domains, and the generality of the approach gives some guarantees about the 
consistency and completeness of the feedback provided. 
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Figure 1: Inner-loop feedback, presented in the Digital Mathematics Environment 

 
Figure 2: Classic structure of an ITS, decomposed into four components 

In the remainder of the paper, we first introduce ITSs. We then show how we represent expert domain 
knowledge, and give many examples of ITSs in which we have used our approach. We conclude by 
expressing the paper’s main points, and by identifying trends and challenges for the future. 

INTELLIGENT TUTORING SYSTEMS 
What is an Intelligent Tutoring System (ITS)? In his seminal paper, VanLehn (2006) explains that 
the behavior of such a system is structured around two loops. The outer loop concerns itself with 
solving one task after another. Feedback for the outer loop could, for example, suggest the next 
suitable task to solve. The inner loop considers the steps for solving one complex, multi-step task. 
Figure 1 gives an example of feedback at the inner loop: it combines feedback about correctness, 
high-level help (‘remove parentheses’), and a bottom-out hint. In this paper, we only focus on 
feedback for the inner loop. 

The four-component architecture shown in Figure 2 is the classic decomposition of an ITS in four 
parts (Nkambou, Bourdeau, & Psyché, 2010). The decomposition helps with assigning 
responsibilities: there are modules for user interaction, for pedagogical strategies (the tutoring 
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module: e.g., which hint facilities to offer), for modeling the current knowledge of a student, and for 
expressing expert domain knowledge. Although this conceptual architecture can be helpful for 
understanding the inner workings of ITSs, clear interfaces and communication protocols between the 
modules are missing, and in practice, one often finds monolithic systems instead of separate 
components. 
Feedback and hints are generated by the expert knowledge module. Following Goguadze (2011), we 
use the term domain reasoner for the part of the module that can ‘reason about problems’. This 
reasoning includes knowledge about the objects in a domain (e.g. expressions, equations), how these 
objects can be manipulated, and how to guide manipulation to reach a certain goal (Bundy, 1983). 

For mathematical learning environments, computer algebra systems (CAS) can do part of the domain 
reasoner’s job. Such systems are powerful tools that are great at evaluating expressions. However, 
these tools have not been designed for providing feedback, and using built-in equality for comparing 
expressions can be very subtle. Hence, specialized domain reasoners have an advantage in generating 
feedback. 

Narciss (2008) distinguishes the following widely used feedback types: 

– knowledge of performance, e.g. percentage of tasks solved correctly; 
– knowledge of result/response, e.g. correct or incorrect; 
– knowledge of the correct response, which provides the correct answer; 
– answer-until-correct feedback and multiple-try feedback, which provide extra opportunities 

after an incorrect answer; 
– elaborated feedback, which provides additional information besides correctness and the 

correct answer. 
Similar feedback types have been described by Shute (2008). Domain reasoners provide feedback 
services that are derived from the feedback types (Heeren & Jeuring, 2014). Intuitively, a feedback 
service is just a request-response communication pattern that exposes the capabilities of the domain 
reasoner. Services can correspond to the inner loop or the outer loop. Examples of service requests 
are: Am I finished? Give me a next-step hint or worked-out solution. Is my step correct (step 
diagnosis)? If yes: does the step bring me closer to a solution? If no: is it a common mistake? 

EXPERT DOMAIN KNOWLEDGE 
We use the IDEAS framework1 for constructing domain reasoners: IDEAS (Interactive Domain-
specific Exercise Assistants) is a generic, open-source software framework that can be used for 
expressing expert domain knowledge and for calculating automated feedback based on this 
knowledge. The framework is independent of the problem domain. Table 1 summarizes the main 
expert domain knowledge components, and how these components are used for calculating feedback. 
Certain feedback types require combinations of knowledge components, such as the checking 
procedure for steps (the ‘diagnose’ feedback service) that is used by the domain reasoner for feedback 
on the structure of hypothesis tests (Tacoma, Heeren, Jeuring, & Drijvers, 2019). The following 
sections discuss the knowledge components. 
  

 
1 http://hackage.haskell.org/package/ideas 



 

ICTMT 14 Essen 4 

 

component  used for 

rules 

 

recognizing steps; suggesting possible next steps 

problem-solving procedures 

 

recognizing the solution strategy; detecting 
detours; providing next-step hints; providing 
worked-out examples 

normal forms 

 

recognizing steps; deciding whether in finished 
form or not; rewriting atypical expressions (e.g. 
x+(-5) to x-5) 

buggy rules 

 

detecting common mistakes 

constraints 

 

checking properties or attributes; reporting 
violations 

Table 1: Five knowledge components for expert domain knowledge, and how these are used 

 

Rules 

Rules specify the steps (manipulations) that are allowed: these steps can be rewriting steps (e.g. 
replacing 5 + 2 by 7) or refinement steps (e.g. adding a line to a proof). For example, consider the 
rule for distributivity: 

∀abc . a(b + c) → ab + ac 
With this rule, the step 5(x + 2) → 5x + 10 can be taken towards reaching a solution. Rules can be 
used for recognizing steps, or for suggesting possible next steps. 
When coding rules into software, it should be clear where the knowledge ends up. Preferably, the rule 
is programmed as a rewrite rule (Baader & Nipkow, 1997), which can be coded using a datatype-
generic approach (Van Noort et al., 2010) as follows: 

rule "distr" $ \a b c -> a * (b + c) :~> a * b + a * c 
Observe the similarities between the rule’s specification and its implementation. The explicit 
representation of the rewrite rule allows for further analysis and transformation, such as Knuth-
Bendix completion for finding missing or conflicting rules (Knuth & Bendix, 1983), support for 
associative-commutative rewriting, rule inversion, automated testing, documentation, etc. 

Problem-solving procedures 
Whatever aspect of intelligence you attempt to model in a computer program, the same needs arise 
over and over again (Bundy, 1983): the need to have knowledge about the domain; the need to reason 
with that knowledge; the need for knowledge about how to direct or guide that reasoning. Problem-
solving procedures describe sequences of rule applications that solve a particular task (Heeren & 
Jeuring, 2017), and thus address the third type of need. For instance, a common procedure for adding 
two fractions is: (1) find the lowest common denominator (LCD), (2) convert fractions to a form with 
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the LCD as denominator, (3) add the resulting fractions, and (4) simplify the result. We have 
developed a domain-specific language for specifying such procedures explicitly. This language 
provides a rich vocabulary for accurately specifying procedures, and introduces composition 
operators for combining simple procedures into complex composites. Examples of such operators are 
sequence, choice, repeat, try, prefer, and somewhere. With this language, the procedure for adding 
two fractions can be defined as: 

FindLCD ; many(somewhere Convert) ; Add ; try Simplify 
where FindLCD, Convert, Add, and Simplify are rules. An example of a step-wise derivation for this 
procedure is: 
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1
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The first step finds 10 as LCD, which is used in the conversion steps that follow. Problem-solving 
procedures can be used for feed forward (providing next-step hints and worked-out examples), or to 
recognize the approach followed by a student and to detect possible detours. Problem-solving 
procedures help with following the steps of a model solution conform the model-tracing paradigm 
(Anderson, Boyle, Corbett, & Lewis, 1990). The composite structure of procedures also allows for 
decomposing procedures into parts, and to tailor feedback based on this decomposition. 

Normal forms (equivalence classes) 
Normal forms define classes of expressions that are treated the same, and select one canonical element 
for such a class (Heeren & Jeuring, 2009): for example, 10 + 5x ≈ 5x + 10 ≈ 5x + 5·2, for which 5x 
+ 10 is usually considered the standard notation. In mathematics, equivalences concerning 
associativity, commutativity, basic calculations, simplifications, etc. are often implicitly assumed for 
relations dealing with which expressions are equal, equivalent, similar, indistinguishable, etc. 
Equivalence classes make the granularity (step size) of a task explicit (McCalla, Greer, Barrie, & 
Pospisil, 1992). For example, given the rule for distributivity, 5(x + 2) and 5x + 10 should be 
distinguishable. 

Normal forms can be used for rewriting atypical expressions (e.g. replacing x + (−5) by x − 5), and 
for deciding whether an expression is accepted as the final answer for a task or not (e.g. should √12 
and 2√3 be distinguishable). Normal forms can also be used for recognizing steps and rules. 

Buggy rules 

Buggy rules describe common mistakes and enable specialized feedback messages when detected. 
Consider, for example, a buggy rule for distribution: 

∀abc . a(b + c) → ab + c 

This buggy rule can be used for detecting the common mistake in 5(x + 3) → 5x + 3. More examples 
of buggy rules are the sign mistake in 5x = 2x + 3 → 7x = 3, and Hennecke’s collection of 350 buggy 
rules for the fraction domain (Hennecke, 1999). Buggy rules are often associated with a sound rule. 

Constraints 
Constraints are based on the theory of learning from performance errors (Ohlsson, 1996) and can be 
used for checking properties and attributes, and reporting violations. Constraints have a relevance 
condition and a satisfaction condition: on violation (when relevant, but not satisfied), a special 
message can be reported. An example of a constraint is: if the equation is linear (relevance), then the 
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equation’s right-hand side should not contain variable x (satisfaction). The corresponding constraint 
message would report that ‘the equation is not yet solved because x appears on the right’. 

EXAMPLES OF DOMAIN REASONERS 

In this section we discuss examples of domain reasoners that have been developed with our approach, 
and their problem domains (see Figure 3). We will explain which knowledge components are used 
for generating feedback, and highlight some specifics of the problem domain. 

 

 
 

 

 

Figure 3: Examples of domain reasoners. Top row: Communicate! for training 
communication skills, and the functional programming tutor Ask-Elle. Bottom row: the 

Refactor Tutor for learning how to refactor imperative programs, and LogAx for 
constructing axiomatic proofs 

Advise-Me. The Advise-Me assessment software analyses free-text input for math story problems 
(Heeren et al., 2018). The problems target mathematical competencies for setting up algebraic 
expressions and equations, and simplifying them. The software first extracts the mathematical 
expressions from answers, and then uses an analyzer that tries to recognize the solution steps (rules) 
and the high-level approach (problem-solving procedure). Normalizations are used for recognizing 
steps and buggy rules. 
LogAx. LogAx is a tutor for constructing axiomatic proofs (Lodder, Heeren, & Jeuring, 2017), for 
example for proving that q → r ⊢ (p → q) → (p → r). Proofs are constructed in two directions: by 
formulating assumptions and combining these (forwards), or by working backwards from the goal. A 
directed acyclic multi-graph (DAM) is built that represents multiple proofs, and from this DAM a 
problem-solving procedure is generated. Feedback messages report subgoals and rules that can be 
applied. A student selects which rule she wants to apply and fills in a template for that rule. After an 
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unanticipated step by the student, the DAM and the problem-solving procedure are re-generated to 
facilitate giving feedback on subsequent student steps. 
Ask-Elle. The functional programming tutor Ask-Elle lets students practice with defining small 
functions in Haskell (Gerdes, Heeren, Jeuring, & van Binsbergen, 2017). Holes can be used for 
unfinished parts in the program: a student can ask for hints on how to complete these holes. A 
problem-solving procedure is generated from multiple annotated model solutions: the procedure 
recognizes different solution approaches and can give feedback on this. The tutor relies on an 
extensive normalization procedure for recognizing many variations of the model solutions. For 
programs that cannot be recognized, constraints are used to test input-output correctness. 

Refactor Tutor. This tutor lets students practice with refactoring small programs that are already 
functionally correct. The tutor uses a problem-solving strategy that imitates step-wise refactoring 
strategies by experts. Feedback is provided in a hint tree that can be expanded to see more detailed 
hints. Buggy rules capture common mistakes, such as logical errors in rewriting conditions. Similar 
to Ask-Elle, the tutor uses program normalizations for recognizing functionally equivalent programs, 
and constraints that perform input-output testing for detecting incorrect changes. 

Communicate! The serious game Communicate! supports practicing interpersonal communication 
skills (Jeuring et al., 2015), for example between a health care professional and a patient. A virtual 
character is presented, and the player is offered a menu with sentences to choose from. Feedback is 
provided during the conversation (e.g. the flow of the conversation and emotions shown by the virtual 
character) and afterwards. Conversations can be scripted with a scenario editor. Scenarios are 
translated into problem-solving procedures. 

CONCLUSION AND FUTURE WORK 
In this paper we have presented our approach to automatically generating feedback in mathematical 
learning environments and Intelligent Tutoring Systems. To give better feedback, the approach is 
based on explicitly representing expert domain knowledge in such systems. We discussed which 
knowledge components we use for generating feedback, and explained that the step-size of a task is 
an often ignored, but very relevant aspect. Step-size can be controlled by defining normal forms, and 
using the hierarchical structure of problem-solving procedures. 
Designing domain reasoners with feedback services simplifies the construction of ITSs. Feedback 
services result in loosely-coupled, reusable software components. The design follows the ‘separation 
of concerns’ design principle and localizes expert domain knowledge. Feedback services can be 
derived from the popular feedback types that have been described in literature. The presented 
approach can be applied to a wide range of problem domains. 

For the future, we observe the following trends and challenges: 
– Literature reports that every one hour of instruction that uses an ITS takes 200–300 hours for 

authoring content (Murray, 2003). There are design trade-offs for building an ITS. For 
example, supporting only one task simplifies feedback generation compared to supporting a 
full class of problems (e.g. solving quadratic equations), but reduces reusability and 
maintainability. We believe that software technology can help with developing high-quality, 
reusable solutions. 

– There is a trend towards data-driven intelligent tutoring systems (Koedinger, Brunskill, Baker, 
McLaughlin, & Stamper, 2013). These systems use AI techniques to generate feedback from 
collected data, and typically scale well. This trend raises questions about the need for explicit 
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expert domain knowledge. Hybrid solutions that only use collected data when expert domain 
knowledge cannot provide feedback may combine the best of both worlds. 

– There is a need for further adaptation and personalization, both for the inner loop and the outer 
loop. This requires models for mastery learning (e.g. techniques for Bayesian knowledge 
tracing), and more advanced techniques to use the information from such models in domain 
reasoners. 

– Designing tools with automated feedback for less-structured problem domains, such as 
software design and learning foreign languages, is challenging, especially compared to the 
structured domain of mathematics. 
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