
Algorithmica (1994) 11: 146-184 Algorithmica
�9 1994 Springer-Verlag New York Inc.

The Derivation of On-Line Algorithms, with an
Application To Finding Palindromes 1

Johan Jeuring 2

Abstract. A theory for the derivation of on-line algorithms is presented. The algorithms are derived
in the Bird-Meertens calculus for program transformations. This calculus provides a concise functional
notation for algorithms, and a few powerful theorems for proving equalities of functions. The theory
for the derivation of on-line algorithms is illustrated with the derivation of an algorithm for finding
palindromes.

An on-line linear-time random access machine (RAM) algorithm for finding the longest palindromic
substring in a string is derived, For the purpose of finding the longest palindromic substring, all
maximal palindromic substrings are computed. The list of maximal palindromes obtained in the
computation of the longest palindrome can be used for other purposes such as finding the largest
palindromic rectangle in a matrix and finding the shortest partition of a string into palindromes.

Key Words. Derivation of on-line algorithms, Transformational programming, Bird-Meertens calcu-
lus, Segment problems, Theory of lists, Longest palindromic substring, Maximal palindromes.

1. Introduction. In this paper we present a theory for the derivation of on-line
algorithms. The algori thms are derived in the Bird-Meer tens calculus for p rog ram
transformation. This calculus provides a concise functional nota t ion for algo-
rithms, and a few powerful theorems for proving equalities of functions. The
theorems are used to t ransform inefficient but clearly correct specifications (which
are functional algori thms themselves) into efficient algorithms. Thus, it is necessary
to state (and prove) explicitly all the equalities used in the derivation of an
algorithm. Most of the functions we use are well known in functional pro-
gramming, see I-5]. Aspects of the Bird-Meer tens calculus are described in 1-23],
[2], [3], and [24].

For several classes of problems theories can be developed, such as a theory for
problems on lists, see [2] and [18], and a theory for problems on matrices, see
I-3] and 1-19]. In this paper we further develop the theory of lists, in part icular the
theory of segments (in the literature, a segment is also called a substring or a
factor). We prove a number of theorems with which many on-line algori thms for
segment problems can be derived.

A left-reduction is a function defined on the data type list whose inductive
definitional pat tern mimics that of the type. We argue that the recursive structure

1 This research was supported by the Dutch organization for scientific research NWO, under NFI
project STOP, project number NF 62/63-518.
2 Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands. johan@cs.ruu.nl.

Received September 10, 1990; revised August 7, 1991. Communicated by C. K. Wong.

The Derivation of On-Line Algorithms 147

of an on-line algorithm follows that of a left-reduction. In the derivations we
present we strive to derive a left-reduction (or a slight generalization of it) for the
given specifications. Therefore, the theory we present may be viewed as a theory
for the derivation of on-line algorithms.

The theory for on-line algorithms is illustrated with the derivation of an on-line
linear-time random access machine (RAM) algorithm for finding the longest
palindromic substring in a string. One of the most important theorems used in
this derivation is a generalization of a theorem used by Bird et al. [4] to derive
the algorithm for pattern matching from Knuth, Morris, and Pratt.

An occurrence of a palindrome in a string is called extendible if it is preceded
and followed by equal characters, otherwise it is called maximal (including the
case when there is no element preceding or following it). For example, in "colon"
the substring "1" is an extendible palindrome and the substrings "olo" and "c"
are maximal palindromes.

We derive an on-line linear-time RAM algorithm for finding the longest
palindromic substring in a string. For the purpose of finding the longest palindro-
mic substring of a string we compute (the positions of) all maximal palindromes
occurring in a string. The algorithm for finding (the positions of) all maximal
palindromes occurring in a string is used to solve some other problems concerning
palindromes, such as the problem of finding the largest palindromic rectangle in
a matrix, and the problem of finding the shortest partition into palindromes of a
string.

The derivation of the algorithm as presented in this article is a new derivation
of the algorithm given in 1-17]. After publishing [17], Jeuring found that the notion
of maximality of palindromes and the algorithm to compute all maximal palin-
dromes occurring in a string had been given before, by Galil and Seiferas [14]. In
that article, maximal palindromes are used in an algorithm for recognizing the
language P., where P is the set of palindromes. Instead of giving a difficult
correctness proof of the algorithm, we derive the algorithm from its specification,
using a theory for the derivation of on-line algorithms.

Palindromes have been studied extensively in algorithm and complexity theory.
Efficient algorithms for recognizing P, the set of palindromes, and similar problems
have been constructed on several computing models. Cole [6] gives a real-time
algorithm for recognizing P on an iterative array of finite-state machines. Seiferas
[26] shows how to recognize palindromes of even length on a computing model
similar to the iterative array. Algorithms for recognizing P on several different
Turing-machine models are given in [16]. A lower bound on the complexity of
recognizing palindromes on probabilistic Turing machines is derived by Yao [29].

Recognizing initial palindromes in a string was the next problem related to
palindromes to be addressed in several papers. Manacher [22] gives a linear-time
algorithm on the RAM computing model finding the smallest initial palindrome
of even length. He also describes how to adjust his algorithm in order to find the
smallest initial palindrome of odd length > 3. Manacher's algorithm is on line,
that is, it is linear time, but in between reading two symbols from the input string
more than constant time may be spent. The algorithm constructed by Manacher
is obtained by Galil [11] using several theoretical results on fast simulations. Using

148 J. Jeuring

their algorithm for pattern matching, Knuth et al. [20] give an off-line linear-time
RAM algorithm for finding the longest initial palindrome of even length. The ideas
of Manacher are generalized in [14] and [17] to find (the positions of) all maximal
palindromes in a string on line on the RAM computing model. Crochemore and
Rytter [7] give a parallel version of this algorithm.

The papers mentioned above contain RAM algorithms for recognizing palin-
dromes. Algorithms on Turing machines have been devised too. Fischer and
Paterson [8] give a linear-time off-line Turing-machine algorithm for finding all
initial palindromes in a string. Finally, Galil [10], [12] describes a real-time (that
is, on line, but in between reading two symbols from the input string constant
time is spent) multitape Turing-machine algorithm finding all initial palindromes
in a string. Galil's algorithm improves on Slisenko's work [27] on algorithms for
finding palindromes.

This paper is organized as follows. Section 2 introduces the notation and specific
functions used in the developments in the subsequent sections. Furthermore, some
basic fusion theorems are given, such as the fusion theorem for data types in the
Boom hierarchy and the Snoc-Lists Fusion Theorem. Section 3 defines the notion
of segment, and proves some general theorems concerning segment problems.
Furthermore, we derive the generalization of the theorem used to derive the
pattern-matching algorithm from Knuth, Morris, and Pratt in [4]. Section 4 gives
the algorithm for finding palindromes, together with a discussion on its complexity.
Section 5 uses the algorithm for finding the longest palindromic segment and the
positions of all maximal palindromes occurring in a string derived in Section 4 to
solve some other problems concerning palindromes, such as finding the shortest
partition into palindromes of a string. Finally, Section 6 contains some conclu-
sions.

2. Basics of the Bird-Meertens Calculus. In this section we introduce the basic
notions and definitions used in the subsequent sections. In the first subsection we
briefly describe functions, operators, and cartesian products. Two important
concepts in the Bird-Meertens calculus are the notions of catamorphism and
fusion. For every data type, catamorphisms are defined and a fusion theorem is
given. This process is described in detail by Malcolm [21] and Fokkinga [9].
Section 2.2 defines catamorphisms and gives the fusion theorem for the data types
in the Boom-hierarchy, such as set and list. Section 2.3 discusses the data type
snoc-list. We introduce left-reductions (catamorphisms on snoc-lists), and we give
the Snoc-List Fusion Theorem. Finally, Section 2.4 introduces some auxiliary
functions and operators.

2.1. Functions, Operators, and Products. A function is an object with three
components written f : s ~ t, where s is a set called the source of the function, t is
a set called the taroet of the function, and f maps each member x of s to a member
of t. This member is denoted f x, using simple juxtaposition and a little white
space to denote application of a function f to an argument x. We use the letters
f, 0, h, etc., as variables standing for arbitrary functions. Function application is

The Derivation of On-Line Algorithms 149

right-associative, i.e., we have

f (9(hx)) = f # hx.

The composi t ion of two functions f : s ~ t and 9: r --* s is written f " g : r --, t.
Composit ion is associative, that is, for all f , g, and h we have f ' (g . h) = (f ' g) . h.

Taking advantage of associativity, chains of compositions are usually written
without brackets. An example of a function is the identity function: for each set
s, the function ids: s --* s is the identity function on the set s.

We postulate the existence of the cartesian product. If A and B are types, then
their cartesian product, A x B, is a type whose objects are all pairs (a, b), where
a e A and b e B. A function with a cartesian product as its source is referred to as
a binary operator. The operator + :nats x nats ~ nats is such a function. Typical
variable names for binary operators are @, | Q, etc. We frequently use infix
notation for the application of a binary operator @ to an argument (a, b), so
instead of writing O(a, b) we write a @ b. Here and throughout, we adopt the
convention that function application is more binding than infix binary application,
so the expression f a @ g b should be parsed as (f a) @ (g b). Binary operators can
be parametrized, i.e., if @ is a binary operator of type A x B --* C, and a E A, we
consider the expression (aO) to be a unary function of type B --* C. It is defined by

(a @) b = a @ b .

The function (~)b) is defined similarly. These parametrized operators are
also known as "sections." For example, the function (+ 3) : n a t s ~ nats takes a
natural number as argument and returns the number increased by three, so
(+ 3) 5 = 8. The cartesian product type has two primitive operations, the projec-
tions ~ : A x B ~ A ("first") and >> :A x B -o B ("second"). The projection oper-
ators are defined by

a ,~ b = a,

a>>b = b.

The projection operators are the first examples of polymorphic functions, in the
sense that ~ : A x B ~ A for all types A and B. Many more polymorphic functions
are encountered in what follows. If operator @ has a unit or identity element,
then it is written v e. An identity element is also called a neutral element. The
element v e satisfies by definition v~ @ a = a @ v e = a for all a. If a unit element
exists, it is unique. If a unit element does not exist we may introduce a "fictitious"
unit element, also written v~, with the same property. Caution is advised though
in doing this. The cases in which we introduce fictitious elements cause no
problems. The operator x is defined on types as well as functions. For functions
f : A ~ B and g: C ~ D, function f x g : A x C ~ B x D is defined for all pairs
(a , c) ~ A • C b y

(f • g) (a, c) = (f a, g c).

150 J. Jeuring

Operator x binds stronger than composition. We have the following law for
operator x :

(1) f x g ' h x j = (f ' h) x (9"J).

This law may be proved by taking an arbitrary element (a, b) of the type A x B,
where A is the source type of h and B is the source type of j, and showing that
the results of both sides applied to (a, b) are equal.

If we swap the components of the type of binary operators we obtain the type
C -+ A x B. Functions of this type can be constructed as follows. Let f : C -0 A
and g : C ~ B be functions, then the function f / X 9 : C ~ A x B (pronounced "f
split g"), is defined by

(f / k g) c = (f c, 9 c).

Just like operator • opera to r /~ binds stronger than composition. The operators
• and A, and the projection functions satisfy the following laws. The proofs of

these laws are similar to the proof of law (1) and are therefore omitted.

(2) f x 9 = (f" ~) /X (g" >>),

(3) f • g" h /Xj = (f" h)/X (g "J),

(4) (f . h)/X (9' h) = f / X g" h,

(5) ,~ . f x g = f . 4 ,

(6) >> . f x g = g. >>,

(7) ~ " f A g = f ,

(8) >> " f A g = 9,

(9) ~ / k >> = id.

Finite cartesian products are the sets of all pairs, all triples, all quadruples, all
quintuples, etc., together with projection functions 7r 1, rc2, etc. Usually, the
projection functions are superscripted with the type on which they are defined,
but we suppose that this information is deducible from the context, and therefore
it is suppressed. So 7~ 2 might be both of rc~ and ~4. Operator oc takes a pair and
an element and returns a triple consisting of the three arguments.

(10) (x, y) oc z = (x, y, z).

The function ~ takes the first two elements of a triple,

(11) tl (x, y, z) = (x, y),

so ~'(oc z) = id for all z.

The Derivation of On-Line Algorithms 151

A relation is a set of pairs. Let R be a relation. We write x R y for (x, y) E R.
Statements of the form (f x) R (f y) occur very often. We introduce a shorthand
for these expressions:

(12) x R s y - (f x) R (fy) .

For example, for 24 mod 10 = 34 mod 10 we may write 34 =moalo24.

2.2. The Boom-Hierarchy. Important data types for lots of problems for which
we want to construct algorithms are the data types binary tree, list, bag, and set.
These four data types form a nice hierarchy. Meertens [23] attributes this hierarchy
to H. J. Boom, and therefore this hierarchy is called the Boom-hierarchy. A data
type is considered to be an initial algebra in a category of functor-algebras, see
[21] and [9]. We describe data types informally.

The recursive data type binary tree over some base type A consist of elements
that are constructed as follows. A binary tree is either the empty binary tree () ,
or it is a singleton tree z a, where a is an element of type A, or it is the concatenation
of two binary trees x I y. The empty binary tree () is the unit of I .

The other data types from the Boom-hierarchy are obtained by imposing laws
upon the constructor _1.. If I is associative we obtain the data type join-list (()
and • are then written as respectively [] and 4). If • is associative and
commutative we obtain the data type bag, also known as multiset, and if • is
associative, commutative, and idempotent we obtain the data type set (() and •
are then written as respectively { } and ~). In the remaining part of this section
we give definitions and prove theorems for the data type set. For each of the three
other data structures in the Boom-hierarchy similar definitions and theorems can
be given. All data types in the Boom-hierarchy are denoted by A*. Unless
otherwise stated, the data type A, is considered to be the data type set over base
type A in what follows.

Given a data type, catamorphisms on this data type can be described sys-
tematically. A catamorphism is a homomorphism of which the source type is
a data type. The data type set is defined such that given an associative, commuta-
tive, and idempotent operator • : B x B ~ B, a function f : A ~ B, and a value
e : B that is the unit of @ there exists a unique function h: A, ~ B satisfying

(13)

h{ } = e ,

h r a = f a ,

h (x u y) = (h x) | (h y).

Function h is called a catamorphism. If a unit element does not exist, we may
introduce a fictitious element (see [23]) with the property that it is the unit of |
To define the notion of catamorphism on the data type join-list, the above
definition should be repeated without the occurrences of the words idempotent
and commutative.

A catamorphism defined on the data type set can be written as the composition

152 J. Jeuring

of a reduction and a map, which are defined as follows. The map operator �9 takes
as arguments a function and a set and returns a set consisting of the images of f
of the original elements. More precisely, if f : A ~ B, then f , : A, --* B , is defined
as the following catamorphism.

(14)

f , { } = { },

f * ~ a = { f a},

f* (x w y) = (f* x) u (f* y).

The result of applying the reduction operator / to an associative, commutative,
and idempotent operator @ and a set can be obtained by placing @ between
adjacent elements of the set, so, if @ : A x A ~ A, then G / : A, ~ A is defined as
a catamorphism as follows:

(15)

r } = v, ,

O/'c a = a ,

r u y) = (@/x) r (|

where v e is the, possibly fictitious, unit element of ~ .
In general catamorphism h satisfies

h = @/'f*

for some operator | and function f , a fact expressed by the Catamorphism Lemma
from Meertens [23].

An example of a widely used catamorphism is the length function 41: : A* ~ nats
defined on the data type join-list. Define function 1 ~ A ~ nats by 1 ~ a = 1 for all
a. Since the addition operator + on natural numbers is associative, the function
:~ = + / . 1~ is a well-defined catamorphism on the data type join-list.

We now come to the second important notion of the Bird-Meertens calculus,
fusion. Every data type has its own fusion theorem. Fusion provides a means for
proving equalities of functions avoiding the application of induction in the
development of algorithms. Inductive arguments tend to be tedious and are less
elegant than proofs using fusion. As early as 1975, this was one of the main
motivations of Goguen [15] to advocate the use of initiality. Before we give the
theorem, we first define fusability.

(16) DEFINITION ((@, | Let • : A x A ~ A and | : B x B -~ B
be associative, commutative, and idempotent operators. A function f : A - - * B is
((~, | if

f (x �9 Y) = (f x) | (f y),

The Derivation of On-Line Algorithms 153

where x and y range over the image of 0 / , that is, x and y are of the form 0 / v ,
0 / w for some v and w.

We have the following theorem, a proof of which uses the fact that catamor-
phisms are unique functions satisfying (13); it can be found in [23] and [21].

(17) THEOREM (Fusion). A function f : A ~ B is (0 , | if and only if
f" 0 / = @/'f*.

Consider the expression f . 0 / " g, where g is a function with target A.. To apply
Fusion to obtain | it suffices to show that f is (@, @)-fusable for elements
of the form @/v, @/w where we may assume in addition that v and w are subsets
of g z for some z.

Another theorem that we use frequently in the derivations in the following
sections is the following.

(18) THEOREM (Map Distributivity). For all functions f : B ~ C and g : A ~ B we
have

f , .g , = (f . g)*.

Thefilter operator <], takes a predicate (i.e., a boolean function) and a set and
retains the elements satisfying the predicate in a set, so if p:A ~ bool, then
p<] : A , ~ A, is defined by

(19) p<] = w/'/3,,

where/3 a = z a ifp a holds and 13 a = { } otherwise. For example, odd<] {3, 4, 5} =
{3, 5}. An expression of the form P?o, called a guard, is defined by p?~, = @/./3,
where co = v| We have

@/. p<]
definition of filter (19)

| u/./3,
Fusion, | (w, |

| | "/3*
map distributivity

| (| /31,
definition of guard

| p?,~*.

The derived equation

(20) | -- |

154 J. Jeuring

shows that a filter followed by a reduction is a catamorphism. This transformation
is carried out frequently in what follows. A filter and a map can be swapped.

(21) THEOREM (Map-Filter swap). For all functions f : A ~ B and predicates
p : B ~ bool we have,

p<] " f* = f * ' (p " f) < Z

2.3. The Data Type Snoc-List. The data type join-list in the Boom-hierarchy is
one way to " implement" the intuitive idea we have of lists. In this section we
present another way to represent lists as a data type. The data type snoc-list over
base type A is denoted by A*. An element of the data type snoc-list is either the
empty list IN, or x 4(a, the concatenation of a snoc-list x : A . with an element a
of type A. The data type snoc-list is isomorphic to the data type join-list, that is,
we can exhibit two injective functions s j : A . - ~ A . and j s : A . ~ A . satisfying
sj "js = ida. and j s . s j = ida..

Given an operator �9 : B x A ~ B and a value e : B, there exists a unique function
h : A . ~ B, a catamorphism, such that

h (x ~ a) -- (h x) 03 a,
(22)

h I q = e .

Many algorithms on lists are catamorphisms on the data type snoc-list. Therefore,
we give a name to catamorphisms on the data type snoc-list; a catamorphism on
the data type snoc-list is called a left-reduction. The unique function h satisfying
(22) is written G+-~e. An example of a left-reduction is the function @ which
returns the length of a list. It is the left-reduction ((+ 1). ~)-~0. Another example
is the concatenation operator -~ defined by x qg y = (q(-~x)y. Note that -~ is
associative. The identity left-reduction id is defined by -~-t-4q. We use [a, b, c] as
an abbreviation for [] 4(a 4(b -~ c.

Let h be a recursively computable function defined on lists, and let cp be a
program that computes the value of h on an argument. Following Galil 1-13]
program ~o is called on line if it processes one element of the argument at a time,
and if the value of h on the processed elements is available before the next element
from the argument is read. So given an argument x, value h x is computed by
means of a series of successive approximations h y where the y's are initial parts
of x. It follows that the recursive structure of an on-line program follows that of
a left-reduction. A program is called real time if it is on line and if in addition
there exists a constant c such that the number of steps required to compute
h (x 4(a) given the value of h x is bounded by c. It follows that a real-time program
can be viewed as a left-reduction the operator of which can be evaluated in
constant time.

Again, we have a fusion theorem for this data type.

(23) THEOREM (Snoc-List Fusion). Suppose f : B --* C, �9 : B x A --, B, and
| : C x A ~ C satisfy

f (x O a) = (f x) | a

The Derivation of On-Line Algorithms 155

for x in the image of G-c--~e. Then

f" (~-~e = | e).

If h is a left-reduction, value h (x -~ a) is expressed in terms of value h x and a.
For function h that is not a left-reduction more information is needed for a
recursive definition of h. For each function h, value h(x -~ a) can be expressed in
terms of h x, a, and the argument x itself, that is, for each function h : A* ~ B there
exist operator @ : (B x A.) x A -~ B and value e of type B such that

h (x -~ a) = (h x, x) @ a,
(24)

hV] =e .

Note that the form of these characterizing equations is almost that of the
characterizing equations of a catamorphism, except for the tupling with the
argument in the left-hand argument of @. Given operator @ and value e there is
a unique function satisfying these equations. Such a function is written @ 4 e , and
it is called a paramorphism by Meertens. Meertens [24] defines paramorphisms
on arbitrary data types, and shows that they possess calculational properties very
similar to the properties of catamorphisms. One of these properties is the
Parafusion Theorem.

(25) THEOREM (Parafusion). Suppose f, @, and | satisfy

f ((x, y) �9 a) = (f x, y) | a

for x in the image of Gvge. Then

f" ~)--Ae = | e).

2.4. Combinators and Auxiliary Functions. The operator Ts, where f is of type
A ~ B, and B is totally ordered, is a binary operator of type A x A -~ A. It is
defined by

{~ if x >gY,
(26) x]'s Y = if y > s x.

We do not yet define Ts on arguments which have equal f-values, except that one
of the arguments is the outcome. It might be necessary to define l"s differently for
different problems. If the choice made by the operator Ts on equal f-values is
immaterial to the problem, we will not give its exact definition. The operator {s
is defined similarly.

The following two operators abbreviate frequently occurring expressions:

(27) (x, y, z) ~9 a = (x, y, z q< a),

(28) (x, y) 0 a = (x, y -'K a).

156 J. Jeuring

The function hd: A* --* A returns the first element of a nonempty list, and the
function tl: A* --* A* returns all but the first elements of a nonempty list, so

(29) hd ([a] -g x) = a,

(30) tl ([a] -g x) = x.

Functions It : A * --* A and it : A . ~ A . are the couterparts of functions hd and tl.
They are defined by

(31) It (x -g [a]) = a,

(32) it (x -g [a]) = x.

Given a list x and a natural number n we define four functions called takeb
(take from the back), takef (take from the front), dropb (drop from the back), and
dropf (drop from the front) which respectively take the last n elements of x, take
the first n elements of x, drop the last n elements of x (which equals taking all but
the last n elements of x), and drop the first n elements of x. Since these functions
are rarely used, and since their definitions can easily be inferred from the following
example definition and the definitions in words given above, we only give the
definition of function dropb:

(33)

(dropb O) x = x,

{~ropbn) (i t x) if x ~ l - 1 ,
(dropb (n + 1)) x = otherwise.

3. Segment Theory. Finding the longest palindromic segment is specified by

(34) lps = T ~/" ispal<l " segs,

where ispal is the predicate determining whether its argument is a palindrome or
not, and segs is a function returning all segments of a list. This specification is an
example of a segment problem. Segment problems are specified by

(35) O~" f*" segs

for arbitrary operator ~) and function f. Note that by (20) this class of segment
problems includes all problems of the form O/ 'p<l ' s egs for arbitrary predicate
p. Theory dealing with segment problems has been developed in [2] and [4].
However, this theory is not straightforwardly applicable to the palindrome
problem. The problem is that information is needed, but this information is not
available in the context where it is needed. Here, a segment does not carry
information about how it occurs, and this information is needed to find out

The Derivation of On-Line Algorithms 157

whether a palindrome is extendible or maximal. To decide whether a palindromic
segment is maximal or extendible, the context of the segment is needed. The generic
solution is to tuple with the information needed, and in this particular case we
tuple a segment with its context.

Section 3.1 defines the functions for computing segments. These definitions
deviate from the definitions given by Bird, even when the contexts of the segments
are removed. Section 3.2 derives some fusion theorems for the functions introduced
in Section 3.1. The first theorem, the split3s-Fusion Theorem, gives a condition a
segment problem has to satisfy in order to obtain an efficient algorithm for it. The
split3s-Fusion Theorem has three important corollaries. The first corollary is called
Horner's rule and corresponds to a combination of theorems presented in [3].
The other corollaries of the split3s-Fusion Theorem, the Sliding Tails Theorem
and the Hopping Tails Theorem, are theorems that unify and generalize results
presented in [17] and [4]. The Hopping Tails Theorem is based on ideas presented
in [28] and [20]. The form of the functions given in Section 3.1 allows us to give
rather simple derivations of these theorems. These fusion theorems are the
theorems by means of which on-line algorithms for problems on segments are
derived.

3.1. Segments. A segment of a list is a list consisting of a number of consecutive
elements from the argument. Formally, list y is a segment of list v if and only if
there exist lists x and z such that v = x -g y -g z. Problems on segments have been
studied widely; the amount of literature on just the pattern-matching problem,
which requires finding occurrences of a given pattern (segments equal to the
pattern) in a list, is enormous. A large number of (solutions to) segment-problems
can be found in the book Combinatorial Algorithms on words edited by Apostolico
and Galil [1].

A segment of a list is tupled with the part of the list in front of it and the part
of the list after it. Function split3s: A* ~ (A* x A~ x A ,) , returns all ways in
which a list can be split into three parts (which explains its name). Using
set-comprehension we have

(36) sp~t3sv={(x,y, z) l v = x - g y ~ z } .

To perform calculations, split3s should be defined on the data type list as a
catamorphism or a paramorphism, or as a catamorphism or a paramorphism
followed by a function that can be evaluated cheaply. Function split3s is a
left-reduction, but the definition is rather awkward, and therefore it is defined as
a paramorphism. For the domain of the paramorphism there are two choices:
split3s can be defined as a join-list paramorphism or as a snoc-list paramorphism.
The choice of definition determines the form of the final algorithm that will be
constructed, that is, if split3s is defined as a join-list paramorphism, the algorithm
that will be constructed is a join-list paramorphism, etc. We want to derive on-line
algorithms, and therefore we define split3s as a snoc-list paramorphism. Even now
we can choose between several definitions. The choice made here seems to be the
most appropriate for our purposes when inspecting the length of the derivations

158 J. Jeuring

for the different definitions. Two characterizing equations for split3s are

split3s [] = {(1-1, I-1, [])},
(37)

split3s (x -K a) = ((~a) . split3s x) u ((oc [3)* split2s (x -K a)),

where function s p l i t 2 s : A * ~ (A* • A*)* returns, given a list, all ways in which
this list can be split into two parts. Using set-comprehension, split2s is defined by

(38) split2s v = {(x, y)lv = x -~ y}.

Two characterizing equations for split2s are

split2s [] = {(["], I-q)},
(39)

split2s (x q(a) = ((Oa)* split2s x) u {(x -K a, [Z)}.

Function split2s is a paramorphism

(40) split2s = (3 ~ { (~ , [])},

where operator (3 is defined by

(41) (x, y) (3 a = ((~a)* x) u {(y q< a, •)}.

To obtain a paramorphism followed by a function that can be evaluated cheaply
for function split3s, we tuple the computation of split3s with the computation of
split2s. Define

(42) ss = split3s /~ split2s.

Then, according to equality (7)

(43) split3s = ~ �9 ss.

The definition of ss as a paramorphism is straightforward. We have

(44) ss = | R, r-I)}, {(i-% [:])}),

where operator | is defined by

(45) ((x, y), z) @ a = (((~9a), x) u (~ I-1)* ((y, z) (3 a), (y, z) (3 a).

Using the new terminology, the specification of the palindrome problem
becomes

(46) Ips = "f ~ ~/" (ispal. 7tz)<~ " split3s.

The Derivat ion of On-Line Algori thms 159

Thus we do not find just the longest palindromic segment of a list, but the parts
to the left and right of the list of which it is a segment too. The specification can
be implemented as a functional program. Given a list of length n, this program
requires time ~(n 3) to find the longest palindrome in this list. This can be seen as
follows. Function split3s returns a list containing f~(n 2) triples, and every triple is
of length fl(n). Since computing ispal for a list requires linear time, and T~ .~2 can
be implemented such that it requires constant time, we have that our specification
requires time f~(n 2) x f~(n) = f~(n3).

3.2. Fusion Theorems. In this subsection we give the main theorems used in the
derivation of on-line algorithms for segment problems. The theorems given here
are not specific to the palindrome finding problem; they reappear in almost every
derivation of an algorithm for a segment problem, though with split2s usually
replaced by tails (tails is the function which, applied to a list, returns all tail
segments of that list) and split3s replaced by segs. The generic specification of
segment problems is given by

(47) • / . f . . split3s,

where @ is an arbitrary operator and f is an arbitrary function. Given a segment
problem, we want to obtain an algorithm for it that can be implemented as an
efficient program. Our first goal is to find conditions such that the specification
equals a paramorphism. Since split3s is not a paramorphism, we cannot apply
the Parafusion Theorem to the specification. Using (5) we derive, for arbitrary
function 9,

@ / . f , .split3s
(43)

@/. f , . r .ss
= (5)

�9 (@ / . f ,) x g.ss.

For g we can choose any function that suits us, and in the subsequent calculation
a natural candidate will emerge. Function ss is a paramorphism, so we can apply
the Parafusion Theorem to the expression (G~" f*) x g.ss. For that purpose we
have to compute

((@/. f ,) x 9)({([], [] , [])}, { (o , o)}),

which equals (f ([-% D, []), g {([~, [])}), and we have to find an operator @ such
that, for all (x, y) in the image of ss, and for all a,

(4 8) ((~)/ ' f*) x g) (((x, y), w) | a) = (((O~" f*) x g) (x, y), w) @ a.

160 J. Jeuring

The definition of an operator @ satisfying (48) is synthesized as follows. Meanwhile
we will find a candidate for function g:

((O/" f*) x O) (((x, y), w) | a)
definition of | (45)

((O/" f*) x 9) ((~a)* x u (oc m)* ((y, w) @ a), (y, w) 0 a)
-~- definition of x

(O/f* (((~a)* x u (oc F-l)* ((y, w) Q) a)), 9 ((Y, w) O a))
definition of catamorphism

((0 / # (~a)* x) �9 (O/f* (oc m)* ((y, w) Q) a)), g ((Y, w) (D a))
-~- assumption below, map distributivity

(((~a) 0 / f * x) �9 (0 / (f . (oc [7)), ((y, w) Q) a)), 9 ((Y, w) Q) a)).

In the last step of this calculation we applied the equality:

(~a)" G~" f* = 0/" f* .(r

This equality is easily proved if we assume that (~)a) is (0 , @)-fusable and
commutes with function f. In the last expression of this calculation we distinguish
three subexpressions:

(~a) 0 / f * x,

0 / (f " (~ [-1))* ((y, w) O a),

g ((Y, w) Q) a).

In view of the form of the desired expression (48) the first subexpression
(~ a) O / f * x need not be developed any further, and the subexpressions
0 / (f " (~ [2))* ((Y, w) @ a) and g ((Y, w) Q) a) have to be expressed in terms of g Y,
w, and a. Hence a reasonable choice for g seems to be O/ ' (f ' (ocD)) . . The
remaining task is to express 0 / (f . (o c [2))* ((y, w) Q a) in terms of

0 / (f . (o z [5])). y, w, and a.

We have

O / (f " (oc I-1)). ((y, w) Q) a)
definition of Q) (41)

G / (f " (~: I-1))* ((~a), y u {(w -~ a, D)})
~ - - - definition of catamorphism

(0 / (f . (o c D))* (~a)* y) �9 (f (w 4(a, [], [Z))
-~- assumption

((@a) O / (f . (oc D))* Y) �9 (f (w 4(a, [], [7))

The Derivation of On-Line Algorithms 161

for some operator @. This assumption is the condition of the split3s-Fusion
Theorem formulated below. Note that since (x, y) is in the image of ss, it follows
that y is in the image of split2s. Thus we have found that operator @ can be
defined by

(49) ((x, y), w) Q a = ((x ~ a) �9 (y 0 a) �9 u, (y 0 a) �9 u),

where u abbreviates f(w K a, I7, []). We summarize the derivation in the following
theorem.

(50) TrtEOREM (split3s-Fusion). Suppose there exists an operator @ satisfying
equation O /" (f " (oc I-1)),.(0a), = (Ca). O /. (f . (oc [2)), on the image of split2s.
Furthermore, suppose section (~a) is (0 , O)-fusable and commutes with f . Then

O/" f* "split3s = 4 " Q ~ (v , v),

where v abbreviates f (E], [2, [[]), and operator Q is defined by

((x, y), w) Q) a = ((x ~ a) �9 (y 0 a) �9 u, (y 0 a) �9 u),

where u = f (w ~ a, [-% [-]).

The equality

(51) | (oc [2)). ((>a). y = (Oa) O / f * y

assumed in the split3s-Fusion Theorem can be split into separate assumptions on
the constituents �9 and f. There are various ways to obtain equality (51). One
way is to assume that function f satisfies f . (~ [])- (~ a) = (0 a). f . (oc []) for some
operator 0 such that section (Oa) is (0 , O)-fusable. Since equality (51) is only
required to hold on the image ofsplit2s, section (Oa) needs only be (0 , O)-fusable
for elements of the form 0 / (f . (o c [])), s, 0 / (f . (Gc I-])), t, where s, t are subsets
from split2s z for some list z.

(52) THEOREM (Horner's Rule). Let f be a function satisfying

f . (o c []) . (~ a) = (Oa) - f ' (oc [])

for some operator 0 such that section (Oa) is (0 , O)-fusable for elements of the
form 0 / (f . (o c F7)), s, 0 / (f . (o c Vq)), t, where s, t are subsets from split2s z for some
list z. Furthermore, suppose section (~a) is (0 , O)-fusable and commutes with f .
Then

O/ ' f* ' sp l i t3 s = 4" Q~(v, v),

J. Jeuring 162

where v abbreviates f ([~ , [7, F-l), and operator | is defined by

((x, y), w) Q) a = ((x ~ a) • (y G a) G u, (y (9 a) �9 u),

where u = f (w q(a, I-7, [7).

Consider a specification of the form

(53) T. . ~2/" (P' ~r2) <] .split3s,

of which finding the longest palindromic segment is an instance. Such a problem
is called a longest- p segment problem. By definition of guard (20) this specification
equals

T, .~J" (P" rc2)?,o* "split3s,

where ~o = vt..~ 2. We can derive conditions on predicate p such that the conditions
of Horner's rule are satisfied. One of these conditions on predicate p is that it is
prefix-closed. A predicate p is prefix-closed, see [2], if p [] holds, and if p satisfies
for all lists x and values a

p (x ~ a) ~ p x .

A postfix-closed predicate is defined similarly. The conditions predicate p has to
satisfy in order to apply Horner's rule are not satisfied by predicate ispal, which
is defined by

(54) ispal x = (x = rev x),

where rev is the function which returns the reverse of a list. Instead of applying
Homer's rule to a longest-p segment problem specified in (53), we derive another
corollary of the split3s-Fusion Theorem for this class of problems. The condition
of the split3s-Fusion Theorem, (51), reads in the case considered now

(55) ~, .~2/ ' (p ' l r2)<3"(oc[])* ' (Oa)* = (@a)" ~e,.~j'(P'lZ2)<~'(~

for some operator (9. Using the definition of guard and map distributivity, the
composition ~ , .~J" (p" n2)<] .(oc D)* can be rewritten to

t,..2/((P'~2)?~'(~zD))*-

Abbreviate (p" ~2)?,~'(~ D) to ~/p. We have to prove this equality for elements
y = split2s z for some list z. As an aside, we remark that if this equality holds for
some predicate p and some operator O, then t . .~J ' (p 'Tr2)<3"spl i t2s is a left-

The Derivation of On-Line Algorithms 163

reduction E)'+*((p" ~2)?~, (E], F-l)), where operator @' is defined by

(x, y) G ' a = ~((x, y, [~) @ a) t ~ .~(p- rc2)?o, (x -~ y -4(a, [Z).

A property similar to prefix-closed satisfied by ispal is

(56) ispal ([a] ~ x -~ I-a]) =~ ispal x.

Both the property satisfied by ispal and the property prefix-closed are captured
in the notion c-slow. A predicate is c-slow for a constant c _> 0 if, for all lists y
with # y = c, all lists x, and all elements a,

(57) p (y ~ x ~ [a]) ~ px .

A prefix-closed predicate is 0-slow. The predicate ispal is 1-slow. A predicate can
be c-slow for various constants c, consider for example segment-closed predicates
(a predicate is segment-closed if it is both prefix-closed and postfix-dosed). A
segment-closed predicate is c-slow for all natural numbers c. For the moment we
assume in addition that c-slow predicates hold for all lists of length at most c.
For every c-slow predicate p there exists a derivative function V such that, for all
lists y with ~ y = c, all lists x, and all values a,

(58) p (y ~ x - g a) = p x /x aVxy.

For example, predicate ispal has derivative function V defined by

aVx[b] = (a = b).

Let 7 be a function that given a constant c and a list x splits list x into a pair of
lists (u, v) such that x = u -~ v and list v is the tail of length c of x if # x > c and
x itself otherwise, (7 c) x = ((dropb c) x, (takeb c) x). Consider the operator E) that
given a triple of lists (x, y, z) and an element a returns the triple of lists (s, t, z)
such that s -~ t = x -~ y ~ a and t is the longest tail of x qg y -K a satisfying
predicate p. We hope to define operator @ such that, for c-slow predicates p,

T, .,J" (x/P)* . split2s = @+-~(D, vq, D).

This result is a byproduct of the proof of the fact that operator @ satisfies the
applicability condition of the split3s-Fusion Theorem. Operator @ is defined by

(59)
f(s, t ~ y "K a, z)

(x, y, z) @ a = ~(x q((hd y), tl y, z) @ a
{.((7 c) (x -g a)) oc z

if p (t 4 C y K a) ,
if ~ p (t ~ y K a) ^ y # l Z ,
otherwise,

where

(s, t) = (~, c) x.

164 J. Jeuring

Operator @ satisfies the condition of the split3s-Fusion Theorem if predicate p is
c-slow, that is, equation

(60) t , . .~/" (x/P)* "(Oa)* "split2s = (Oa)" t ~. ~J'(x/P)* .split2s

holds for c-slow predicates p. We prove this equality in the Appendix. We have
the following corollary of the split3s-Fusion Theorem.

(61) THEOREM (Sliding Tails). Let p be a c-slow predicate. Then

~ ~ .~/'(P" ~2)<3 . split3s = 4 " @4~(v, v),

where v abbreviates ([--1, m, IN), and operator @ is defined by

((x, y), w) @ a = ((x ~ a) t . . ~ (Y @ a) T e.,~ u, (y @ a) T . . ~ u),

where u abbreviates (w 4(a, F-q, 1-1), and operator @ is defined by

f(s, t -g y 4(a, z)
(x, y, z) @ a = ~(x 4((hd y), tl y, z) @ a

[((~ c)(x 4(a)) oc z

if p (t 4C y-~ a),
if --qp(t-~ yA(a) A y # m,
otherwise,

where

(s, t) = 6 ' c) x.

The name of this theorem, the Sliding Tails Theorem, is due to Oege de Moor. It
refers to a visual interpretation of the algorithm @r [], []) , ([] , D, [])).
Given a list, this paramorphism proceeds from left to right, at each point returning
for the part of the list scanned the longest segment satisfying p and the longest
tail satisfying p (with their contexts). The longest tail satisfying p is either the
extension of the longest tail satisfying p at the previous point, or the tail of that
tail, or the tail of the tail of that tail, etc. Thus the longest tail "slides" over the
argument.

Consider the case in which the split3s-Fusion Theorem is applied to a longest-p
segment problem with c-slow predicate p, and operator @ is defined by (59). Since
p (t -~ y 4(a) holds only if p y holds, it follows that (x, y, z) @ a evaluates to
(x 4((hd y), tl y, z) @ a as long as p y does not hold (and y # m). So

(x, y, z) G a = (x ~ (hd y) -~ u, v, z) @ a,

where (u, v) is the longest element in split2s tl y of which the second component
satisfies p. Let lrp be the function that, given a list, returns the splitting with longest
second component satisfying p:

(62) Irp = t ~. ~J" (P" ~2) <3" split2s.

The Derivation of On-Line Algorithms 165

If we can prove that equality (55) holds for c-slow predicate p and some operator
@, then, according to the remark made after equality (55), Irp = 0'+*([], V]),
where operator O ' is defined by (x, y) O ' a = ~((x, y, D) �9 a) T..~2(x ~ Y 4(a, []).
Define operator �9 by

(63)
((s, t -~ y 4(a, z)

(x, y, z) (D a = ~(x 4((hd y) -~ u, v, z) @ a
(((~ c) (x -K a)) ~ z

if p (t qg y -g a),
if --np(t-~ y ~ a) A y r [-],
otherwise,

where

(s, t) = (~ c) x,

(u, v) = lrp tl y.

The informal discussion above on the evaluation of operator O implies that
operator q) defined in (63) is semantically equal to operator Q defined in (59). A
formal proof of the fact that the operators are equal may be carried out via a
proof of the fact that

T~. ,J ' (x /p)* 'spl i t2s = (D-~([~, D, 0) .

Operator @ is adjusted as follows. Observe that at each time operator 0) is
evaluated, the second component of its first argument satisfies p. This observation
invites us to use the derivative of predicate p. Redefine operator (i) by

(64) (x, y, z) 0 a

((s, t -~ y ~ a, z)
= ~(x 4((hd y) -~ u, v, z) O) a

(((~ c)(x -K a)) oc z

if ~ X > c A a V y t ,
if (4 ~ x < c v - 7 (a V y t)) A y # I ~ ,
otherwise,

where

(s, t) = (~ c) x,

(u, v) = Irp tl y.

It may be shown that operator �9 thus defined satisfies the condition of the
split3s-Fusion Theorem, using an argument similar to that used to show that
operator O (59) satisfies the condition of the split3s-Fusion Theorem. We obtain

(65) THEOREM (Hopping Tails). Let p be a c-slow predicate. Then

t . .,2/" (P" ZC2)<q " sP lit3s = ~ " @=r v),

166 J. Jeuring

where v abbreviates (D, D, m), and operator Q) is defined by

((x, y), w) @ a = ((x ~9 a) T #.~2 (Y �9 a) T ~-~2 u, (y �9 a)]" +.~2 u),

where u abbreviates (w -K a, [~, D), and operator O) is defined by

((s, t -~ y ~ a, z) if ~ x >__ c A aVyt,
(x, y, z) 0 a = ~(x -g (hd y) -g u, v, z) �9 a

(((~ c)(x -4(a)) oc z

where

if (# x < c v ~(aVyt)) A y ~ D,
otherwise,

(s, t) = 6' c) x,

(u, v) = lrp tl y.

Again, the name of this theorem, is due to Oege de Moor and refers to a visual
interpretation of the algorithm | [-1, rq), ([], [B, [Z)). Given a list, this
paramorphism proceeds from left to right, at each point returning for the part of
the list scanned the longest segment satisfying p and the longest tail satisfying p
(with their contexts). The longest tail satisfying p is either the extension of the
longest tail satisfying p at the previous point, or the extension of the longest tail
satisfying p of the tail of that tail, etc. Thus the longest tail satisfying p "hops"
over the argument.

The split3s-Fusion Theorem, the Sliding Tails Theorem and the Hopping Tails
Theorem are tools with which many on-line algorithms for segment problems can
be derived. In particular, the Hopping Tails Theorem is at the heart of a derivation
of an algorithm for finding the longest palindromic segment of a string, as we
show in the following section, and a derivation of the Knuth, Morris, and Pratt
pattern-matching algorithm, see [4].

4. The Algorithm for Finding Palindromes. In this section we derive, using the
theory developed in the previous section, a linear-time algorithm for finding the
longest palindromic segment of a list. To obtain a linear-time algorithm, we
compute (the positions of all) maximal palindromes occurring in a string. Before
we give the details of the derivation of the algorithm in Sections 4.2 and 4.3, and
a discussion of its complexity in Section 4.4, we first give some basic properties
of palindromes.

4.1. Properties o f Palindromes. We state a number of properties of palindromes
that are used in the subsequent sections.

By definition x is a palindrome iff rev x = x, where rev returns the reverse of
a list. The following property follows immediately from this fact.

(66) PROPERTY. Suppose x = y qg z is a palindrome, and z is a palindrome. Then
x = z ~ (rev y).

The Derivation of On-Line Algorithms 167

A similar property is satisfied by maximal palindromes. An occurrence of a
palindrome in a string is called extendible if it is preceded and followed by equal
characters, otherwise it is called maximal (including the case when there is no
element preceding or following it). For example, in "horror" the substring "rr" is
an extendible palindrome, and the substrings "orro" and "ror" are maximal
palindromes. We have

(67) PROPERTY. Suppose s = x ~ y ~ z is a palindrome in which y is a maximal
palindrome (hence, if x ~ [] and z v~ n , then It x ~ hd z). Then s = (rev z) -~ y -~
(rev x), in which y is aoain maximal.

4.2. The First Steps. The specification of the problem of finding the longest
palindromic segment has been given in Section 3, see (46).

Ips = T , . ~j" (ispal. 7Z2)<] " s p l i t 3 s .

In order to obtain a semantically equivalent on-line algorithm for this specification
we apply one of the theorems derived in Section 3. Since the predicate ispal is
1-slow and has derivative function aV~[b] = (a = b), we can apply the Hopping
Tails Theorem to obtain

lps = <-| [], D), ([], m, n)),

where operator @ is defined by

((x, y), w) Q) a = ((x ~ a) t . . . 2 (Y @ a) T *.~2 u, (y (I) a) T . . .2 u),

where u abbreviates (w -K a, [], []), and operator �9 is defined by

f(s, t -~ y q(a, z)
(x, y, z) (!) a = ~(x -K (hd y) -~, u, v, z) �9 a

[((7 1) (x q(a)) oz z

if # x > l A a = I t x ,
if (x = D v a v ~ I t x) A y v ~ [] ,
otherwise,

where

(s, t) = (7 1) x,

(u, v) = Irp tl y.

However, the straightforward implementation of this solution is a cubic-time
program. This is explained as follows. Suppose lps is applied to a list of length n.
Operator Q is evaluated n times. Evaluating the expression x ~ a and the
occurrences of T, .~2 can be done in constant time. The evaluation of y (i)a,
however, might require quadratic time. The computation of Irp t l y is expensive,
and the following subsection is devoted to finding means with which the value of
Irp t l y can be found in constant time on the average.

168 J. Jeuring

4.3. Centers, Mi r ror Images , and M a x i m a l Pal indromes. The main idea in the
construction of an efficient algorithm for finding the longest palindromic segment
of a list is to make use of previously computed palindromes. These previously
computed palindromes provide an efficient way to determine the value of lrp tl y.
Value lrp tl y can be expressed in terms of llp it y, where llp ("longest left
palindrome") is the following function:

(68) llp = T ~. ~,/" (ispal" nl)<1 . split2s.

Value llp it y on its turn can be determined from previously computed maximal
palindromes. First we show how to express Irp tl y in terms of llp it y.

By definition, if x is a palindrome, then

(69) tl x = rev it x.

Define function prey (" pair reverse'), which returns a reverse of a pair of lists, by

(70) prey (x, y) = (rev y, rev x).

It can be verified that prey, rev, and spli t2s satisfy the following equation:

(71) p r e y . . s p l i t 2 s = spl i t2s , rev.

Furthermore, for elements of the form Te .~] (i spal 'nO<1 s, T~, . ,1/(ispal" nl)<1 t,
where s, t are subsets from spli t2s z for some list z, function prey is (I" e .~1, T e.~2)-
fusable and function prey satisfies

(72) ispal " n 2 �9 prey = ispal" n 1.

This series of equalities is used in the following derivation, which proves that
Irp tl y = prey llp it y:

lrp t l y
-~- y is a palindrome, equality (69)

Irp rev it y
definition lrp, equality (71)

T ~. ~ / (i spa l ' n2)<1 p r e y , split2s it y
map-filter swap, Theorem 21

T ~, .~2/ prey* (ispal" n 2 �9 prey)<1 spli t2s it y
equality (72), prey is (]',.~,,]',.~2)-fusable

prey T e "~1 / (ispal" nl)<1 spli t2s it y
definition llp

prey llp it y.

The Derivation of On-Line Algorithms 169

The left component of value llp it y is computed by means of previously computed
maximal palindromes. Given the left component, the right component of llp it y
is characterized by

(73) >> llp it y = (dropf (~ ~ llp it y)) (it y).

For the left component of llp it y we reason as follows. We abbreviate ~ llp it y to I.
Define the center of a pair of lists by

(74) err (x, y) = (~ x) + (�89 ~ y).

A pair of lists is called a palindrome if its second component is a palindrome.
Let (x, y) be lrp w for some list w. Equivalently, x and y are the first two
components of value >>(| ~((Vq, R, r-q), (R, Y], I-1))) w. By definition of x, y, and
l, (x, l) < , , (x , y). Furthermore, (x,/) is a palindrome, and hence there exists a
maximal palindrome with center ctr (x, l), of which the second component has
length at least # I. Suppose all maximal palindromes with center smaller than (or
to the left of) ctr (x, y) have been computed. These maximal palindromes are
enumerated in a list in increasing order of center. This list is called Q, and it is
specified by

(75) Q x = (<,~ lrp x)<~ sorter ~ ~* ismaxpal<l split3s x,

where ismaxpal is a boolean function which takes a triple of lists and determines
whether the second element of this triple is a maximal palindrome. Function sort ,r
sorts its argument in increasing order of center. The precise definition of sor t , , is
not important. The part of the definition of Q after the first filter expression is
abbreviated to R, that is,

(76) R = sOrtct r �9 ~*" ismaxpal<l" split3s,

and

(77) Q x = (< ar lrp x)<1 R x.

Given the list of maximal palindromes Q, value l is obtained as follows.
Palindrome (x,/) is the longest palindrome of which the second component starts
in it y. Hence the second component of the maximal palindrome with center
ctr (x, l) starts at or before the position at which y starts, i.e., its first component
has length at most ~ x. It follows that the unknown maximal palindrome is an
element of ((< ~ x)-zq A > , r (X, [--]))<3 Q w. To obtain (x, l) from the maximal
palindrome with the same center, the second component of the maximal palin-
drome is shrunk (at both sides) such that the second component starts at the same
position as y. Function cut (x, y) shrinks a palindrome such that it starts at the

170 J. Jeuring

position at which y starts. Thus, I is the second component of the longest element
among

(cut (X, y))* ((__~ 4# X) ' ~ l A ~ctr(X, []))<~ Q W.

Summarizing

l = > t~ .=j (cut (x, y)), ((< , x).rq ^ _> Mx, []))q O w,

where cut is the function which, when supplied with two arguments (x, y) and (u, v),
where (u, v) is an element o f ((< ~ x) . rq ^ > . . (x , m))< Q w, returns the pair (x, t),
where t is the list that starts at the position at which y starts, such that v is an
extension of t, that is, (x, t) and (u, v) have the same center and v >_ ~+ t. Formally,
we have

(78) (cut (x, y)) (u, v) = (x, (takef (4~ v -- n)) y),

where

n = 2 x (# x - #u).

Since the elements of Q are sorted on their center, the longest element of Q
satisfying (< ~ x) . rq equals the rightmost element satisfying (< e x) . rq , that is,
the element with largest center, satisfying this condition. Hence

t ~ .~] (cut (x, y))* ((< ~ x) ' n 1 A > .r(X, l-q))<1 Q w
definition of Q (75), proviso above

~>/(cut (x, y)), ((_< ~ x) nl A >_Mx, I-1))<1 Q w
Fusion

(cut (x, y))>> / ((< ~ x) ' r q /x > .r(x, [2))<3 Q w.

To apply Fusion, cut (x, y) has to be (> , >>)-fusable. It follows that we have to
show that (cut (x, y)) v> = v,>, and, for all a and b,

(cut (x, y)) (a >> b) = (cut (x, y)) a >> (cut (x, y)) b.

The latter condition is satisfied according to the definition of >>. The former
condition can be satisfied as follows. Since >> does not have a unit element, we
extend the domain of > by a (fictitious) value v>, and define this to be the unit
element of >>. The domain of cut (x, y) is extended with the same value, and
cut (x, y) is defined on this value in such a way that the condition holds. We have
found that

1 = >> (cut (x, y)) >> / ((N ~ x)" n i A (> ctr(X, [])) <~ Q. W.

The Derivation of On-Line Algorithms 171

The part >err(x, D) occurring in the filter may be omitted since the rightmost
element of ((< ~ x)" rq)<3 Q w always satisfies this predicate. Value lrp t l y is ex-
pressed in terms of I as follows:

Irp t l y
= definition prey, lip

prey llp it y
equality (73), definition l

prey (l, (dropf (~ l)) (it y))
definition prey

(rev (dropf (~ l)) (it y), rev l)
l and y are palindromes

((dropb (~ l)) (tl y), l).

We have expressed lrp in terms of the list of maximal palindromes Q, but how do
we obtain this list? We tuple the computation of Q with the computation of lrp.
Recall that lrp = @'+-~(m, D), where operator @' is defined by

(x , y) O ' a = ~((x, y, m) � 9 a)T,.=2([], V1),

where operator @ is defined in (64). Value Q (w -~ a) is expressed in terms of Q w
and lrp (w -g, a) as follows. By definition of Q (77) we have

Q (w ~ a) = (< et, lrp (w 4(a)) <3 R (w -~ a).

Since lrp equals the left-reduction O'+-~([], I-q), Irp (w ~ a) = (Irp w) 0 ' a. Let
(lrp w)@'a be (j, k). The three cases in the definition (64) of (1) (with aVyt
instantiated to a = It x) are now distinguished. For the first clause of �9 we have
ctr (j, k) = ctr Irp w, and hence that

(<c,r(J, k))<3 R (w ~ a)
~--- case assumption

(<,~ lrp w)<3 R (w 4(a)
proviso below

(< et~ lrp w) <3 R w
definition Q (77)

Qw.

The middle step in the above calculation is valid because of the fact that no
palindrome with center to the left of Irp w can contain the last a of w -K a, since

172 J. Jeuring

this would contradict the definition of lrp. The second clause in the definition of
�9 is dealt with as follows:

(<.r k)) <1 R (w -(, a)
split <,.,, in two parts

(< ct, Irp w v (> ct, Irp w/x < .r k)) <3 R (w ~ a)
R is sorted on centre

(<etr lrp w)<3 R (w -(a) -~ (> ct~ lrp w ^ < . , (j , k))<3 R (w -.~, a).

For the left-hand argument of -~ it has been shown that

(< et~ Irp w) <3 R (w ~ a) = Q w.

Simplifying the right-hand argument of -~ requires more effort. First, note that
by the case assumption y r [] /x (a r It ~ lrp w v ~ lrp w = []), the maximal
palindrome around ctr Irp w is lrp w itself. Hence

(>_ err Irp w/x < at(J, k))<3 R (w "t(a)
case assumption

[lrp w] qg (> ct~ lrp w A < .r(J, k))<3 R (w q(a).

For the right-hand argument of -g we reason as follows. Let (h, i) be an arbitrary
element from (>a , lrp w/x <,r(J, k))<3 R (w --t(a). Then, by definition of(j, k), (h, i)
is a maximal palindrome, with i a segment of ~> Irp w, and with center in between
ctr Irp w and ctr (j, k). By Property (67) we then have that i is also a maximal
palindrome contained in ~>lrp w with center in between c t r (~ I rp w, k) and
ctr lrp w. Hence the mirrored version of (h, i) is an element from

(> c,,(~ Irp w, k)) <~ Q w.

The maximal palindrome (h, i) is computed from (> ctr(~ Irp w, k)) <1 Q w by means
of the function mir. Function mir is defined by

(79)

where

(mir (s, t)) (q, r) = (q ~ ((takef n) t), r),

n = 2 x (ctr (s, t) -- ctr (q, r)).

Value n is positive in the cases in which mir is applied. Since Q has to remain
sorted on centre, function rev is applied. We have

(>err Irp w /x <ctr(J, k))<3 R (w ~ a)
proviso above

rev (mir (lrp w))* (> .r(r w, k))<3 Q w.

The Derivation of On-Line Algorithms 173

Finally, in the third clause of the definition of @ the center is moved one
place, and the empty list has been found to be maximal around the previous
center. Hence

Q (w -~ a)
case assumption

((2 w) -~ [(w, [3)].

We have expressed Q (w ~ a) in terms of Q w and lrp (w -K a) for all three clauses
in the definition of operator O. It follows that

(Te .~j.(ispal. n2)<3 " split3s) /k lrp /k Q

can be expressed as a paramorphism. This is done in he following subsection.

4.4. The Algorithm and Its Complexity. The specification of the problem for
which we have derived a paramorphism in the previous section reads

Ips = (re .~j.(ispal. rc2)<1 " split3s) /X (Irp A Q),

that is, the computation of the longest palindromic segment is tupled with the
computation of the longest palindromic tail, and the list of maximal palindromes
with center to the left of the center of the longest palindromic tail. For the purpose
of computing all maximal palindromes, we append a fictitious element q to the
argument, which forces the center of the last palindromic tail to exceed the length
of the original argument, so that all maximal palindromes occurring in the
argument are computed.

Applying the Hopping Tails Theorem and the results of the previous subsec-
tion we obtain

lps = | 4~((D, D, ~), ((D, D), ~)),

where operator | is defined by

((x, (y, z)), w) O a = ((x~9 a)l", .~2(nl ((y, z) �9 a) oc [5])t, .~2s, (Y, z) O} a),

where s abbreviates (w q(a, D, IS]), and operator �9 is defined by

f ((it x, lit x] ~ y -~ a), z)
((x, y), z) O) a = ~((x -g (hd y) .~ u, v), z') 0 a

[((x, ra]), z -K (x, I-q))

if x C D ^ I tx =a,
if (x = n v l t x C a) ^ y r
otherwise,

174 J. Jeuring

where

(u, v) = ((dropb (41: l)) (tl y), 1),

1 = >> (cut (x, y)) > / ((_< ~ x)" rq)<l z,

z' = z ~ (x, y) -g rev (mir (x, y))* (>eta(x, l))<l z.

An important observation is that we do not use the contents of the maximal
palindromes found, but just their position in the argument string. Hence, instead
of computing a list of maximal palindromes, it suffices to keep a list of positions
of maximal palindromes. This is a simple transformation of the above algorithm.
The only part that changes is the definition of the operator O. We have

(((it x, [It x] ~ y ~g a), z)
((x, y), z) (1) a = ~((x ~ (hd y) 4~ u, v), z') �9 a

[.((x, [a]), z 4< (~x , 0))

if x # [q ^ lt x = a ,
if (x = r-q v lt x r a) ^ y r [-1,
otherwise,

where

(U, V) =

I =

(lx, ly) =

Z p

(cut' (x, y))(u, v) =

(mir' (s, t))(q, r) =

ctr' (x, y) =

((dropb I) (tl y), takeb l (tl y)),

>>(cut' (lx, ly))>> / ((< Ix) . lq)<3 z,

(,ex, ~y),

z "4((lx, ly) -~ rev (mir' (lx, ly))* (>,,,(/x,/))<3 z,

(x, v - 2 x (x - u)),

(q + 2 x (ctr' (s, t) -- ctr' (q, r)), r),

x +�89

This algorithm for finding the longest palindromic segment, the longest palin-
dromic tail, and all maximal palindromes of a list, can be implemented as a
RAM program which requires time linear in the length of the list to which it is
applied. The parts of this implementation that are not entirely straightforward are
the parts corresponding to the computation of l and z' and in particular the parts
corresponding to respectively the expression >>/((< lx).rcl)<3 z and the expression
(> a,,(Ix,/))<3 z. In both cases the implementation should scan z from right to left
starting at its right end. We give a rather informal argument to explain why this
implementation is a linear-time program.

One of the key observations is that the number of maximal palindromes
occurring in a list is linear in the length of the list. To be precise, given a list x of
length n, there are exactly 2n + 1 palindromes in x. This is proved by showing
that there are exactly 2n + 1 center positions in a list of length n, and around
every position there is exactly one maximal palindrome.

The Derivation of On-Line Algorithms 175

Given a list of length n, the implementation of operator | is evaluated exactly
n times. However, in the definition of operator | there is an occurrence of operator
@ which is defined recursively. Obviously, the implementations of the first and
third clause in the definition of operator (!) require constant time for their
evaluation. For the implementation of the second clause in the definition of (i)
we have that the total number of steps made in this clause is linear in the number
of positions the center of the longest palindromic tail under consideration has
moved. Hence the implementation of operator @ requires constant time on the
average. Since the implementation of operator �9 requires constant time on the
average, the implementation of paramorphism | IS], [~), ((if], []), IS])) re-
quires linear time.

5. Variations. In this section we consider some variations and applications of
the algorithm for finding the longest palindromic segment of a list and the list of
all maximal palindromes of a list. Section 5.1 shows that the algorithm given in
Section 4 can be slightly generalized. Section 5.2 presents an algorithm for finding
the longest segment in a list which is the concatenation of two palindromes. Section
5.3 gives an algorithm for finding the shortest partition in palindromes of a list,
and Section 5.4 outlines an algorithm which determines the largest palindromic
rectangle in a matrix. The algorithms we give are not derived in so much detail
as the algorithm derived in the previous section.

5.1. The Longest Nonpalindromic Segment. In this section we show that the
algorithm for finding the longest palindromic segment given in Section 4 can be
used to solve a similar problem. Until now, we have considered the computation
of "plain" palindromes. The crucial property of palindromes used in the derivation
of the algorithm is

ispal ([a] -~ v -~ [b]) = (ispal v) A (a = b).

Suppose we generalize this by replacing = by some relation (3. What properties
does (3 have to satisfy in order to be able to apply the algorithm from the previous
section to the problem of finding the longest p-segment, where p satisfies

p ([a] -~ v -~ [b]) = (p v) ^ (a (3 b).

All steps remain valid if we suppose that (3 is symmetric, i.e.,

a O b = b Q a .

For example, suppose we define the predicate nispal by

nispal ([a] -~ x -~ [b]) = (nispal x) A (a v~ b).

Then we can apply the derivation from Section 4 with a = b replaced by a # b,

176 J. J e u r i n g

and have a linear-time algorithm for finding the longest segment which has
absolutely no overlap with its reverse.

5.2. T h e L o n g e s t T w o - P a l i n d r o m e . In this section we sketch the derivation of a
linear-time algorithm for finding the longest segment of a list which is the
concatenation of two palindromes. Galil and Seiferas [14] give an algorithm on
a two-way deterministic pushdown automaton for recognizing the language
{x -g Y l x and y are palindromes of even length}. A generalization of this problem
is finding the longest segment of a list which is the concatenation of two
palindromes. We give a linear-time RAM algorithm for this problem.

We can specify the problem of finding the longest segment that is the concatena-
tion of two palindromes by

(80) l tps = T ~ . ~2/" (tp" rrz) <~ " spl i t3s ,

where the predicate tp (for "two-palindrome") is defined by

(81) tp x = 3y, z : x = y -g z ^ ispal y ^ ispal z.

The predicate tp is not c-slow, and hence the theory developed in Section 3 is not
applicable to this problem. We use the list of maximal palindromes to solve this
problem.

Maximal palindromes and two-palindromes are related in the following sense.
Let x be a two-palindrome, that is, there are palindromes y and z such that
x = y -g z. The palindromes y and z are contained in maximal palindromes y' and
z' with the same center. In order to talk about centers we have to know the parts
of the argument list in front of y, z, y', and z', so define s = (yl , y), t = (zl, z),

u = (yl ' , y'), and v = (zl', z'). Here and throughout a pair of lists of which the second
component is a maximal palindrome is called a maximal palindrome. Concerning
the length of x, we have

: l t : x

x = y .g z is a two-palindrome

~(y -g z)
properties of -~, ~ , and ctr

2 x (c tr t -- c t r s)
v and u are the corresponding maximal palindromes

2 x (c tr v -- err u).

Hence, to every two-palindrome x correspond one or more (depending on how
many ways x can be split in two palindromes) pairs of maximal palindromes (u, v)
such that ~ x = 2 • (c tr v - c t r u). On the other hand, given two maximal palin-

The Derivation of On-Line Algorithms 177

dromes u and v which have some overlap, we can construct one or more lists x
satisfying tp, all of which have length 2 x (ctr v - ctr u). Two maximal palindromes
u and v have overlap if u W v holds. The relation W is defined by

(82) (ul, u2) W (v l , vz) = (~u l) + (#u2) > (#v l) A (:~vl) + (#v2) > (# u O .

Given two maximal palindromes which have overlap of length m, we can construct
m + 1 two-palindromes of length m.

From the above discussion it follows that instead of computing the longest
segment which is the concatenation of two palindromes, we can compute two
maximal palindromes u and v which have overlap, such that ctr v - ctr u is as
large as possible. Hence (80) transforms into

(83) ltps = f ~o/ W <I(Q x X Q x),

where f is a function that returns a two-palindrome given a pair of maximal
palindromes which have overlap, 9 is the function defined by

(84) g = a b s ' - ' c t r x ctr,

where abs computes the absolute value of an integer, Q computes the list of all
maximal palindromes, and X is the cross operator, see [3], which may be defined
by

(85) x X y = { (a , b) l a e x /x b e y } .

Given a point p in the list (there are n + 1 points in a list of length n: a point
in a list is a position between two elements or the position before or after the list),
the largest pair under 9 of maximal palindromes which have overlap in point p is
the pair (u, v) in which u = (ul, u2) is the unique maximal palindrome with smallest
center such that #ux < p -< # U 1 n t- # / 2 2, and v = (v 1, v2) is the unique maximal
palindrome with greatest center such that :t#vl < p < # v l + # v z . For suppose
the pairs of maximal palindromes (u, v) and (w, v), with v > , r u and v > ctr W, have
overlap, and suppose u < , r W. Then (u, v) > o (w, v). Conversely, suppose the pairs
of maximal palindromes (u, v) and (u, w), with u < ct, v and u < ,~ w, have overlap,
and suppose w < ~t, v. Then (u, w) < g (u, v). This suggests we compute two lists. The
first list, returned by the composition of functions F. Q, contains, for every point
p in the list, the maximal palindrome with smallest center, the second component
of which contains p, in the list. The second list, returned by the composition of
functions G" Q, contains, for every point p in the list, the maximal palindrome with
greatest center, the second component of which contains p. Since Q returns all
maximal palindromes of a list, these lists are returned by functions composed with

178

function Q. So

J. Jeur ing

Ta/ W <~ (O x X Q x)
proviso above

(T0-toe) (F Q x Y G Q x),

where Y is the zip operator, see [3], defined for lists of equal length by

[] Y D = r q ,
(86)

(x ~ a) r (y ~ b) = (x Y y) K (a, b),

and e is a fictitious element satisfying e I"0 a = a for all a. Functions F and G are
left-reductions defined as follows. Let dup be a function that takes a natural number
n and an element a and returns the list containing n elements a; so (dup 3)c =
[c, c, c].

F = @+-C],

9 = rev" 0 -~[~" rev,

where operators �9 and | are defined by

I~a] if / = [Z ,
x @ a = if hx>_ha,

(x ~ ((dup (h a - h It x)) a) otherwise,

h = + . ~ x ~ ,

t~a] if x = [~ ,
x | if l t x <ja,

~ x 4r ((dup (j It x - j a)) a) otherwise,

j = ~ . ~ .

A (or all, depending on the definition of f) longest segment which is the
concatenation of two palindromes can be computed using the algorithm

(87) f (To+-~e) (F Q x Y G Q x),

which is a linear-time algorithm if we use the position in the list of a string instead
of the string itself.

5.3. The Shortest All-Palindromes Partition. Finding the shortest partition of a
list all of whose elements are palindromes is another problem for which we can

The Derivation of On-Line Algorithms 179

use the algorithm for finding maximal palindromes. This problem is related to the
problem of finding the longest segment of a list which is the concatenation of two
palindromes in the following way. Suppose we have computed the longest segment
of a list which is the concatenation of n palindromes, for all n: 1 < n < #kx.
Obviously, if n = ~ x, this longest segment is equal to x. The length of the shortest
all-palindromes partition of the list x is equal to the smallest number n such that
the longest segment of x which is the concatenation of n palindromes is equal to x.

A partition of a list is a set of lists of lists which yield the argument when
flattened. The partitions of a list are computed by means of the function parts. A
definition as a left-reduction of parts is given in [18]. We have, for example,

parts [a, b] ={[Ea, b]], [[a], [b]]}.

The shortest all-palindromes partition is specified by

(88) J, ~/" (all ispal)<3 " parts,

where the predicate all p is defined by

(89) all p = ^ / . p , .

For example, the shortest all-palindromes partition of the string "abacab" is the
partition into "a" and "bacab," and the shortest all-palindromes partition of the
string "abacac" is the partition into "aba" and "cac."

The theory for partition problems developed in, for example, [-25] and [-18] is
not applicable to our problem. However, if we compute some extra information,
we can derive a left-reduction for our problem. Suppose we return, besides the
shortest all-palindromes partition of a list x, the shortest all-palindromes partition
of all elements in inits x, where function inits is defined by

inits = s o r t , " re1* " split2s.

Since x = It inits x, the new specification reads

(90) (,~ e/" (all ispal)<3 .parts) , . inits.

We have that

(91) (~ ~/" (all ispal)<3 .parts) , . inits = G-~e ,

where e = {Vq}, and the operator �9 is defined by

(92) x 0 a = x ~ (~ / (all ispal)<] parts (x q(a)).

180 J. Jeuring

If we also compute the longest tail palindrome and the maximal palindromes, we
can determine the right-hand argument of -K in time linear in the length of the
argument. The final algorithm requires quadratic time for its evaluation. This
construction is a rather standard one in dynamic programming, and the details
of the derivation are therefore omitted.

5.4. The Largest Palindromic Rectangle in a Matrix. The algorithm for finding
palindromes in a list can be used to give an algorithm for finding palindromes in
a matrix. The type of matrices has been given in [3] and [19]. The definition of
and ispal can be extended to matrices as follows. The function # computes
the number of elements in a matrix. A matrix is called a palindrome (satisfies ispaI)
when all its columns and rows are palindromes.

The following informally described algorithm, the complexity of which is
quadratic in the number of matrix elements, solves this problem. Apply the
left-reduction which returns just all maximal palindromes (so not the longest
palindromic segment) to every row and column, resulting in a matrix twice the
width and height of the original matrix with, at every entry, the length of the
longest row and column palindrome around that center. This can be done in linear
time. Then, for every entry, we have to find the largest palindrome matrix around
it. This can be done in linear time for every entry, and therefore we can obtain
an algorithm which requires time quadratic in the number of matrix elements. The
details of the algorithm are omitted; the precise formulation of the algorithm
requires quite a number of definitions and a long derivation.

6. Conclusions. We have given a theory for the derivation of on-line algorithms.
Two applications of this theory are a derivation of the algorithm for pattern-
matching from Knuth, Morris, and Pratt, see [43, and a derivation of algorithm
for finding the longest palindromic substring of a string.

We have derived an on-line linear-time RAM algorithm for finding the longest
palindromic segment of a list. As a spin-off, we also find the positions of all
maximal palindromes in a list. This algorithm improves on the algorithm given
in [22], which determines just the initial palindromes of a list. Since every initial
palindrome is by definition maximal, we find all initial palindromes in linear time.
The idea of computing the list of maximal palindromes has been given before in
[143. However, instead of a derivation explaining the relation of the algorithm for
finding palindromes with other segment problems, a difficult correctness proof of
the algorithm is given there. The algorithm which returns the list of maximal
palindromes can be used to solve some other problems, such as finding the shortest
all-palindromes partition of a list.

A number of slightly different algorithms can be given to find the longest
palindrome in a list. We chose to develop the one given in this article because it
can be derived rather straightforwardly, in a fashion similar to the derivation of
other segment problems, such as the algorithm from Knuth, Morris, and Pratt for
pattern matching.

A slight (constant) increase in efficiency can be obtained in the computation of

The Derivation of On-Line Algorithms 181

the longest tail palindrome. It is not very difficult to prove that the filter predicate
(< ~ x)- rq occurring in the algorithm can be replaced by (= ~ x)- rq. The compu-
tation of the list of maximal palindromes is somewhat more difficult now. This
results in an algorithm which requires fewer applications of O. This version has
been presented in 1-17]. Because our algorithm satisfies the real-time predictability
condition, see [13], our on-line RAM algorithm for finding the longest palindromic
segment can be transformed, using a standard construction, into a real-time RAM
algorithm. For a real-time Turing machine algorithm for finding palindromes the
reader is referred to [10] and [12].

As noted in the Introduction, the longest palindrome in a list can be determined
if all maximal palindromes have been computed. Hence it would have sufficed to
compute just the maximal palindromes of a list. This results in an algorithm very
similar to the one given here; instead of a left-reduction over lists it consists of a
left-reduction over center positions.

Acknowledgments. Maarten Fokkinga, Lambert Meertens, and Jaap van der
Woude made numerous useful suggestions, comments, and remarks about the
presentation and derivation of the algorithm, for which I thank them.

Appendix. Proof of the Sliding Tails Theorem. In this appendix we give the
remaining part of the proof of the Sliding Tails Theorem. We prove the equation

(93) T ~.~2/" (x/P)* (~ a)* . spl i t2s = (Oa)" T ~. ~J ' (x /p)* "split2s.

Actually, we prove the following. Let (y, z) be T~ .~J(p'lr2)<3 spli t2s x. Then, by
definition of (x/P), T~ .~j (X/p)* spli t2s x = (y, z, D) . We show that

(94) T~ .~J (X/p)* (~a) . spli t2s x = (y, z, [q) 0 a.

The proof of (94) uses the fact that predicate p is c-slow, in particular the fact that
p has a derivative V satisfying

(95) p (x -4(a) = p t ^ a r t s ,

where (s, t) -- ((take f c) x, (dropf c) x). Furthermore, it uses a crippled version of the
equality

(96) p <3" tails = p <3. tails . T ~/" P <3" tails,

which states that the set of all tails (tails = >> , . split2s) satisfying p equals the set
of all tails satisfying p of the longest tail satisfying p. To replace tails by spl i t2s in
(96), let (y, z) be t , .~J (P" zc2)<3 spli t2s x. Then (96) is transformed into

(97) (P" ~2)<3 spli t2s x = (p" ~z2)<3 ((y-~) x id)* spli t2s z.

182 J. Jeuring

Finally, at the place in the calculation where this equality is applied we have the
expression (p . (d r o p f c)'n2)<l instead of (p'n2)<l. This is the cause of an extra
complication in the statement of the equality. Define the binary operator -~,
("shift"), which takes a natural number n and a pair of lists (x, y) and prepends
the tail of length n of x (or x itself if #k x < n) to y, by

0 --, (x, y) = (x, y),

(98) ~'(x, y) if x = [2,
n + 1 --~ (x, y) = (n --~ (it x, l i t x] ~ y) otherwise.

Let (u, v) be c ~ (y, z), then (97) is transformed into the following equation:

(99) (p ' (dropf c)" n2)<3 split2s x = (p ' (d r o p f c)" n2)<l ((u-~) x id)* split2s v.

The proof of (93) is by calculation.

T ~. ~2/(x/P)* (~a)* split2s x
definition of x/P, definition of guard

Te .,~/(p" n2)<] (oc I-])* (~a)* split2s x
map distributivity, map-fil ter swap

T~-~/((oc l-q)" (~a))* (p . n 2 . (oc N) " (~ a))<] split2s x.

Consider the expression p-Tz 2"(oc[3) '(0a). To apply (99), this composition of
functions is rewritten as follows:

p n 2 (oc [2) (~a) x
= rd2-(oz[2]) = ~ , superscripts are omit ted

p n 2 (0a) x
= n 2 . (0 a) = (~Xa).r~ 2

p(-Ka) n2 x
= (95)

ar t s A p t,

where (s, t) = ((takef c) (n 2 x), (dropf c) (n 2 x)). Abbreviate function

aV(a,opy~)(takef c)" n2

The Derivation of On-Line Algorithms 183

to (Aa). Let (u, v) be c --* (y, z). Then

I"~ .~j ((oc [])-(~a))* (p" ~z 2 .(oc D) ' (0a))<l split2s x
~-- proviso above

]'~ .~j ((oc I--])" (~a))* ((Aa)/x (p '(dropf c)" ~2))<1 split2s x
(p ̂ q)<] = p<]'q<]

T#-. / ((oc []). (~a)) , (Aa)<l (p '(drof c). rc2)<l split2s x
(99)

T, .~/((oc m). ((>a)), (Aa)~ (p '(dropf c).rcz)<l ((u-g) x id), split2s v
above steps in reverse order

T ~ .~j (P'rC2)<l ((oc F-l)" (~a))* ((u-g) x id)* split2s v
moving ((u-g) x id)* to the left

((u-g) x id) T~ .~J (p" ~2)<~ ((oc [-3). (~a)) , split2s v.

To move ((u-g) x id)* to the left we have to show that ((u-g) x id) commutes with
(~a) and (ocl--1), that p.rCz.((u-g) x id)= p'rcz, and, finally, that ((u-g) x id) is
(Te.~2, T,.~2) -fusable. The proofs of these facts are omitted. Since (u, v) equals
c --* (y, z) it follows that we have expressed Te .~j (x/P)* (~a)* split2s x in terms of
(y, z). Define operator ~ by

(100) (y,z, V]) O a = ((u-g) x id)~e.~/(p.~z2),~ ((oc[3)'(@a))*split2sv,

where (u, v) = c --* (y, z). By distinguishing the cases from the definition of operator
O in (59) we can show that operator 6 defined in (100) is equal to operator O
defined in (59). Thus we obtain (93).

References

[1] A. Apostolico and Z. Galil, editors. Combinatorial Algorithms on Words, NATO ASI Series F,
volume 12. Springer-Verlag, Berlin, 1985.

[2] R.S. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic ofProgrammin 9 and
Calculi of Discrete Desion, pages 5-42. NATO ASI Series F, volume 36. Springer-Verlag, Berlin,
1987.

[3] R.S. Bird. Lectures on constructive functional programming. In M. Broy, editor, Constructive
Methods in Computin 9 Science, pages 151-216. NATO ASI Series F, volume 55. Springer-Verlag,
Berlin, 1989.

[4] R.S. Bird, J. Gibbons, and G. Jones. Formal derivation of a pattern matching algorithm. Science
of Computer Proorammino, 12:93-104, 1989.

[-5] R.S. Bird and P. Wadler. Introduction to Functional Programmin 9. Prentice-Hall, Englewood
Cliffs, NJ, 1988.

[-6] S .N . Cole. Real-time computation by n-dimensional iterative arrays of finite-state machines.
IEEE Transactions on Computers, 18(4):349-365, 1969.

184 J. Jeuring

[7] M. Crochemore and W. Rytter. Parallel computations on strings and arrays. In C. Choffrut
and T. Lengauer, editors, Proceedings of the 7th Annual Symposium on Theoretical Aspects of
Computer Science, pages 109-125. Lecture Notes in Computer Science, Vol. 415. Springer-
Verlag, Berlin, 1990.

[8] P.C. Fischer and M. S. Paterson. String matching and other products. In R. M. Karp, editor,
SIAM-AMS Proceedings on Complexity of Computation, volume 7, pages 113-126, 1974.

[9] M.M. Fokkinga. Law and Order in Algorithmics. Ph.D. thesis, Twente University, 1992.
[10] Z. Galil. Real-time algorithms for string-matching and palindrome recognition. In Proceedings

of the Eighth Annual Symposium on Theory of Computing, pages 161-173, 1976.
[11] Z. Galil. Two fast simulations which imply some fast string matching and palindrome-

recognition algorithms. Information Processing Letters, 4:85-87, 1976.
[12] Z. Galil. Palindrome recognition in real time by a multitape Turing machine. Journal of

Computers and Systems Sciences, 16:140-157, 1978.
[13] Z. Galil. String matching in real time. Journal of the ACM, 28(1): 134-149, 1981.
[14] Z. Galil and J. Seiferas. A linear-time on-line recognition algorithm for "Palstar." Journal of

the ACM, 25(1):102-111, 1978.
[15] J.A. Goguen. Memories of ADJ. Bulletin of the EATCS, 39:97-102, 1989.
[16] J.E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Computation.

Addison-Wesley, Reading, MA, 1979.
[17] J. Jeuring. Finding palindromes. In Proceedings SION Computing Science in the Netherlands,

pages 123-140, 1988.
[18] J. Jeuring. Algorithms from theorems. In M. Broy and C. B. Jones, editors, Programming

Concepts and Methods, pages 247-266. North-Holland, Amsterdam, t990.
[19] J. Jeuring. The derivation of hierarchies of algorithms on matrices. In B. M611er, editor,

Constructing Programs from Specifications, pages 9-32. North-Holland, Amsterdam, 1991.
[20] D.E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings. SlAM Journal on

Computing, 6:323-350, 1978.
[21] G. Malcolm. Data structures and program transformation. Science of Computer Programming,

14:255-279, 1990.
[22] G. Manacher. A new linear-time "on-line" algorithm for finding the smallest initial palindrome

of a string. Journal of the A CM, 22: 346-351, 1975.
[23] L. Meertens. Algorithmics--towards programming as a mathematical activity. In J. W. de

Bakker, M. Hazewinkel, and J. K. Lenstra, editors, Proceedings of the CWI Symposium on
Mathematics and Computer Science, pages 289-334. CWI Monographs, volume 1. North-
Holland, Amsterdam, 1986.

[24] L. Meertens. Paramorphisms. Technical Report CS-R9005, CWl, 1990. To appear in Formal
Aspects of Computin O.

[25] O. de Moor. List partitions. To appear in Formal Aspects of Computing.
[26] J.I. Seiferas. Iterative arrays with direct central control. Acta Informatica, 8:177-192, 1977.
[27] A.O. Slisenko. Recognizing a symmetry predicate by multihead Turing machines with input.

In V. P. Orverkov and N. A. Sonin, editors, Proceedings of the Steklov Institute of Mathematics,
number 129, pages 25-208, 1973.

[28] P. Weiner. Linear pattern matching algorithms. In 1EEE Symposium on Switchin'9 and Automata
Theory, volume 14, pages 1-11, 1973.

[29] A. C. Yao. A Lower Bound to Palindrome Recognition by Probabilistic Turing Machines.
Technical Report STAN-CS-77-647, Computer Science Department, Stanford University, 1977.

