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The Derivation of On-Line Algorithms, with an 
Application To Finding Palindromes 1 

Johan  Jeuring 2 

Abstract. A theory for the derivation of on-line algorithms is presented. The algorithms are derived 
in the Bird-Meertens calculus for program transformations. This calculus provides a concise functional 
notation for algorithms, and a few powerful theorems for proving equalities of functions. The theory 
for the derivation of on-line algorithms is illustrated with the derivation of an algorithm for finding 
palindromes. 

An on-line linear-time random access machine (RAM) algorithm for finding the longest palindromic 
substring in a string is derived, For the purpose of finding the longest palindromic substring, all 
maximal palindromic substrings are computed. The list of maximal palindromes obtained in the 
computation of the longest palindrome can be used for other purposes such as finding the largest 
palindromic rectangle in a matrix and finding the shortest partition of a string into palindromes. 

Key Words. Derivation of on-line algorithms, Transformational programming, Bird-Meertens calcu- 
lus, Segment problems, Theory of lists, Longest palindromic substring, Maximal palindromes. 

1. Introduction. In this paper  we present a theory for the derivation of on-line 
algorithms. The algori thms are derived in the Bird-Meer tens  calculus for p rog ram 
transformation.  This calculus provides a concise functional nota t ion for algo- 
rithms, and a few powerful theorems for proving equalities of functions. The 
theorems are used to t ransform inefficient but clearly correct specifications (which 
are functional algori thms themselves) into efficient algorithms. Thus, it is necessary 
to state (and prove) explicitly all the equalities used in the derivation of  an 
algorithm. Most  of  the functions we use are well known  in functional pro- 
gramming,  see I-5]. Aspects of the Bird-Meer tens  calculus are described in 1-23], 
[2], [3], and [24]. 

For  several classes of problems theories can be developed, such as a theory for 
problems on lists, see [2] and [18], and a theory  for problems on matrices, see 
I-3] and 1-19]. In  this paper we further develop the theory of  lists, in part icular  the 
theory of  segments (in the literature, a segment is also called a substring or  a 
factor). We prove a number  of theorems with which many  on-line algori thms for 
segment problems can be derived. 

A left-reduction is a function defined on the data  type list whose inductive 
definitional pat tern  mimics that of the type. We argue that  the recursive structure 
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of an on-line algorithm follows that of a left-reduction. In the derivations we 
present we strive to derive a left-reduction (or a slight generalization of it) for the 
given specifications. Therefore, the theory we present may be viewed as a theory 
for the derivation of on-line algorithms. 

The theory for on-line algorithms is illustrated with the derivation of an on-line 
linear-time random access machine (RAM) algorithm for finding the longest 
palindromic substring in a string. One of the most important theorems used in 
this derivation is a generalization of a theorem used by Bird et al. [4] to derive 
the algorithm for pattern matching from Knuth, Morris, and Pratt. 

An occurrence of a palindrome in a string is called extendible if it is preceded 
and followed by equal characters, otherwise it is called maximal (including the 
case when there is no element preceding or following it). For example, in "colon" 
the substring "1" is an extendible palindrome and the substrings "olo" and "c" 
are maximal palindromes. 

We derive an on-line linear-time RAM algorithm for finding the longest 
palindromic substring in a string. For the purpose of finding the longest palindro- 
mic substring of a string we compute (the positions of) all maximal palindromes 
occurring in a string. The algorithm for finding (the positions of) all maximal 
palindromes occurring in a string is used to solve some other problems concerning 
palindromes, such as the problem of finding the largest palindromic rectangle in 
a matrix, and the problem of finding the shortest partition into palindromes of a 
string. 

The derivation of the algorithm as presented in this article is a new derivation 
of the algorithm given in 1-17]. After publishing [17], Jeuring found that the notion 
of maximality of palindromes and the algorithm to compute all maximal palin- 
dromes occurring in a string had been given before, by Galil and Seiferas [14]. In 
that article, maximal palindromes are used in an algorithm for recognizing the 
language P.,  where P is the set of palindromes. Instead of giving a difficult 
correctness proof of the algorithm, we derive the algorithm from its specification, 
using a theory for the derivation of on-line algorithms. 

Palindromes have been studied extensively in algorithm and complexity theory. 
Efficient algorithms for recognizing P, the set of palindromes, and similar problems 
have been constructed on several computing models. Cole [6] gives a real-time 
algorithm for recognizing P on an iterative array of finite-state machines. Seiferas 
[26] shows how to recognize palindromes of even length on a computing model 
similar to the iterative array. Algorithms for recognizing P on several different 
Turing-machine models are given in [16]. A lower bound on the complexity of 
recognizing palindromes on probabilistic Turing machines is derived by Yao [29]. 

Recognizing initial palindromes in a string was the next problem related to 
palindromes to be addressed in several papers. Manacher [22] gives a linear-time 
algorithm on the RAM computing model finding the smallest initial palindrome 
of even length. He also describes how to adjust his algorithm in order to find the 
smallest initial palindrome of odd length > 3. Manacher's algorithm is on line, 
that is, it is linear time, but in between reading two symbols from the input string 
more than constant time may be spent. The algorithm constructed by Manacher 
is obtained by Galil [11] using several theoretical results on fast simulations. Using 
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their algorithm for pattern matching, Knuth et al. [20] give an off-line linear-time 
RAM algorithm for finding the longest initial palindrome of even length. The ideas 
of Manacher are generalized in [14] and [17] to find (the positions of) all maximal 
palindromes in a string on line on the RAM computing model. Crochemore and 
Rytter [7] give a parallel version of this algorithm. 

The papers mentioned above contain RAM algorithms for recognizing palin- 
dromes. Algorithms on Turing machines have been devised too. Fischer and 
Paterson [8] give a linear-time off-line Turing-machine algorithm for finding all 
initial palindromes in a string. Finally, Galil [10], [12] describes a real-time (that 
is, on line, but in between reading two symbols from the input string constant 
time is spent) multitape Turing-machine algorithm finding all initial palindromes 
in a string. Galil's algorithm improves on Slisenko's work [27] on algorithms for 
finding palindromes. 

This paper is organized as follows. Section 2 introduces the notation and specific 
functions used in the developments in the subsequent sections. Furthermore, some 
basic fusion theorems are given, such as the fusion theorem for data types in the 
Boom hierarchy and the Snoc-Lists Fusion Theorem. Section 3 defines the notion 
of segment, and proves some general theorems concerning segment problems. 
Furthermore, we derive the generalization of the theorem used to derive the 
pattern-matching algorithm from Knuth, Morris, and Pratt in [4]. Section 4 gives 
the algorithm for finding palindromes, together with a discussion on its complexity. 
Section 5 uses the algorithm for finding the longest palindromic segment and the 
positions of all maximal palindromes occurring in a string derived in Section 4 to 
solve some other problems concerning palindromes, such as finding the shortest 
partition into palindromes of a string. Finally, Section 6 contains some conclu- 
sions. 

2. Basics of the Bird-Meertens Calculus. In this section we introduce the basic 
notions and definitions used in the subsequent sections. In the first subsection we 
briefly describe functions, operators, and cartesian products. Two important 
concepts in the Bird-Meertens calculus are the notions of catamorphism and 
fusion. For every data type, catamorphisms are defined and a fusion theorem is 
given. This process is described in detail by Malcolm [21] and Fokkinga [9]. 
Section 2.2 defines catamorphisms and gives the fusion theorem for the data types 
in the Boom-hierarchy, such as set and list. Section 2.3 discusses the data type 
snoc-list. We introduce left-reductions (catamorphisms on snoc-lists), and we give 
the Snoc-List Fusion Theorem. Finally, Section 2.4 introduces some auxiliary 
functions and operators. 

2.1. Functions, Operators, and Products. A function is an object with three 
components written f :  s ~ t, where s is a set called the source of the function, t is 
a set called the taroet of the function, and f maps each member x of s to a member 
of t. This member is denoted f x, using simple juxtaposition and a little white 
space to denote application of a function f to an argument x. We use the letters 
f, 0, h, etc., as variables standing for arbitrary functions. Function application is 
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right-associative, i.e., we have 

f (9(hx)) = f #  hx.  

The composi t ion of two functions f :  s ~ t and 9: r --* s is written f "  g : r --, t. 
Composit ion is associative, that is, for all f ,  g, and h we have f ' ( g .  h) = ( f ' g ) .  h. 

Taking advantage of associativity, chains of compositions are usually written 
without brackets. An example of a function is the identity function: for each set 
s, the function ids: s --* s is the identity function on the set s. 

We postulate the existence of the cartesian product. If A and B are types, then 
their cartesian product,  A x B, is a type whose objects are all pairs (a, b), where 
a e A and b e B. A function with a cartesian product  as its source is referred to as 
a binary operator. The operator  + :nats x nats  ~ nats  is such a function. Typical 
variable names for binary operators are @, |  Q,  etc. We frequently use infix 
notation for the application of a binary operator  @ to an argument (a, b), so 
instead of writing O(a, b) we write a @ b. Here and throughout,  we adopt  the 
convention that function application is more binding than infix binary application, 
so the expression f a @ g b should be parsed as ( f  a) @ (g b). Binary operators can 
be parametrized, i.e., if @ is a binary operator  of type A x B --* C, and a E A, we 
consider the expression (aO) to be a unary function of type B --* C. It  is defined by 

( a @ ) b  = a @ b .  

The function (~)b) is defined similarly. These parametrized operators are 
also known as "sections." For  example, the function ( + 3 ) : n a t s  ~ nats takes a 
natural number  as argument and returns the number  increased by three, so 
( +  3) 5 = 8. The cartesian product  type has two primitive operations, the projec- 
tions ~ : A x B ~ A ("first") and >> :A x B -o B ("second"). The projection oper- 
ators are defined by 

a ,~ b = a, 

a>>b = b. 

The projection operators are the first examples of polymorphic functions, in the 
sense that ~ : A x B ~ A for all types A and B. Many more polymorphic functions 
are encountered in what follows. If operator  @ has a unit or identity element, 
then it is written v e.  An identity element is also called a neutral element. The 
element v e satisfies by definition v~ @ a = a @ v e = a for all a. If  a unit element 
exists, it is unique. If a unit element does not exist we may introduce a "fictitious" 
unit element, also written v~, with the same property. Caution is advised though 
in doing this. The cases in which we introduce fictitious elements cause no 
problems. The operator  x is defined on types as well as functions. For  functions 
f :  A ~ B and g: C ~ D, function f x g : A x C ~ B x D is defined for all pairs 
( a , c ) ~ A  • C b y  

( f  • g) (a, c) = ( f  a, g c). 
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Operator x binds stronger than composition. We have the following law for 
operator x : 

(1) f x g ' h  x j = ( f ' h )  x (9"J). 

This law may be proved by taking an arbitrary element (a, b) of the type A x B, 
where A is the source type of h and B is the source type of j, and showing that 
the results of both sides applied to (a, b) are equal. 

If we swap the components of the type of binary operators we obtain the type 
C -+ A x B. Functions of this type can be constructed as follows. Let f :  C -0 A 
and g : C ~ B be functions, then the function f / X  9 : C ~ A x B (pronounced "f 
split g"), is defined by 

( f / k  g) c = ( f  c, 9 c). 

Just like operator • opera to r /~  binds stronger than composition. The operators 
• and A, and the projection functions satisfy the following laws. The proofs of 

these laws are similar to the proof of law (1) and are therefore omitted. 

(2) f x 9 = (f"  ~) /X (g" >>), 

(3) f • g" h /Xj  = (f"  h)/X (g "J), 

(4) ( f .  h)/X (9' h) = f / X  g" h, 

(5) ,~ . f  x g = f .  4 ,  

(6) >> . f  x g = g. >>, 

(7) ~ " f A g  = f ,  

(8) >> " f A g  = 9, 

(9) ~ / k  >> = id. 

Finite cartesian products are the sets of all pairs, all triples, all quadruples, all 
quintuples, etc., together with projection functions 7r 1, rc2, etc. Usually, the 
projection functions are superscripted with the type on which they are defined, 
but we suppose that this information is deducible from the context, and therefore 
it is suppressed. So 7~ 2 might be both  of rc~ and ~4. Operator oc takes a pair and 
an element and returns a triple consisting of the three arguments. 

(10) (x, y) oc z = (x, y, z). 

The function ~ takes the first two elements of a triple, 

(11) tl (x, y, z) = (x, y), 

so ~'(oc z) = id for all z. 
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A relation is a set of pairs. Let R be a relation. We write x R y for (x, y) E R. 
Statements of the form ( f  x) R ( f  y) occur very often. We introduce a shorthand 
for these expressions: 

(12) x R s y -  ( f x )  R ( fy) .  

For  example, for 24 mod 10 = 34 mod 10 we may write 34 =moalo24. 

2.2. The Boom-Hierarchy. Important  data types for lots of problems for which 
we want to construct algorithms are the data types binary tree, list, bag, and set. 
These four data types form a nice hierarchy. Meertens [23] attributes this hierarchy 
to H. J. Boom, and therefore this hierarchy is called the Boom-hierarchy. A data 
type is considered to be an initial algebra in a category of functor-algebras, see 
[21] and [9]. We describe data types informally. 

The recursive data type binary tree over some base type A consist of elements 
that are constructed as follows. A binary tree is either the empty binary tree ( ) ,  
or it is a singleton tree z a, where a is an element of type A, or it is the concatenation 
of two binary trees x I y. The empty binary tree ( ) is the unit of I .  

The other data types from the Boom-hierarchy are obtained by imposing laws 
upon the constructor _1.. If I is associative we obtain the data type join-list ( ( )  
and • are then written as respectively [] and 4).  If • is associative and 
commutative we obtain the data type bag, also known as multiset, and if • is 
associative, commutative, and idempotent we obtain the data type set ( ( )  and • 
are then written as respectively { } and ~). In the remaining part of this section 
we give definitions and prove theorems for the data type set. For each of the three 
other data structures in the Boom-hierarchy similar definitions and theorems can 
be given. All data types in the Boom-hierarchy are denoted by A*. Unless 
otherwise stated, the data type A,  is considered to be the data type set over base 
type A in what follows. 

Given a data type, catamorphisms on this data type can be described sys- 
tematically. A catamorphism is a homomorphism of which the source type is 
a data type. The data type set is defined such that given an associative, commuta- 
tive, and idempotent operator • : B x B ~ B, a function f :  A ~ B, and a value 
e : B that is the unit of @ there exists a unique function h: A,  ~ B satisfying 

(13) 

h{ } = e ,  

h r a = f a ,  

h (x u y) = (h x) | (h y). 

Function h is called a catamorphism. If a unit element does not exist, we may 
introduce a fictitious element (see [23]) with the property that it is the unit of |  
To define the notion of catamorphism on the data type join-list, the above 
definition should be repeated without the occurrences of the words idempotent 
and commutative. 

A catamorphism defined on the data type set can be written as the composition 
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of a reduction and a map, which are defined as follows. The map operator �9 takes 
as arguments a function and a set and returns a set consisting of the images of f 
of the original elements. More precisely, if f :  A ~ B, then f ,  : A,  --* B ,  is defined 
as the following catamorphism. 

(14) 

f , {  } = {  }, 

f * ~ a  = { f  a}, 

f* (x w y) = (f* x) u (f* y). 

The result of applying the reduction operator / to an associative, commutative, 
and idempotent operator @ and a set can be obtained by placing @ between 
adjacent elements of the set, so, if @ : A x A ~ A, then G / :  A,  ~ A is defined as 
a catamorphism as follows: 

(15) 

r  } = v, ,  

O/'c  a = a ,  

r  u y) = (@/x) r (| 

where v e is the, possibly fictitious, unit element of ~ .  
In general catamorphism h satisfies 

h =  @/'f* 

for some operator | and function f ,  a fact expressed by the Catamorphism Lemma 
from Meertens [23]. 

An example of a widely used catamorphism is the length function 41: : A* ~ nats 
defined on the data type join-list. Define function 1 ~ A ~ nats by 1 ~ a = 1 for all 
a. Since the addition operator + on natural numbers is associative, the function 
:~ = + / .  1~ is a well-defined catamorphism on the data type join-list. 

We now come to the second important notion of the Bird-Meertens calculus, 
fusion. Every data type has its own fusion theorem. Fusion provides a means for 
proving equalities of functions avoiding the application of induction in the 
development of algorithms. Inductive arguments tend to be tedious and are less 
elegant than proofs using fusion. As early as 1975, this was one of the main 
motivations of Goguen [15] to advocate the use of initiality. Before we give the 
theorem, we first define fusability. 

(16) DEFINITION ((@, | Let • : A x A ~ A and | : B x B -~ B 
be associative, commutative, and idempotent operators. A function f : A - - *  B is 
((~, | if 

f (x �9 Y) = ( f  x) | ( f  y), 
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where x and y range over the image of 0 / ,  that is, x and y are of the form 0 / v ,  
0 / w  for some v and w. 

We have the following theorem, a proof of which uses the fact that catamor- 
phisms are unique functions satisfying (13); it can be found in [23] and [21]. 

(17) THEOREM (Fusion). A function f : A ~ B  is (0 ,  | if and only if 
f" 0 / =  @/'f*. 

Consider the expression f .  0 / "  g, where g is a function with target A.. To apply 
Fusion to obtain |  it suffices to show that f is (@, @)-fusable for elements 
of the form @/v, @/w where we may assume in addition that v and w are subsets 
of g z for some z. 

Another theorem that we use frequently in the derivations in the following 
sections is the following. 

(18) THEOREM (Map Distributivity). For all functions f :  B ~ C and g : A ~ B we 
have 

f ,  .g ,  = ( f .  g)*. 

Thefilter operator <], takes a predicate (i.e., a boolean function) and a set and 
retains the elements satisfying the predicate in a set, so if p:A ~ bool, then 
p<] : A ,  ~ A,  is defined by 

(19) p<] = w/'/3,, 

where/3 a = z a ifp a holds and 13 a = { } otherwise. For  example, odd<] {3, 4, 5} = 
{3, 5}. An expression of the form P?o, called a guard, is defined by p?~, = @/./3, 
where co = v| We have 

@/. p<] 
definition of filter (19) 

| u/./3, 
Fusion, |  (w, | 

| | "/3* 
map distributivity 

| (| /31, 
definition of guard 

|  p?,~*. 

The derived equation 

(20) |  -- |  
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shows that a filter followed by a reduction is a catamorphism. This transformation 
is carried out frequently in what follows. A filter and a map can be swapped. 

(21) THEOREM (Map-Filter swap). For all functions f : A ~ B  and predicates 
p : B ~ bool we have, 

p<] " f* = f * ' ( p "  f ) < Z  

2.3. The Data Type Snoc-List.  The data type join-list in the Boom-hierarchy is 
one way to " implement"  the intuitive idea we have of lists. In this section we 
present another way to represent lists as a data type. The data type snoc-list over 
base type A is denoted by A*. An element of the data type snoc-list is either the 
empty list IN, or x 4( a, the concatenation of a snoc-list x : A .  with an element a 
of type A. The data type snoc-list is isomorphic to the data type join-list, that is, 
we can exhibit two injective functions s j : A . - ~  A .  and j s : A .  ~ A .  satisfying 
sj "js = ida. and j s . s j  = ida.. 

Given an operator �9 : B x A ~ B and a value e : B, there exists a unique function 
h : A .  ~ B, a catamorphism, such that 

h (x ~ a) -- (h x) 03 a, 
(22) 

h I q  = e .  

Many  algorithms on lists are catamorphisms on the data type snoc-list. Therefore, 
we give a name to catamorphisms on the data type snoc-list; a catamorphism on 
the data type snoc-list is called a left-reduction. The unique function h satisfying 
(22) is written G+-~e. An example of a left-reduction is the function @ which 
returns the length of a list. It  is the left-reduction ((+ 1). ~)-~0.  Another example 
is the concatenation operator -~ defined by x qg y = (q(-~x)y.  Note  that -~ is 
associative. The identity left-reduction id is defined by -~-t-4q. We use [a, b, c] as 
an abbreviation for [] 4( a 4( b -~ c. 

Let h be a recursively computable function defined on lists, and let cp be a 
program that computes the value of h on an argument. Following Galil 1-13] 
program ~o is called on line if it processes one element of the argument at a time, 
and if the value of h on the processed elements is available before the next element 
from the argument is read. So given an argument x, value h x is computed by 
means of a series of successive approximations h y where the y's are initial parts 
of x. It follows that the recursive structure of an on-line program follows that of 
a left-reduction. A program is called real time if it is on line and if in addition 
there exists a constant c such that the number  of steps required to compute 
h (x 4(a) given the value of h x is bounded by c. It  follows that a real-time program 
can be viewed as a left-reduction the operator  of which can be evaluated in 
constant time. 

Again, we have a fusion theorem for this data type. 

(23) THEOREM (Snoc-List Fusion). Suppose f : B --* C, �9 : B x A --, B, and 
| : C x A ~ C satisfy 

f ( x  O a )  = ( f  x ) |  a 
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for x in the image of G-c--~e. Then 

f" (~-~e = |  e). 

If h is a left-reduction, value h (x -~ a) is expressed in terms of value h x and a. 
For function h that is not a left-reduction more information is needed for a 
recursive definition of h. For each function h, value h(x -~ a) can be expressed in 
terms of h x, a, and the argument x itself, that is, for each function h : A* ~ B there 
exist operator @ : (B x A. )  x A -~ B and value e of type B such that 

h (x -~ a) = (h x, x) @ a, 
(24) 

hV] =e .  

Note that the form of these characterizing equations is almost that of the 
characterizing equations of a catamorphism, except for the tupling with the 
argument in the left-hand argument of @. Given operator @ and value e there is 
a unique function satisfying these equations. Such a function is written @ 4 e ,  and 
it is called a paramorphism by Meertens. Meertens [24] defines paramorphisms 
on arbitrary data types, and shows that they possess calculational properties very 
similar to the properties of catamorphisms. One of these properties is the 
Parafusion Theorem. 

(25) THEOREM (Parafusion). Suppose f, @, and | satisfy 

f ((x, y) �9 a) = ( f  x, y) | a 

for x in the image of Gvge. Then 

f" ~)--Ae = |  e). 

2.4. Combinators and Auxiliary Functions. The operator Ts, where f is of type 
A ~ B, and B is totally ordered, is a binary operator of type A x A -~ A. It is 
defined by 

{~ if x >gY, 
(26) x ]'s Y = if y > s x. 

We do not yet define Ts on arguments which have equal f-values, except that one 
of the arguments is the outcome. It might be necessary to define l"s differently for 
different problems. If the choice made by the operator Ts on equal f-values is 
immaterial to the problem, we will not give its exact definition. The operator {s 
is defined similarly. 

The following two operators abbreviate frequently occurring expressions: 

(27) (x, y, z) ~9 a = (x, y, z q< a), 

(28) (x, y) 0 a = (x, y -'K a). 
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The function hd: A*  --* A returns the first element of a nonempty list, and the 
function tl: A*  --* A*  returns all but the first elements of a nonempty list, so 

(29) hd ([a] -g x) = a, 

(30) tl ([a] -g x) = x. 

Functions It : A *  --* A and it : A .  ~ A .  are the couterparts of functions hd and tl. 
They are defined by 

(31) It (x -g [a]) = a, 

(32) it (x -g [ a ] )  = x. 

Given a list x and a natural number n we define four functions called takeb 
(take from the back), takef (take from the front), dropb (drop from the back), and 
dropf (drop from the front) which respectively take the last n elements of x, take 
the first n elements of x, drop the last n elements of x (which equals taking all but 
the last n elements of x), and drop the first n elements of x. Since these functions 
are rarely used, and since their definitions can easily be inferred from the following 
example definition and the definitions in words given above, we only give the 
definition of function dropb: 

(33) 

(dropb O) x = x, 

{~ropbn) ( i t x )  if x ~ l - 1 ,  
(dropb (n + 1)) x = otherwise. 

3. Segment Theory. Finding the longest palindromic segment is specified by 

(34) lps = T ~/" ispal<l " segs, 

where ispal is the predicate determining whether its argument is a palindrome or 
not, and segs is a function returning all segments of a list. This specification is an 
example of a segment problem. Segment problems are specified by 

(35) O~" f*" segs 

for arbitrary operator ~) and function f. Note that by (20) this class of segment 
problems includes all problems of the form O/ 'p<l ' s egs  for arbitrary predicate 
p. Theory dealing with segment problems has been developed in [2] and [4]. 
However, this theory is not straightforwardly applicable to the palindrome 
problem. The problem is that information is needed, but this information is not 
available in the context where it is needed. Here, a segment does not carry 
information about how it occurs, and this information is needed to find out 
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whether a palindrome is extendible or maximal. To decide whether a palindromic 
segment is maximal or extendible, the context of the segment is needed. The generic 
solution is to tuple with the information needed, and in this particular case we 
tuple a segment with its context. 

Section 3.1 defines the functions for computing segments. These definitions 
deviate from the definitions given by Bird, even when the contexts of the segments 
are removed. Section 3.2 derives some fusion theorems for the functions introduced 
in Section 3.1. The first theorem, the split3s-Fusion Theorem, gives a condition a 
segment problem has to satisfy in order to obtain an efficient algorithm for it. The 
split3s-Fusion Theorem has three important corollaries. The first corollary is called 
Horner's rule and corresponds to a combination of theorems presented in [3]. 
The other corollaries of the split3s-Fusion Theorem, the Sliding Tails Theorem 
and the Hopping Tails Theorem, are theorems that unify and generalize results 
presented in [17] and [4]. The Hopping Tails Theorem is based on ideas presented 
in [28] and [20]. The form of the functions given in Section 3.1 allows us to give 
rather simple derivations of these theorems. These fusion theorems are the 
theorems by means of which on-line algorithms for problems on segments are 
derived. 

3.1. Segments. A segment of a list is a list consisting of a number of consecutive 
elements from the argument. Formally, list y is a segment of list v if and only if 
there exist lists x and z such that v = x -g y -g z. Problems on segments have been 
studied widely; the amount  of literature on just the pattern-matching problem, 
which requires finding occurrences of a given pattern (segments equal to the 
pattern) in a list, is enormous. A large number of (solutions to) segment-problems 
can be found in the book Combinatorial Algorithms on words edited by Apostolico 
and Galil [1]. 

A segment of a list is tupled with the part of the list in front of it and the part 
of the list after it. Function split3s: A* ~ (A* x A~ x A , ) ,  returns all ways in 
which a list can be split into three parts (which explains its name). Using 
set-comprehension we have 

(36) sp~t3sv={(x,y, z ) l v = x - g y ~ z } .  

To perform calculations, split3s should be defined on the data type list as a 
catamorphism or a paramorphism, or as a catamorphism or a paramorphism 
followed by a function that can be evaluated cheaply. Function split3s is a 
left-reduction, but the definition is rather awkward, and therefore it is defined as 
a paramorphism. For  the domain of the paramorphism there are two choices: 
split3s can be defined as a join-list paramorphism or as a snoc-list paramorphism. 
The choice of definition determines the form of the final algorithm that will be 
constructed, that is, if split3s is defined as a join-list paramorphism, the algorithm 
that will be constructed is a join-list paramorphism, etc. We want to derive on-line 
algorithms, and therefore we define split3s as a snoc-list paramorphism. Even now 
we can choose between several definitions. The choice made here seems to be the 
most appropriate for our purposes when inspecting the length of the derivations 
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for the different definitions. Two characterizing equations for split3s are 

split3s [] = {(1-1, I-1, [])}, 
(37) 

split3s (x -K a) = ( (~a) .  split3s x) u ((oc [3)* split2s (x -K a)), 

where function s p l i t 2 s : A *  ~ (A* • A*)* returns, given a list, all ways in which 
this list can be split into two parts. Using set-comprehension, split2s is defined by 

(38) split2s v = {(x, y)lv = x -~ y}. 

Two characterizing equations for split2s are 

split2s [] = {(["], I-q)}, 
(39) 

split2s (x q(a) = ((Oa)* split2s x) u {(x -K a, [Z)}. 

Function split2s is a paramorphism 

(40) split2s = ( 3 ~ { ( ~ ,  [])}, 

where operator (3 is defined by 

(41) (x, y) (3 a = ((~a)* x) u {(y q< a, •)}. 

To obtain a paramorphism followed by a function that can be evaluated cheaply 
for function split3s, we tuple the computation of split3s with the computation of 
split2s. Define 

(42) ss = split3s /~ split2s. 

Then, according to equality (7) 

(43) split3s = ~ �9 ss. 

The definition of ss as a paramorphism is straightforward. We have 

(44) ss = |  R,  r-I)}, {(i-% [:])}), 

where operator | is defined by 

(45) ((x, y), z) @ a = (((~9a), x) u (~  I-1)* ((y, z) (3 a), (y, z) (3 a). 

Using the new terminology, the specification of the palindrome problem 
becomes 

(46) Ips = "f ~ ~/" (ispal. 7tz)<~ " split3s. 
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Thus we do not find just the longest palindromic segment of a list, but the parts 
to the left and right of the list of which it is a segment too. The specification can 
be implemented as a functional program. Given a list of length n, this program 
requires time ~(n 3) to find the longest palindrome in this list. This can be seen as 
follows. Function split3s returns a list containing f~(n 2) triples, and every triple is 
of length fl(n). Since computing ispal for a list requires linear time, and T~ .~2 can 
be implemented such that it requires constant time, we have that our specification 
requires time f~(n 2) x f~(n) = f~(n3). 

3.2. Fusion Theorems. In this subsection we give the main theorems used in the 
derivation of on-line algorithms for segment problems. The theorems given here 
are not specific to the palindrome finding problem; they reappear in almost every 
derivation of an algorithm for a segment problem, though with split2s usually 
replaced by tails (tails is the function which, applied to a list, returns all tail 
segments of that list) and split3s replaced by segs. The generic specification of 
segment problems is given by 

(47) • / .  f .  . split3s, 

where @ is an arbitrary operator and f is an arbitrary function. Given a segment 
problem, we want to obtain an algorithm for it that can be implemented as an 
efficient program. Our first goal is to find conditions such that the specification 
equals a paramorphism. Since split3s is not a paramorphism, we cannot apply 
the Parafusion Theorem to the specification. Using (5) we derive, for arbitrary 
function 9, 

@ / . f ,  .split3s 
(43) 

@/. f , .  r .ss 
= (5) 

�9 ( @ / . f , )  x g.ss.  

For g we can choose any function that suits us, and in the subsequent calculation 
a natural candidate will emerge. Function ss is a paramorphism, so we can apply 
the Parafusion Theorem to the expression (G~" f*) x g.ss. For that purpose we 
have to compute 

((@/. f , )  x 9)({([],  [] ,  [])}, { (o ,  o)}),  

which equals ( f  ([-% D, []), g {([~, [])}), and we have to find an operator @ such 
that, for all (x, y) in the image of ss, and for all a, 

( 4 8 )  ((~)/ ' f*)  x g) (((x, y), w) | a) = (((O~" f*) x g) (x, y), w) @ a. 
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The definition of an operator @ satisfying (48) is synthesized as follows. Meanwhile 
we will find a candidate for function g: 

((O/" f*) x O) (((x, y), w) | a) 
definition of | (45) 

((O/" f*) x 9) ((~a)* x u (oc m)* ((y, w) @ a), (y, w) 0 a) 
-~- definition of x 

(O/f* (((~a)* x u (oc F-l)* ((y, w) Q) a)), 9 ((Y, w) O a)) 
definition of catamorphism 

( ( 0 / #  (~a)* x) �9 (O/f* (oc m)* ((y, w) Q) a)), g ((Y, w) (D a)) 
-~- assumption below, map distributivity 

(((~a) 0 / f *  x) �9 ( 0 / ( f .  (oc [7)), ((y, w) Q) a)), 9 ((Y, w) Q) a)). 

In the last step of this calculation we applied the equality: 

(~a)" G~" f* = 0/"  f* .(r 

This equality is easily proved if we assume that (~)a) is (0 ,  @)-fusable and 
commutes with function f. In the last expression of this calculation we distinguish 
three subexpressions: 

(~a) 0 / f *  x, 

0 / ( f "  (~  [-1))* ((y, w) O a), 

g ((Y, w) Q) a). 

In view of the form of the desired expression (48) the first subexpression 
( ~ a ) O / f * x  need not be developed any further, and the subexpressions 
0 / ( f "  (~  [2))* ((Y, w) @ a) and g ((Y, w) Q) a) have to be expressed in terms of g Y, 
w, and a. Hence a reasonable choice for g seems to be O/ ' ( f ' (ocD)) . .  The 
remaining task is to express 0 / ( f . ( o c  [2))* ((y, w) Q a) in terms of 

0 / ( f . ( o z  [5])). y, w, and a. 

We have 

O / ( f "  (oc I-1)). ((y, w) Q) a) 
definition of Q) (41) 

G / ( f "  (~: I-1))* ((~a), y u {(w -~ a, D)}) 
~ - - -  definition of catamorphism 

( 0 / ( f . ( o c  D))* (~a)* y) �9 ( f  (w 4( a, [], [Z)) 
-~- assumption 

((@a) O / ( f .  (oc D))* Y) �9 ( f  (w 4( a, [], [7)) 
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for some operator @. This assumption is the condition of the split3s-Fusion 
Theorem formulated below. Note that since (x, y) is in the image of ss, it follows 
that y is in the image of split2s. Thus we have found that operator @ can be 
defined by 

(49) ((x, y), w) Q a = ((x ~ a) �9 (y 0 a) �9 u, (y 0 a) �9 u), 

where u abbreviates f(w K a, I7, []). We summarize the derivation in the following 
theorem. 

(50) TrtEOREM (split3s-Fusion). Suppose there exists an operator @ satisfying 
equation O /" ( f  " ( oc I-1)),.(0a), = (Ca). O /.  ( f  . ( oc [2)), on the image of split2s. 
Furthermore, suppose section (~a)  is (0 ,  O)-fusable and commutes with f .  Then 

O/" f* "split3s = 4 " Q ~ ( v ,  v), 

where v abbreviates f (E], [2, [[]), and operator Q is defined by 

((x, y), w) Q) a = ((x ~ a) �9 (y 0 a) �9 u, (y 0 a) �9 u), 

where u = f (w ~ a, [-% [-]). 

The equality 

(51) |  (oc [2)). ((>a). y = (Oa) O / f *  y 

assumed in the split3s-Fusion Theorem can be split into separate assumptions on 
the constituents �9 and f. There are various ways to obtain equality (51). One 
way is to assume that function f satisfies f .  (~  [])- ( ~ a) = ( 0  a). f .  (oc [] ) for some 
operator 0 such that section (Oa) is (0 ,  O)-fusable. Since equality (51) is only 
required to hold on the image ofsplit2s, section (Oa) needs only be (0 ,  O)-fusable 
for elements of the form 0 / ( f . ( o c  [])), s, 0 / ( f . (Gc  I-])), t, where s, t are subsets 
from split2s z for some list z. 

(52) THEOREM (Horner's Rule). Let f be a function satisfying 

f . ( o c [ ] ) . ( ~ a )  = (Oa) - f ' (oc [ ] )  

for some operator 0 such that section (Oa) is (0 ,  O)-fusable for elements of the 
form 0 / ( f . ( o c  F7)), s, 0 / ( f . ( o c  Vq)), t, where s, t are subsets from split2s z for some 
list z. Furthermore, suppose section (~a)  is (0 ,  O)-fusable and commutes with f .  
Then 

O/ ' f* ' sp l i t3 s  = 4"  Q~(v,  v), 
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where v abbreviates f ( [~ ,  [7, F-l), and operator | is defined by 

((x, y), w) Q) a = ((x ~ a) • (y G a) G u, (y (9 a) �9 u), 

where u = f (w q( a, I-7, [7). 

Consider a specification of the form 

(53) T. .  ~2/" (P' ~r2) <] .split3s, 

of which finding the longest palindromic segment is an instance. Such a problem 
is called a longest- p segment problem. By definition of guard (20) this specification 
equals 

T, .~J" (P" rc2)?,o* "split3s, 

where ~o = vt..~ 2. We can derive conditions on predicate p such that the conditions 
of Horner's rule are satisfied. One of these conditions on predicate p is that it is 
prefix-closed. A predicate p is prefix-closed, see [2], if p [] holds, and if p satisfies 
for all lists x and values a 

p ( x ~ a )  ~ p x .  

A postfix-closed predicate is defined similarly. The conditions predicate p has to 
satisfy in order to apply Horner's rule are not satisfied by predicate ispal, which 
is defined by 

(54) ispal x = (x = rev x), 

where rev is the function which returns the reverse of a list. Instead of applying 
Homer's rule to a longest-p segment problem specified in (53), we derive another 
corollary of the split3s-Fusion Theorem for this class of problems. The condition 
of the split3s-Fusion Theorem, (51), reads in the case considered now 

(55)  ~, .~2/ ' (p ' l r2)<3"(oc[])* ' (Oa)* = (@a)" ~e,.~j'(P'lZ2)<~'(~ 

for some operator (9. Using the definition of guard and map distributivity, the 
composition ~ ,  .~J" (p" n2)<] .(oc D)* can be rewritten to 

t,..2/((P'~2)?~'(~zD))*- 

Abbreviate (p" ~2)?,~'(~ D) to ~/p. We have to prove this equality for elements 
y = split2s z for some list z. As an aside, we remark that if this equality holds for 
some predicate p and some operator O, then t . .~J ' (p 'Tr2)<3"spl i t2s  is a left- 
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reduction E)'+*((p" ~2)?~, (E], F-l)), where operator @' is defined by 

(x, y) G ' a  = ~((x, y, [~) @ a) t  ~ .~(p- rc2)?o, (x -~ y -4( a, [Z). 

A property similar to prefix-closed satisfied by ispal is 

(56) ispal ([a] ~ x -~ I-a]) =~ ispal x. 

Both the property satisfied by ispal and the property prefix-closed are captured 
in the notion c-slow. A predicate is c-slow for a constant c _> 0 if, for all lists y 
with # y = c, all lists x, and all elements a, 

(57) p ( y ~ x ~ [ a ] )  ~ px .  

A prefix-closed predicate is 0-slow. The predicate ispal is 1-slow. A predicate can 
be c-slow for various constants c, consider for example segment-closed predicates 
(a predicate is segment-closed if it is both prefix-closed and postfix-dosed). A 
segment-closed predicate is c-slow for all natural numbers c. For the moment we 
assume in addition that c-slow predicates hold for all lists of length at most c. 
For every c-slow predicate p there exists a derivative function V such that, for all 
lists y with ~ y = c, all lists x, and all values a, 

(58) p ( y  ~ x - g  a) = p x /x aVxy. 

For example, predicate ispal has derivative function V defined by 

aVx[b] = (a = b). 

Let 7 be a function that given a constant c and a list x splits list x into a pair of 
lists (u, v) such that x = u -~ v and list v is the tail of length c of x if # x > c and 
x itself otherwise, (7 c) x = ((dropb c) x, (takeb c) x). Consider the operator E) that 
given a triple of lists (x, y, z) and an element a returns the triple of lists (s, t, z) 
such that s -~ t = x -~ y ~ a and t is the longest tail of x qg y -K a satisfying 
predicate p. We hope to define operator @ such that, for c-slow predicates p, 

T,  .,J" (x/P)* . split2s = @+-~(D, vq, D). 

This result is a byproduct of the proof of the fact that operator @ satisfies the 
applicability condition of the split3s-Fusion Theorem. Operator @ is defined by 

(59) 
f(s, t ~ y "K a, z) 

(x, y, z) @ a = ~(x q( (hd y), tl y, z) @ a 
{.((7 c) (x -g a)) oc z 

if p ( t 4 C y K a ) ,  
if ~ p ( t ~ y K a ) ^  y # l Z ,  
otherwise, 

where 

(s, t) = (~, c) x.  
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Operator @ satisfies the condition of the split3s-Fusion Theorem if predicate p is 
c-slow, that is, equation 

(60) t , . .~/" (x/P)* "(Oa)* "split2s = (Oa)" t ~. ~J'(x/P)* .split2s 

holds for c-slow predicates p. We prove this equality in the Appendix. We have 
the following corollary of the split3s-Fusion Theorem. 

(61) THEOREM (Sliding Tails). Let p be a c-slow predicate. Then 

~ ~ .~/'(P" ~2)<3 . split3s = 4 "  @4~(v, v), 

where v abbreviates ([--1, m, IN), and operator @ is defined by 

((x, y), w) @ a = ((x ~ a) t . . ~  (Y @ a) T e.,~ u, (y @ a) T . . ~  u), 

where u abbreviates (w 4( a, F-q, 1-1), and operator @ is defined by 

f(s, t -g y 4( a, z) 
(x, y, z) @ a = ~(x 4( (hd y), tl y, z) @ a 

[ ((~ c)(x 4(a)) oc z 

if p (t 4C y-~ a), 
if --qp(t-~ yA(a)  A y # m, 
otherwise, 

where 

(s, t) = 6 '  c) x. 

The name of this theorem, the Sliding Tails Theorem, is due to Oege de Moor. It 
refers to a visual interpretation of the algorithm @r [], [ ] ) , ( [ ] ,  D, [])). 
Given a list, this paramorphism proceeds from left to right, at each point returning 
for the part of the list scanned the longest segment satisfying p and the longest 
tail satisfying p (with their contexts). The longest tail satisfying p is either the 
extension of the longest tail satisfying p at the previous point, or the tail of that 
tail, or the tail of the tail of that tail, etc. Thus the longest tail "slides" over the 
argument. 

Consider the case in which the split3s-Fusion Theorem is applied to a longest-p 
segment problem with c-slow predicate p, and operator @ is defined by (59). Since 
p (t -~ y 4(a) holds only if p y holds, it follows that (x, y, z) @ a evaluates to 
(x 4( (hd y), tl y, z) @ a as long as p y does not hold (and y # m). So 

(x, y, z) G a = (x ~ (hd y) -~ u, v, z) @ a, 

where (u, v) is the longest element in split2s tl y of which the second component 
satisfies p. Let lrp be the function that, given a list, returns the splitting with longest 
second component satisfying p: 

(62) Irp = t ~. ~J" (P" ~2) <3" split2s. 
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If we can prove that equality (55) holds for c-slow predicate p and some operator 
@, then, according to the remark made after equality (55), Irp = 0'+*([],  V]), 
where operator O '  is defined by (x, y) O ' a  = ~((x, y, D) �9 a) T..~2( x ~ Y 4( a, []). 
Define operator �9 by 

(63) 
((s, t -~ y 4( a, z) 

(x, y, z) (D a = ~(x 4( (hd y) -~ u, v, z) @ a 
(((~ c) (x -K a)) ~ z 

if p (t qg y -g a), 
if --np(t-~ y ~  a) A y r [-], 
otherwise, 

where 

(s, t) = (~ c) x, 

(u, v) = lrp tl y. 

The informal discussion above on the evaluation of operator O implies that 
operator q) defined in (63) is semantically equal to operator Q defined in (59). A 
formal proof of the fact that the operators are equal may be carried out via a 
proof of the fact that 

T~. ,J ' (x /p)* 'spl i t2s  = (D-~([~, D,  0 ) .  

Operator @ is adjusted as follows. Observe that at each time operator 0) is 
evaluated, the second component of its first argument satisfies p. This observation 
invites us to use the derivative of predicate p. Redefine operator (i) by 

(64) (x, y, z) 0 a 

((s, t -~ y ~ a, z) 
= ~(x 4( (hd y) -~ u, v, z) O) a 

(((~ c)(x -K a)) oc z 

if ~ X > c A a V y t ,  
if ( 4 ~ x < c v - 7 ( a V y t ) ) A y # I ~ ,  
otherwise, 

where 

(s, t) = (~ c) x, 

(u, v) = Irp tl y. 

It may be shown that operator �9 thus defined satisfies the condition of the 
split3s-Fusion Theorem, using an argument similar to that used to show that 
operator O (59) satisfies the condition of the split3s-Fusion Theorem. We obtain 

(65) THEOREM (Hopping Tails). Let p be a c-slow predicate. Then 

t . .,2/" (P" ZC2)<q " sP lit3s = ~ " @=r v), 
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where v abbreviates (D,  D,  m), and operator Q) is defined by 

((x, y), w) @ a = ((x ~9 a) T #.~2 (Y �9 a) T ~-~2 u, (y �9 a) ]" +.~2 u), 

where u abbreviates (w -K a, [~, D), and operator O) is defined by 

((s,  t -~ y ~ a, z) if ~ x >__ c A aVyt, 
(x, y, z) 0 a = ~(x -g (hd y) -g u, v, z) �9 a 

(((~ c)(x  -4(a)) oc z 

where 

if ( # x < c v ~(aVyt ) )  A y ~ D,  
otherwise, 

(s, t) = 6' c) x,  

(u, v) = lrp tl y. 

Again, the name of this theorem, is due to Oege de Moor and refers to a visual 
interpretation of the algorithm | [-1, rq), ([], [B, [Z)). Given a list, this 
paramorphism proceeds from left to right, at each point returning for the part of 
the list scanned the longest segment satisfying p and the longest tail satisfying p 
(with their contexts). The longest tail satisfying p is either the extension of the 
longest tail satisfying p at the previous point, or the extension of the longest tail 
satisfying p of the tail of that tail, etc. Thus the longest tail satisfying p "hops" 
over the argument. 

The split3s-Fusion Theorem, the Sliding Tails Theorem and the Hopping Tails 
Theorem are tools with which many on-line algorithms for segment problems can 
be derived. In particular, the Hopping Tails Theorem is at the heart of a derivation 
of an algorithm for finding the longest palindromic segment of a string, as we 
show in the following section, and a derivation of the Knuth, Morris, and Pratt 
pattern-matching algorithm, see [4]. 

4. The Algorithm for Finding Palindromes. In this section we derive, using the 
theory developed in the previous section, a linear-time algorithm for finding the 
longest palindromic segment of a list. To obtain a linear-time algorithm, we 
compute (the positions of all) maximal palindromes occurring in a string. Before 
we give the details of the derivation of the algorithm in Sections 4.2 and 4.3, and 
a discussion of its complexity in Section 4.4, we first give some basic properties 
of palindromes. 

4.1. Properties o f  Palindromes. We state a number of properties of palindromes 
that are used in the subsequent sections. 

By definition x is a palindrome iff rev x = x, where rev returns the reverse of 
a list. The following property follows immediately from this fact. 

(66) PROPERTY. Suppose x = y qg z is a palindrome, and z is a palindrome. Then 
x = z ~ (rev y). 
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A similar property is satisfied by maximal palindromes. An occurrence of a 
palindrome in a string is called extendible if it is preceded and followed by equal 
characters, otherwise it is called maximal (including the case when there is no 
element preceding or following it). For  example, in "horror" the substring "rr" is 
an extendible palindrome, and the substrings "orro"  and "ror"  are maximal 
palindromes. We have 

(67) PROPERTY. Suppose s = x ~ y ~ z is a palindrome in which y is a maximal 
palindrome (hence, if  x ~ [] and z v~ n ,  then It x ~ hd z). Then s = (rev z) -~ y -~ 
(rev x), in which y is aoain maximal. 

4.2. The First Steps. The specification of the problem of finding the longest 
palindromic segment has been given in Section 3, see (46). 

Ips = T , . ~j" (ispal. 7Z2)<] " s p l i t 3 s .  

In order to obtain a semantically equivalent on-line algorithm for this specification 
we apply one of the theorems derived in Section 3. Since the predicate ispal is 
1-slow and has derivative function aV~[b] = (a = b), we can apply the Hopping 
Tails Theorem to obtain 

lps = <-| [], D), ([], m, n)), 

where operator @ is defined by 

((x, y), w) Q) a = ((x ~ a) t . . . 2  (Y @ a) T *.~2 u, (y (I) a) T . . .2 u), 

where u abbreviates (w -K a, [], []), and operator �9 is defined by 

f(s, t -~ y q( a, z) 
(x, y, z) (!) a = ~(x -K (hd y) -~, u, v, z) �9 a 

[((7 1) (x q(a)) oz z 

if # x > l  A a = I t x ,  
if ( x = D v  a v ~ I t x )  A y v ~ [ ] ,  
otherwise, 

where 

(s, t) = (7 1) x, 

(u, v) = Irp tl y. 

However, the straightforward implementation of this solution is a cubic-time 
program. This is explained as follows. Suppose lps is applied to a list of length n. 
Operator Q is evaluated n times. Evaluating the expression x ~ a  and the 
occurrences of T, .~2 can be done in constant time. The evaluation of y (i)a, 
however, might require quadratic time. The computation of Irp t l y  is expensive, 
and the following subsection is devoted to finding means with which the value of 
Irp t l y  can be found in constant time on the average. 
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4.3. Centers,  Mi r ror  Images ,  and  M a x i m a l  Pal indromes.  The main idea in the 
construction of an efficient algorithm for finding the longest palindromic segment 
of a list is to make use of previously computed palindromes. These previously 
computed palindromes provide an efficient way to determine the value of lrp tl y. 
Value lrp tl y can be expressed in terms of llp it y, where llp ("longest left 
palindrome") is the following function: 

(68) llp = T ~. ~,/" (ispal" nl)<1 . split2s. 

Value llp it y on its turn can be determined from previously computed maximal 
palindromes. First we show how to express Irp tl y in terms of llp it y. 

By definition, if x is a palindrome, then 

(69) tl x = rev it x.  

Define function prey (" pair reverse'), which returns a reverse of a pair of lists, by 

(70) prey (x, y) = (rev y, rev x). 

It can be verified that prey, rev, and spli t2s satisfy the following equation: 

(71) p r e y . . s p l i t 2 s  = spl i t2s ,  rev. 

Furthermore, for elements of the form Te .~] ( i spal 'nO<1 s, T~, . ,1/(ispal" nl)<1 t, 
where s, t are subsets from spli t2s z for some list z, function prey is (I" e .~1, T e.~2)- 
fusable and function prey satisfies 

(72) ispal " n 2 �9 prey = ispal" n 1. 

This series of equalities is used in the following derivation, which proves that 
Irp tl y = prey llp it y: 

lrp t l y  
-~- y is a palindrome, equality (69) 

Irp rev it y 
definition lrp, equality (71) 

T ~. ~ / ( i spa l ' n2 )<1  p r e y ,  split2s it y 
map-filter swap, Theorem 21 

T ~, .~2/ prey* (ispal" n 2 �9 prey)<1 spli t2s it y 
equality (72), prey is (]',.~,, ]',.~2)-fusable 

prey T e "~1 / (ispal" nl)<1 spli t2s it y 
definition llp 

prey llp it y. 
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The left component of value llp it y is computed by means of previously computed 
maximal palindromes. Given the left component, the right component of llp it y 
is characterized by 

(73) >> llp it y = (dropf ( ~ ~ llp it y)) (it y). 

For the left component of llp it y we reason as follows. We abbreviate ~ llp it y to I. 
Define the center of a pair of lists by 

(74) err (x, y) = ( ~ x) + (�89 ~ y). 

A pair of lists is called a palindrome if its second component is a palindrome. 
Let (x, y) be lrp w for some list w. Equivalently, x and y are the first two 
components of value >>(| ~((Vq, R,  r-q), (R, Y], I-1))) w. By definition of x, y, and 
l, (x, l ) < , , ( x ,  y). Furthermore, (x,/) is a palindrome, and hence there exists a 
maximal palindrome with center ctr (x, l), of which the second component has 
length at least # I. Suppose all maximal palindromes with center smaller than (or 
to the left of) ctr (x, y) have been computed. These maximal palindromes are 
enumerated in a list in increasing order of center. This list is called Q, and it is 
specified by 

(75) Q x = (<,~ lrp x)<~ sorter ~ ~* ismaxpal<l split3s x, 

where ismaxpal is a boolean function which takes a triple of lists and determines 
whether the second element of this triple is a maximal palindrome. Function sort ,r  
sorts its argument in increasing order of center. The precise definition of sor t , ,  is 
not important. The part of the definition of Q after the first filter expression is 
abbreviated to R, that is, 

(76) R = sOrtct r �9 ~*" ismaxpal<l" split3s, 

and 

(77) Q x = (< ar lrp x)<1 R x. 

Given the list of maximal palindromes Q, value l is obtained as follows. 
Palindrome (x,/) is the longest palindrome of which the second component starts 
in it y. Hence the second component of the maximal palindrome with center 
ctr (x, l) starts at or before the position at which y starts, i.e., its first component 
has length at most ~ x. It follows that the unknown maximal palindrome is an 
element of ((< ~ x)-zq A > , r  (X, [--]))<3 Q w. To obtain (x, l) from the maximal 
palindrome with the same center, the second component of the maximal palin- 
drome is shrunk (at both sides) such that the second component starts at the same 
position as y. Function cut (x, y) shrinks a palindrome such that it starts at the 
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position at which y starts. Thus, I is the second component of the longest element 
among 

(cut (X, y))* ((__~ 4# X ) ' ~ l  A ~ctr(X, []))<~ Q W. 

Summarizing 

l = > t~  .=j (cut (x, y)), ( ( < ,  x).rq ^ _> Mx, []))q O w, 

where cut is the function which, when supplied with two arguments (x, y) and (u, v), 
where (u, v) is an element o f ( (<  ~ x ) . rq  ^ > . . (x ,  m) )<  Q w, returns the pair (x, t), 
where t is the list that starts at the position at which y starts, such that v is an 
extension of t, that is, (x, t) and (u, v) have the same center and v >_ ~+ t. Formally, 
we have 

(78) (cut (x, y)) (u, v) = (x, ( takef  ( 4~ v -- n)) y), 

where 

n = 2 x ( # x -  #u). 

Since the elements of Q are sorted on their center, the longest element of Q 
satisfying (<  ~ x) . rq  equals the rightmost element satisfying (<  e x ) . rq ,  that is, 
the element with largest center, satisfying this condition. Hence 

t ~ .~] (cut (x, y))* ((< ~ x ) ' n  1 A > .r(X, l-q))<1 Q w 
definition of Q (75), proviso above 

~>/(cut (x, y)), ((_< ~ x) nl A >_Mx, I-1))<1 Q w 
Fusion 

(cut (x, y))>> / (( < ~ x ) ' r q  /x > .r(x,  [2))<3 Q w. 

To apply Fusion, cut (x, y) has to be (> ,  >>)-fusable. It follows that we have to 
show that (cut (x, y)) v> = v,>, and, for all a and b, 

(cut (x, y)) (a >> b) = (cut (x, y)) a >> (cut (x, y)) b. 

The latter condition is satisfied according to the definition of >>. The former 
condition can be satisfied as  follows. Since >> does not have a unit element, we 
extend the domain of > by a (fictitious) value v>, and define this to be the unit 
element of >>. The domain of cut (x, y) is extended with the same value, and 
cut (x, y) is defined on this value in such a way that the condition holds. We have 
found that 

1 = >> (cut (x, y)) >> / ( (N ~ x)" n i A ( > ctr(X, [])) <~ Q. W. 
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The part >err(x, D) occurring in the filter may be omitted since the rightmost 
element of ((< ~ x)" rq)<3 Q w always satisfies this predicate. Value lrp t l y  is ex- 
pressed in terms of I as follows: 

Irp t l y  
= definition prey, lip 

prey llp it y 
equality (73), definition l 

prey (l, (dropf ( ~ l)) (it y)) 
definition prey 

(rev (dropf ( ~ l)) (it y), rev l) 
l and y are palindromes 

((dropb ( ~ l)) (tl y), l). 

We have expressed lrp in terms of the list of maximal palindromes Q, but how do 
we obtain this list? We tuple the computation of Q with the computation of lrp. 
Recall that lrp = @'+-~(m, D), where operator @' is defined by 

( x , y ) O ' a  = ~((x, y, m ) � 9  a)T,.=2([], V1), 

where operator @ is defined in (64). Value Q (w -~ a) is expressed in terms of Q w 
and lrp (w -g, a) as follows. By definition of Q (77) we have 

Q (w ~ a) = (<  et, lrp (w 4(a)) <3 R (w -~ a). 

Since lrp equals the left-reduction O'+-~([], I-q), Irp (w ~ a) = (Irp w) 0 '  a. Let 
(lrp w)@'a  be (j, k). The three cases in the definition (64) of (1) (with aVyt 
instantiated to a = It x) are now distinguished. For the first clause of �9 we have 
ctr (j, k) = ctr Irp w, and hence that 

(<c,r(J, k))<3 R (w ~ a) 
~--- case assumption 

(<,~ lrp w)<3 R (w 4(a) 
proviso below 

(< et~ lrp w) <3 R w 
definition Q (77) 

Qw.  

The middle step in the above calculation is valid because of the fact that no 
palindrome with center to the left of Irp w can contain the last a of w -K a, since 
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this would contradict the definition of lrp. The second clause in the definition of 
�9 is dealt with as follows: 

( <.r k)) <1 R (w -(, a) 
split <,.,, in two parts 

( < ct, Irp w v (> ct, Irp w/x  < .r k)) <3 R (w ~ a) 
R is sorted on centre 

( <etr lrp w)<3 R (w -(  a) -~ ( > ct~ lrp w ^ < . , ( j ,  k))<3 R (w -.~, a). 

For the left-hand argument of -~ it has been shown that 

( < et~ Irp w) <3 R (w ~ a) = Q w. 

Simplifying the right-hand argument of -~ requires more effort. First, note that 
by the case assumption y r [] /x (a r It ~ lrp w v ~ lrp w = []), the maximal 
palindrome around ctr Irp w is lrp w itself. Hence 

(>_ err Irp w/x  < at(J, k))<3 R (w "t(a) 
case assumption 

[lrp w] qg (> ct~ lrp w A < .r(J, k))<3 R (w q(a). 

For the right-hand argument of -g we reason as follows. Let (h, i) be an arbitrary 
element from (>a ,  lrp w/x  <,r(J, k))<3 R (w --t(a). Then, by definition of(j,  k), (h, i) 
is a maximal palindrome, with i a segment of ~> Irp w, and with center in between 
ctr Irp w and ctr (j, k). By Property (67) we then have that i is also a maximal 
palindrome contained in ~>lrp w with center in between c t r (~ I rp  w, k) and 
ctr lrp w. Hence the mirrored version of (h, i) is an element from 

(> c,,( ~ Irp w, k)) <~ Q w. 

The maximal palindrome (h, i) is computed from ( > ctr( ~ Irp w, k)) <1 Q w by means 
of the function mir. Function mir is defined by 

(79) 

where 

(mir (s, t)) (q, r) = (q ~ ((takef n) t), r), 

n = 2 x (ctr (s, t) -- ctr (q, r)). 

Value n is positive in the cases in which mir is applied. Since Q has to remain 
sorted on centre, function rev is applied. We have 

(>err Irp w /x <ctr(J, k))<3 R (w ~ a) 
proviso above 

rev (mir (lrp w))* ( > .r( r  w, k))<3 Q w. 
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Finally, in the third clause of the definition of @ the center is moved one 
place, and the empty list has been found to be maximal around the previous 
center. Hence 

Q (w -~ a) 
case assumption 

((2 w) -~ [(w, [3)]. 

We have expressed Q (w ~ a) in terms of Q w and lrp (w -K a) for all three clauses 
in the definition of operator O. It follows that 

(Te .~j.(ispal. n2)<3 " split3s) /k lrp /k Q 

can be expressed as a paramorphism. This is done in he following subsection. 

4.4. The Algorithm and Its Complexity. The specification of the problem for 
which we have derived a paramorphism in the previous section reads 

Ips = (re .~j.(ispal. rc2)<1 " split3s) /X (Irp A Q), 

that is, the computation of the longest palindromic segment is tupled with the 
computation of the longest palindromic tail, and the list of maximal palindromes 
with center to the left of the center of the longest palindromic tail. For the purpose 
of computing all maximal palindromes, we append a fictitious element q to the 
argument, which forces the center of the last palindromic tail to exceed the length 
of the original argument, so that all maximal palindromes occurring in the 
argument are computed. 

Applying the Hopping Tails Theorem and the results of the previous subsec- 
tion we obtain 

lps = | 4~((D, D, ~), ((D, D), ~)), 

where operator | is defined by 

((x, (y, z)), w) O a  = ((x~9 a)l", .~2(nl ((y, z) �9 a) oc [5])t, .~2s, (Y, z) O} a), 

where s abbreviates (w q( a, D, IS]), and operator �9 is defined by 

f ((it x, lit x] ~ y -~ a), z) 
((x, y), z) O) a = ~((x -g (hd y) .~ u, v), z') 0 a 

[((x, ra]), z -K (x, I-q)) 

if x C D ^ I tx  =a,  
if ( x = n v l t x C a ) ^  y r  
otherwise, 



174 J. Jeuring 

where 

(u, v) = ((dropb (41: l)) (tl y), 1), 

1 = >> (cut (x, y)) > / ( (  _< ~ x)" rq)<l z, 

z' = z ~ (x, y) -g rev (mir (x, y))* (>eta(x, l))<l z. 

An important observation is that we do not use the contents of the maximal 
palindromes found, but just their position in the argument string. Hence, instead 
of computing a list of maximal palindromes, it suffices to keep a list of positions 
of maximal palindromes. This is a simple transformation of the above algorithm. 
The only part that changes is the definition of the operator O. We have 

(((it x, [It x] ~ y ~g a), z) 
((x, y), z) (1) a = ~((x ~ (hd y) 4~ u, v), z') �9 a 

[.((x, [a]), z 4< (~x ,  0)) 

if x # [q ^ lt x = a ,  
if (x = r-q v lt x r a) ^ y r [-1, 
otherwise, 

where 

(U, V) = 

I =  

(lx, ly) = 

Z p 

(cut' (x, y))(u, v) = 

(mir' (s, t))(q, r) = 

ctr' (x, y) = 

((dropb I) (tl y), takeb l (tl y)), 

>>(cut' (lx, ly))>> / (( < Ix) . lq)<3 z, 

(,ex, ~y), 

z "4( (lx, ly) -~ rev (mir' (lx, ly))* (>,,,(/x,/))<3 z, 

(x, v - 2 x (x - u)), 

(q + 2 x (ctr' (s, t) --  ctr' (q, r)), r), 

x +�89 

This algorithm for finding the longest palindromic segment, the longest palin- 
dromic tail, and all maximal palindromes of a list, can be implemented as a 
RAM program which requires time linear in the length of the list to which it is 
applied. The parts of this implementation that are not entirely straightforward are 
the parts corresponding to the computation of l and z' and in particular the parts 
corresponding to respectively the expression >>/(( < lx).rcl)<3 z and the expression 
(>  a,,(Ix,/))<3 z. In both cases the implementation should scan z from right to left 
starting at its right end. We give a rather informal argument to explain why this 
implementation is a linear-time program. 

One of the key observations is that the number of maximal palindromes 
occurring in a list is linear in the length of the list. To be precise, given a list x of 
length n, there are exactly 2n + 1 palindromes in x. This is proved by showing 
that there are exactly 2n + 1 center positions in a list of length n, and around 
every position there is exactly one maximal palindrome. 
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Given a list of length n, the implementation of operator | is evaluated exactly 
n times. However, in the definition of operator | there is an occurrence of operator 
@ which is defined recursively. Obviously, the implementations of the first and 
third clause in the definition of operator (!) require constant time for their 
evaluation. For the implementation of the second clause in the definition of (i) 
we have that the total number of steps made in this clause is linear in the number 
of positions the center of the longest palindromic tail under consideration has 
moved. Hence the implementation of operator @ requires constant time on the 
average. Since the implementation of operator �9 requires constant time on the 
average, the implementation of paramorphism |  IS], [~), ((if], []), IS])) re- 
quires linear time. 

5. Variations. In this section we consider some variations and applications of 
the algorithm for finding the longest palindromic segment of a list and the list of 
all maximal palindromes of a list. Section 5.1 shows that the algorithm given in 
Section 4 can be slightly generalized. Section 5.2 presents an algorithm for finding 
the longest segment in a list which is the concatenation of two palindromes. Section 
5.3 gives an algorithm for finding the shortest partition in palindromes of a list, 
and Section 5.4 outlines an algorithm which determines the largest palindromic 
rectangle in a matrix. The algorithms we give are not derived in so much detail 
as the algorithm derived in the previous section. 

5.1. The Longest Nonpalindromic Segment. In this section we show that the 
algorithm for finding the longest palindromic segment given in Section 4 can be 
used to solve a similar problem. Until now, we have considered the computation 
of "plain" palindromes. The crucial property of palindromes used in the derivation 
of the algorithm is 

ispal ([a] -~ v -~ [b]) = (ispal v) A (a = b). 

Suppose we generalize this by replacing = by some relation (3. What properties 
does (3 have to satisfy in order to be able to apply the algorithm from the previous 
section to the problem of finding the longest p-segment, where p satisfies 

p ([a] -~ v -~ [b]) = (p v) ^ (a (3 b). 

All steps remain valid if we suppose that (3 is symmetric, i.e., 

a O b = b Q a .  

For example, suppose we define the predicate nispal by 

nispal ([a] -~ x -~ [b]) = (nispal x) A (a v~ b). 

Then we can apply the derivation from Section 4 with a = b replaced by a # b, 
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and have a linear-time algorithm for finding the longest segment which has 
absolutely no overlap with its reverse. 

5.2. T h e  L o n g e s t  T w o - P a l i n d r o m e .  In this section we sketch the derivation of a 
linear-time algorithm for finding the longest segment of a list which is the 
concatenation of two palindromes. Galil and Seiferas [14] give an algorithm on 
a two-way deterministic pushdown automaton for recognizing the language 
{x -g Y l x and y are palindromes of even length}. A generalization of this problem 
is finding the longest segment of a list which is the concatenation of two 
palindromes. We give a linear-time RAM algorithm for this problem. 

We can specify the problem of finding the longest segment that is the concatena- 
tion of two palindromes by 

(80) l tps  = T ~ . ~2/" (tp" rrz) <~ " spl i t3s ,  

where the predicate tp (for "two-palindrome") is defined by 

(81) tp x = 3y,  z : x = y -g z ^ ispal  y ^ ispal  z. 

The predicate tp is not c-slow, and hence the theory developed in Section 3 is not 
applicable to this problem. We use the list of maximal palindromes to solve this 
problem. 

Maximal palindromes and two-palindromes are related in the following sense. 
Let x be a two-palindrome, that is, there are palindromes y and z such that 
x = y -g z. The palindromes y and z are contained in maximal palindromes y' and 
z' with the same center. In order to talk about centers we have to know the parts 
of the argument list in front of y, z, y', and z', so define s = (yl ,  y), t = (zl, z), 

u = (yl ' ,  y'), and v = (zl', z'). Here and throughout a pair of lists of which the second 
component is a maximal palindrome is called a maximal palindrome. Concerning 
the length of x, we have 

: l t : x  

x = y .g z is a two-palindrome 

~(y -g z) 
properties of -~, ~ ,  and ctr  

2 x (c tr  t --  c t r  s) 
v and u are the corresponding maximal palindromes 

2 x (c tr  v --  err u). 

Hence, to every two-palindrome x correspond one or more (depending on how 
many ways x can be split in two palindromes) pairs of maximal palindromes (u, v) 
such that ~ x = 2 • (c tr  v - c t r  u). On the other hand, given two maximal palin- 
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dromes u and v which have some overlap, we can construct one or more lists x 
satisfying tp, all of which have length 2 x (ctr v - ctr u). Two maximal palindromes 
u and v have overlap if u W v holds. The relation W is defined by 

(82) (ul, u2) W ( v l ,  vz) = (~u l )  + (#u2)  > (#v l )  A (:~vl) + (#v2 )  > ( # u O .  

Given two maximal palindromes which have overlap of length m, we can construct 
m + 1 two-palindromes of length m. 

From the above discussion it follows that instead of computing the longest 
segment which is the concatenation of two palindromes, we can compute two 
maximal palindromes u and v which have overlap, such that ctr v - ctr u is as 
large as possible. Hence (80) transforms into 

(83) ltps = f ~o/ W <I(Q x X Q x), 

where f is a function that returns a two-palindrome given a pair of maximal 
palindromes which have overlap, 9 is the function defined by 

(84) g = a b s ' - ' c t r  x ctr, 

where abs computes the absolute value of an integer, Q computes the list of all 
maximal palindromes, and X is the cross operator, see [3], which may be defined 
by 

(85) x X  y = { ( a , b ) l a e x  /x b e y } .  

Given a point p in the list (there are n + 1 points in a list of length n: a point 
in a list is a position between two elements or the position before or after the list), 
the largest pair under 9 of maximal palindromes which have overlap in point p is 
the pair (u, v) in which u = (ul, u2) is the unique maximal palindrome with smallest 
center such that #ux < p -< # U  1 n t- # / 2  2,  and v = (v 1, v2) is the unique maximal 
palindrome with greatest center such that :t#vl < p < # v l  + # v z .  For  suppose 
the pairs of maximal palindromes (u, v) and (w, v), with v > , r  u and v > ctr W, have 
overlap, and suppose u < , r  W. Then (u, v) > o (w, v). Conversely, suppose the pairs 
of maximal palindromes (u, v) and (u, w), with u < ct, v and u < ,~ w, have overlap, 
and suppose w < ~t, v. Then (u, w) < g (u, v). This suggests we compute two lists. The 
first list, returned by the composition of functions F.  Q, contains, for every point 
p in the list, the maximal palindrome with smallest center, the second component 
of which contains p, in the list. The second list, returned by the composition of 
functions G" Q, contains, for every point p in the list, the maximal palindrome with 
greatest center, the second component of which contains p. Since Q returns all 
maximal palindromes of a list, these lists are returned by functions composed with 
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function Q. So 

J. Jeur ing 

Ta/ W <~ (O x X Q x) 
proviso above 

(T0-toe) (F Q x Y G Q x), 

where Y is the zip operator, see [3], defined for lists of equal length by 

[ ] Y D = r q ,  
(86) 

(x ~ a) r (y ~ b) = (x Y y) K (a, b), 

and e is a fictitious element satisfying e I"0 a = a for all a. Functions F and G are 
left-reductions defined as follows. Let dup be a function that takes a natural number 
n and an element a and returns the list containing n elements a; so (dup 3)c = 
[c, c, c]. 

F = @+-C], 

9 = rev" 0 -~[~"  rev, 

where operators �9 and | are defined by 

I~a] if / = [ Z ,  
x @ a =  if hx>_ha, 

( x ~ ((dup (h a - h It x)) a) otherwise, 

h = + . ~ x ~ ,  

t~a] if x = [ ~ ,  
x |  if l t x  <ja,  

~ x 4r ((dup (j It x - j  a)) a) otherwise, 

j = ~ . ~ .  

A (or all, depending on the definition of f )  longest segment which is the 
concatenation of two palindromes can be computed using the algorithm 

(87) f (To+-~e) (F Q x Y G Q x), 

which is a linear-time algorithm if we use the position in the list of a string instead 
of the string itself. 

5.3. The Shortest All-Palindromes Partition. Finding the shortest partition of a 
list all of whose elements are palindromes is another problem for which we can 
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use the algorithm for finding maximal palindromes. This problem is related to the 
problem of finding the longest segment of a list which is the concatenation of two 
palindromes in the following way. Suppose we have computed the longest segment 
of a list which is the concatenation of n palindromes, for all n: 1 < n < #kx. 
Obviously, if n = ~ x, this longest segment is equal to x. The length of the shortest 
all-palindromes partition of the list x is equal to the smallest number n such that 
the longest segment of x which is the concatenation of n palindromes is equal to x. 

A partition of a list is a set of lists of lists which yield the argument when 
flattened. The partitions of a list are computed by means of the function parts. A 
definition as a left-reduction of parts is given in [18]. We have, for example, 

parts [a, b] ={[Ea, b]], [[a], [b]]}. 

The shortest all-palindromes partition is specified by 

(88) J, ~/" (all ispal)<3 " parts, 

where the predicate all p is defined by 

(89) all p = ^ / .  p , .  

For example, the shortest all-palindromes partition of the string "abacab" is the 
partition into "a"  and "bacab," and the shortest all-palindromes partition of the 
string "abacac" is the partition into "aba"  and "cac." 

The theory for partition problems developed in, for example, [-25] and [-18] is 
not applicable to our problem. However, if we compute some extra information, 
we can derive a left-reduction for our problem. Suppose we return, besides the 
shortest all-palindromes partition of a list x, the shortest all-palindromes partition 
of all elements in inits x, where function inits is defined by 

inits = s o r t ,  " re1* " split2s. 

Since x = It inits x, the new specification reads 

(90) (,~ e/" (all ispal)<3 .parts) , .  inits. 

We have that 

(91) (~ ~/" (all ispal)<3 .parts) , .  inits = G-~e ,  

where e = {Vq}, and the operator �9 is defined by 

(92) x 0 a = x ~ ( ~ /  (all ispal)<] parts (x q(a)). 
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If we also compute the longest tail palindrome and the maximal palindromes, we 
can determine the right-hand argument of -K in time linear in the length of the 
argument. The final algorithm requires quadratic time for its evaluation. This 
construction is a rather standard one in dynamic programming, and the details 
of the derivation are therefore omitted. 

5.4. The Largest Palindromic Rectangle in a Matrix. The algorithm for finding 
palindromes in a list can be used to give an algorithm for finding palindromes in 
a matrix. The type of matrices has been given in [3] and [19]. The definition of 
# and ispal can be extended to matrices as follows. The function # computes 
the number of elements in a matrix. A matrix is called a palindrome (satisfies ispaI) 
when all its columns and rows are palindromes. 

The following informally described algorithm, the complexity of which is 
quadratic in the number of matrix elements, solves this problem. Apply the 
left-reduction which returns just all maximal palindromes (so not the longest 
palindromic segment) to every row and column, resulting in a matrix twice the 
width and height of the original matrix with, at every entry, the length of the 
longest row and column palindrome around that center. This can be done in linear 
time. Then, for every entry, we have to find the largest palindrome matrix around 
it. This can be done in linear time for every entry, and therefore we can obtain 
an algorithm which requires time quadratic in the number of matrix elements. The 
details of the algorithm are omitted; the precise formulation of the algorithm 
requires quite a number of definitions and a long derivation. 

6. Conclusions. We have given a theory for the derivation of on-line algorithms. 
Two applications of this theory are a derivation of the algorithm for pattern- 
matching from Knuth, Morris, and Pratt, see [43, and a derivation of algorithm 
for finding the longest palindromic substring of a string. 

We have derived an on-line linear-time RAM algorithm for finding the longest 
palindromic segment of a list. As a spin-off, we also find the positions of all 
maximal palindromes in a list. This algorithm improves on the algorithm given 
in [22], which determines just the initial palindromes of a list. Since every initial 
palindrome is by definition maximal, we find all initial palindromes in linear time. 
The idea of computing the list of maximal palindromes has been given before in 
[143. However, instead of a derivation explaining the relation of the algorithm for 
finding palindromes with other segment problems, a difficult correctness proof of 
the algorithm is given there. The algorithm which returns the list of maximal 
palindromes can be used to solve some other problems, such as finding the shortest 
all-palindromes partition of a list. 

A number of slightly different algorithms can be given to find the longest 
palindrome in a list. We chose to develop the one given in this article because it 
can be derived rather straightforwardly, in a fashion similar to the derivation of 
other segment problems, such as the algorithm from Knuth, Morris, and Pratt for 
pattern matching. 

A slight (constant) increase in efficiency can be obtained in the computation of 
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the longest tail palindrome. It is not very difficult to prove that the filter predicate 
(< ~ x)- rq occurring in the algorithm can be replaced by (= ~ x)- rq. The compu- 
tation of the list of maximal palindromes is somewhat more difficult now. This 
results in an algorithm which requires fewer applications of O. This version has 
been presented in 1-17]. Because our algorithm satisfies the real-time predictability 
condition, see [13], our on-line RAM algorithm for finding the longest palindromic 
segment can be transformed, using a standard construction, into a real-time RAM 
algorithm. For a real-time Turing machine algorithm for finding palindromes the 
reader is referred to [10] and [12]. 

As noted in the Introduction, the longest palindrome in a list can be determined 
if all maximal palindromes have been computed. Hence it would have sufficed to 
compute just the maximal palindromes of a list. This results in an algorithm very 
similar to the one given here; instead of a left-reduction over lists it consists of a 
left-reduction over center positions. 

Acknowledgments. Maarten Fokkinga, Lambert Meertens, and Jaap van der 
Woude made numerous useful suggestions, comments, and remarks about the 
presentation and derivation of the algorithm, for which I thank them. 

Appendix. Proof of the Sliding Tails Theorem. In this appendix we give the 
remaining part of the proof of the Sliding Tails Theorem. We prove the equation 

(93) T ~.~2/" (x/P)* ( ~  a)* . spl i t2s  = (Oa)"  T ~. ~J ' ( x /p )*  "split2s. 

Actually, we prove the following. Let (y, z) be T~ .~J(p'lr2)<3 spli t2s x.  Then, by 
definition of (x/P), T~ .~j (X/p)* spli t2s x = (y, z, D) .  We show that 

(94) T~ .~J (X/p)* (~a) .  spli t2s x = (y, z, [q) 0 a. 

The proof of (94) uses the fact that predicate p is c-slow, in particular the fact that 
p has a derivative V satisfying 

(95) p (x -4(a) = p t ^ a r t s ,  

where (s, t) -- ( ( take f  c) x,  (dropf  c) x). Furthermore, it uses a crippled version of the 
equality 

(96) p <3" tails = p <3. tails .  T ~/" P <3" tails, 

which states that the set of all tails (tails = >> , .  split2s) satisfying p equals the set 
of all tails satisfying p of the longest tail satisfying p. To replace tails by spl i t2s in 
(96), let (y, z) be t ,  .~J (P" zc2)<3 spli t2s x.  Then (96) is transformed into 

(97) (P" ~2)<3 spli t2s x = (p" ~z2)<3 ( (y-~)  x id)* spli t2s z. 
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Finally, at the place in the calculation where this equality is applied we have the 
expression ( p . ( d r o p f  c)'n2)<l instead of (p'n2)<l. This is the cause of an extra 
complication in the statement of the equality. Define the binary operator -~, 
("shift"), which takes a natural number n and a pair of lists (x, y) and prepends 
the tail of length n of x (or x itself if #k x < n) to y, by 

0 --, (x, y) = (x, y), 

(98) ~'(x, y) if x = [2, 
n + 1 --~ (x, y) = ( n  --~ (it x, l i t  x] ~ y) otherwise. 

Let (u, v) be c ~ (y, z), then (97) is transformed into the following equation: 

(99) (p ' (dropf  c)" n2)<3 split2s x = ( p ' ( d r o p f  c)" n2)<l ((u-~) x id)* split2s v. 

The proof of (93) is by calculation. 

T ~. ~2/(x/P)* (~a)*  split2s x 
definition of x/P, definition of guard 

Te .,~/(p" n2)<] (oc I-])* (~a)* split2s x 
map distributivity, map-fil ter swap 

T~-~/((oc l-q)" (~a))* (p . n 2 . ( oc N )  " ( ~ a))<] split2s x. 

Consider the expression p-Tz 2"(oc[3) '(0a).  To apply (99), this composition of 
functions is rewritten as follows: 

p n 2 (oc [2) (~a)  x 
= rd2-(oz[2] ) = ~ ,  superscripts are omit ted 

p n 2 (0a)  x 
= n 2 . ( 0 a  ) = (~Xa).r~ 2 

p(-Ka) n2 x 
= (95) 

ar t s  A p t, 

where (s, t) = (( takef  c) (n 2 x), (dropf  c) (n 2 x)). Abbreviate function 

aV(a,opy~)(takef c)" n2 
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to (Aa). Let (u, v) be c --* (y, z). Then 

I"~ .~j ((oc [])-(~a))* (p" ~z 2 .(oc D) '  (0a))<l  split2s x 
~-- proviso above 

]'~ .~j ((oc I--])" (~a))* ((Aa)/x (p '(dropf  c)" ~2))<1 split2s x 
(p ̂  q)<] = p<]'q<] 

T#-. / ( (oc []).  (~a)) ,  (Aa)<l (p '(drof  c). rc2)<l split2s x 
(99) 

T, .~/((oc m).  ((>a)), (Aa)~ (p '(dropf  c).rcz)<l ((u-g) x id), split2s v 
above steps in reverse order 

T ~ .~j  (P'rC2)<l ((oc F-l)" (~a))* ((u-g) x id)* split2s v 
moving ((u-g) x id)* to the left 

((u-g) x id) T~ .~J (p" ~2)<~ ((oc [-3). (~a)) ,  split2s v. 

To move ((u-g) x id)* to the left we have to show that ((u-g) x id) commutes with 
(~a)  and (ocl--1), that p.rCz.((u-g ) x id)= p'rcz, and, finally, that ((u-g) x id) is 
(Te.~2, T,.~2) -fusable. The proofs of these facts are omitted. Since (u, v) equals 
c --* (y, z) it follows that we have expressed Te .~j (x/P)* (~a)* split2s x in terms of 
(y, z). Define operator ~ by 

(100) (y,z,  V ] ) O a  = ((u-g) x id)~e.~/(p.~z2),~ ((oc[3)'(@a))*split2sv, 

where (u, v) = c --* (y, z). By distinguishing the cases from the definition of operator 
O in (59) we can show that operator 6 defined in (100) is equal to operator O 
defined in (59). Thus we obtain (93). 
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