The Zipper

Ralf Hinze, Johan Jeuring

August ??, 2002
Introduction

The zipper is a data structure that is used to represent a tree together with a subtree that is the focus of attention, where that focus may move left, up, down, or right in the tree.

The zipper structure has been described by Huet, who uses it in a structure editor. All operations of the zipper are cheap.

In this talk I will:

- Introduce the zipper on an example data type.
- Define the zipper as a type-indexed data type.
- Define several navigation functions on the zipper.
- Give some possible generic programming projects.

The zipper is the most complicated generic program we have written.
The zipper on trees

For each type, we have to construct its zipper type. For example:

\[
\text{data Tree } \ = \ \text{Leaf Char} \mid \text{Node Tree Tree}
\]

\[
\text{type Loc_Tree } = (\text{Tree, Context_Tree})
\]

\[
\begin{align*}
\text{data Context_Tree } & \ = \ \text{Top} \\
& \quad | \ LNode \ \text{Context_Tree} \ \text{Tree} \\
& \quad | \ RNode \ \text{Tree} \ \text{Context_Tree}
\end{align*}
\]

\[
\text{left_Tree},... :: \text{Loc_Tree} \to \text{Loc_Tree}
\]

So we want to have a function \text{Zipper} that takes a data type and returns a data type that represents the zipper type of the argument type.
Navigating on trees

Using the location type, we can efficiently navigate through trees.

```
down_Tree :: Loc_Tree -> Loc_Tree
down_Tree (Leaf a,c) = (Leaf a,c)
down_Tree (Node l r,c) = (l,LNode c r)

right_Tree :: Loc_Tree -> Loc_Tree
right_tree (tl,LNode c tr) = (tr,RNode tl c)
right_tree l = l
```

Note that function `down` is defined by pattern matching on the tree in focus, and function `right` by pattern matching on the context.

Functions `left_Tree` and `up_Tree` are defined similarly.
Navigating on data types

The navigation functions from the zipper may only move to recursive components. For example, if we select the left subtree in a NLNode constructor from

```haskell
data NLTree a = NLLeaf Char
                 | NLNode (NLTree a) a (NLTree a)
```

and we try to move right, we move to the next NLTree, and not to the value of type `a`.

Recursive positions play an important role in the zipper. To obtain access to the recursive positions, we define data types as *fixed-points of functors*.
The Fix data type is used to define data types as fixed points:

```haskell
newtype Fix f = In { out :: f (Fix f) }
```

The type of trees can be defined as a fixed point as follows:

```haskell
data Tree = Leaf Char | Node Tree Tree
data TreeF a = LeafF Char | NodeF a a

exTree :: Tree
exTree = Node (Node (Leaf 'j') (Leaf 't')) (Leaf 'j')

exTreeF :: Fix TreeF
exTreeF =
  In (NodeF (In (NodeF (In (LeafF 'j'))) (In (LeafF 't'))) (In (LeafF 'j')))
Converting between data types and fixed points

We can easily convert between data types and their representations as fixed points.

```haskell
tree :: Fix TreeF -> Tree
tree (In (LeafF c)) = Leaf c
tree (In (NodeF x y)) = Node (tree x) (tree y)

untree :: Tree -> Fix TreeF
untree (Leaf c) = In (LeafF c)
untree (Node x y) = In (NodeF (untree x) (untree y))
```
data Nat = Zero | Succ Nat

data NatF a = ZeroF | SuccF a

nat :: Fix NatF -> Nat

nat (In ZeroF) = Zero

nat (In (SuccF n)) = Succ (nat n)

unnat :: Nat -> Fix NatF

unnat Zero = In ZeroF

unnat (Succ n) = In (SuccF (unnat n))
Limitations of data types as fixed points

Viewing a datatype as a fixed point implies a number of limitations: the following classes of data types cannot be modelled anymore.

- **Nested data types**

```
data Fork a = ForkF a a
data Sequ a = EndS
 | ZeroS (Sequ (Fork a))
 | OneS a (Sequ (Fork a))
```

- **Mutual recursive data types**:

```
data Rose a = Rose a (Forest a)
data Forest a = FNil | FCons (Rose a) (Forest a)
```
A location on a tree is a tree, together with a context.

```haskell
data TreeF a = LeafF Char | NodeF a a

type Loc_Tree = (Fix TreeF, Context_Tree)

data Context_Tree = Top
| LNode Context_Tree Tree
| RNode Tree Context_Tree
```

A context of a tree is either the top context, or it is a description from the top to the current position. The complete tree is recovered as follows:

```haskell
cTree :: Loc_Tree -> Tree
cTree (t,Top) = t
cTree (t,LNode c t') = cTree (Node t t',c)
cTree (t,RNode t' c) = cTree (Node t' t,c)
```
Locations on natural numbers

A location on on a natural number is defined as follows.

```haskell
data NatF a = ZeroF | SuccF a

type Loc_Nat = (Fix NatF, Context_Nat)

data Context_Nat = Top
 | DSucc Context_Nat
```

Note that the context of a natural number is a natural number again!
Generic locations

To define generic locations we use a type-indexed data type.

\[
\text{type LOC}\{| f :: * \to * |\} = \\
(\text{Fix } f, \text{CONTEXT}\{| f |\} (\text{Fix } f))
\]

\[
\text{type CONTEXT}\{| f :: * \to * |\} r = \\
\text{Fix } (\text{Maybe } (\text{CTX}\{| f |\} r))
\]
A type-indexed data type for contexts

The type \( \text{CTX} \{ | f | \} \) is the derivative of the type \( f \):

\[
\begin{align*}
\text{const}' &= 0 \\
(x + y)' &= x' + y' \\
(x \ast y)' &= x' \ast y + x \ast y'
\end{align*}
\]

In Generic Haskell:

```golang
dependency CTX <- GID CTX

type CTX{| Unit |} = CTXUnit Void
type CTX{| Char |} = CTXChar Void
type CTX{| :+: |} iA cA iB cB = CTXSum (Sum cA cB)
type CTX{| :*: |} iA cA iB cB = CTXProd (Sum (Prod cA iB) (Prod iA cB))
type CTX{| Con |} iA cA = CTXCon cA
type CTX{| Label |} iA cA = CTXLab cA
```
Dependencies on type-indexed data types

Just as on type-indexed functions, we can specify dependencies on type-indexed data types. The line

```
dependency CTX <- GID CTX
```

says that the type-indexed data type CTX depends on both the identity type-indexed data type, and itself.
The identity type-indexed data type

type GId{[ * ]} t = t -> t
type GId{[ k->l ]} t =
  forall a. GId{[ k ]} a -> GId{[ l ]} (t a)

type GID{| Unit |} = GIDUnit Unit
type GID{| Char |} = GIDChar Char
type GID{| :+: |} a b = GIDSum (Sum a b)
type GID{| :*: |} a b = GIDProd (Prod a b)
type GID{| Con |} a = GIDCon (Con a)
type GID{| Label |} a = GIDLabel (Label a)
Examples of function down

Function down on trees takes a location, and goes down to the leftmost tree child of a node if the current selection is a node, and does nothing otherwise:

\[
\text{down\_Tree} :: \text{Loc\_Tree} \rightarrow \text{Loc\_Tree} \\
\text{down\_Tree} (\text{Leaf } a, c) = (\text{Leaf } a, c) \\
\text{down\_Tree} (\text{Node } l \ r, c) = (l, \text{LNode } c \ r)
\]

On Nat, function down is a variant of the predecessor function.

\[
\text{down\_Nat} :: \text{Loc\_Nat} \rightarrow \text{Loc\_Nat} \\
\text{down\_Nat} (\text{Zero}, c) = (\text{Zero}, c) \\
\text{down\_Nat} (\text{Succ } n, c) = (n, \text{DSucc } c)
\]
The generic function `down` analyses the current focus of attention, and moves down if possible.

```
down{|f :: * -> *|} :: LOC{| f |} -> LOC{| f |}
down{| f |} (t,c) =
 case first{| f |} (out t) c of
 Nothing -> (t,c)
 Just (t’,c’) -> (t’, In (Just c’))
```

where function `first` is a type-indexed function that possibly returns the leftmost recursive child of a node, together with the context of the selected child.
Function `first`:

```
first{| f :: * -> * |} ::
 f (Fix f) -> c -> Maybe (Fix f, CTX{| f |} (Fix f) c)
first{| f |} x c = first’{| f |} first’Rec id x c

first’Rec t c = Just (t,c)

dependency first’ <- first’ mkid

type First{[*]} t a c =
 t -> c -> Maybe (a, CTX{| t |})
type First{[k->l]} t a c =
 forall u. First{[k]} u a c -> MkId{[k]} u ->
 First{[l]} (t u) a c
```
Function \texttt{first'}

\begin{verbatim}
first'{| t :: k |} :: forall a c. First {[ k ]} t a c
first'{| Unit |} t c = Nothing
first'{| Char |} t c = Nothing
first'{| :+: |} fA mA fB mB (Inl x) c =
  do (t,cx) <- fA x c; return (t,CTXSum (Inl cx))
first'{| :+: |} fA mA fB mB (Inr y) c =
  do (t,cy) <- fB y c; return (t,CTXSum (Inr cy))
first'{| :*: |} fA mA fB mB (x :*: y) c =
  (do (t,cx) <- fA x c; return (t,CTXProd (Inl (cx:*:mB y))))
    'mplus'
  (do (t,cy) <- fB y c; return (t,CTXProd (Inr (mA x:*:cy))))
first' {| Con d |} fA mA (Con t) c =
  do (t,cx) <- fA t c; return (t,CTXCon cx)
\end{verbatim}
Function \texttt{down} should satisfy the following property.

\[
\forall l. \ down{|f|} \ l \neq l \Rightarrow \ (up{|f|} \ . \ down{|f|}) \ l = l
\]

where function \texttt{up} goes up in a tree. So first going down the tree and then up again is the identity function on locations in which it is possible to go down.
Examples of function \textit{up}

Function \textit{up} on trees takes a location, and goes up to the the parent of the current selection if the current selection is not the complete tree.

\begin{align*}
\text{up\_Tree} &:: \text{Loc\_Tree} \to \text{Loc\_Tree} \\
\text{up\_Tree} (t, \text{Top}) & = (t, \text{Top}) \\
\text{up\_Tree} (t, \text{LNode } c \ tr) & = (\text{Node } t \ tr, c) \\
\text{up\_Tree} (t, \text{RNode } tr \ c) & = (\text{Node } tr \ t, c)
\end{align*}

On \textit{Nat}, function \textit{up} is a variant of the successor function.

\begin{align*}
\text{up\_Nat} &:: \text{Loc\_Nat} \to \text{Loc\_Nat} \\
\text{up\_Nat} (n, \text{Top}) & = (n, \text{Top}) \\
\text{up\_Nat} (n, \text{DSucc } c) & = (\text{Succ } n, c)
\end{align*}
The generic function `up` analyses the context of the current focus of attention, and moves up if possible.

```
up{|f :: * -> *|} :: LOC{| f |} -> LOC{| f |}
up{| f |} (t,c) =
 case out c of
 Nothing -> (t,c)
 Just c' -> fromJust $
 do ft <- insert{|f|} c' t
 c'' <- extract{|f|} c'
 return (In ft,c'')
```

where function `insert` is a type-indexed function that takes a context and a tree, and inserts the tree in the current focus of attention, and function `extract` extracts the context of the parent of the current focus of attention.

I will just define function `extract`.
Function extract

extract{| f :: * -> * |} :: CTX{| f |} t c -> Maybe c
extract{| f |} c = extract’{|f|} Just c

type Extract{|[ a ]|} t a = CTX{| t |} -> Maybe a
type Extract{|[ k->l ]|} t a =
    forall u . Extract{|[ k ]|} u a -> Extract{|[ l ]|} (t u) a

evaluate

extract’{| t :: k |} :: forall a. Extract{|[ k ]|} t a
extract’{| Unit |} c = Nothing
extract’{| Char |} c = Nothing
extract’{| :+: |} eA eB (CTXSum (Inl cx)) = eA cx
extract’{| :+: |} eA eB (CTXSum (Inr cy)) = eB cy
extract’{| :*: |} eA eB (CTXProd (Inl (cx :*: y))) = eA cx
extract’{| :*: |} eA eB (CTXProd (Inr (x :*: cy))) = eB cy
extract’{| Con c |} eA (CTXCon cx) = eA cx
extract’{| Label l |} eA (CTXLab cx) = eA cx
Conclusions and future work

I have shown:

► How you can define the zipper datastructure as a collection of generic definitions, with both type-indexed data types and type-indexed functions.
► How dependencies are used in generic definitions.

Future work:

► Use the zipper in a real structured editor.
Generic Programming projects

Here are some research problems on Generic Programming:

► Applications: Develop a compiler tool such as a debugger as a generic program.

► Theory: Develop heuristics to generate generic functions from a number of instances on some data types.

► Language: Grammar analyses can be viewed as type-indexed functions. What features do we need to be able to express grammar analyses as generic programs?