
Assessing the Quality of Evolving Haskell Systems by
Measuring Structural Inequality

Sander Kamps
Open University of the Netherlands

Heerlen, The Netherlands
sanderkamps79@gmail.com

Bastiaan Heeren
Open University of the Netherlands

Heerlen, The Netherlands
bastiaan.heeren@ou.nl

Johan Jeuring
Open University of the Netherlands

Heerlen, The Netherlands
johan.jeuring@ou.nl

Abstract

Software metrics are used to measure the quality of a soft-
ware system, and to understand the evolution of the system’s
quality over time. In this paper we report on an empirical
study that investigates whether structural degradation in
Haskell systems is related to decreasing software quality.
For our study we use three metrics that measure internal
attributes at the level of Haskell modules: intra-modular
complexity (cohesion), inter-modular complexity (coupling),
and module size. For these metrics, we calculate the Gini
coeicient, which is a measure of the inequality in a distribu-
tion of values within a certain population, and the deviation
of the population’s central tendency from an empirically
established ideal value. We develop a method to track the
evolution, and measure the correlation between the calcu-
lated system-level information and post-release defects.
The results show that: (1) post-release defects are signii-

cantly correlated with the degree of inequality between the
size of modules, (2) the inequality measure is able to indicate
signiicant structural shifts in Haskell source code, and (3)
the deviation of a population’s central tendency from an ideal
value can serve as a benchmark to evaluate the structural
characteristics of a Haskell system. The results, however, do
not show that a combined measure for inequality and ideal
value deviation increases the ability to indicate the defect
proneness of Haskell source code.

CCS Concepts: • Software and its engineering→ Func-

tional languages; •General and reference→ Empirical

studies; Metrics; Measurement.

Keywords: Software quality, Gini coeicient, Ideal value de-
viation

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for proit or commercial advantage and that

copies bear this notice and the full citation on the irst page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speciic

permission and/or a fee. Request permissions from permissions@acm.org.

Haskell ’20, August 27, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8050-8/20/08. . . $15.00

htps://doi.org/10.1145/3406088.3409014

ACM Reference Format:

Sander Kamps, Bastiaan Heeren, and Johan Jeuring. 2020. Assessing

the Quality of Evolving Haskell Systems by Measuring Structural

Inequality. In Proceedings of the 13th ACM SIGPLAN International

Haskell Symposium (Haskell ’20), August 27, 2020, Virtual Event,

USA. ACM, New York, NY, USA, 13 pages. htps://doi.org/10.1145/

3406088.3409014

1 Introduction

When constructing a software system, developers partition it
in several smaller functional components. The organization
of these components, their characteristics and their mutual
interactions form the structure of the software system. The
aim of software developers is to structure the software sys-
tem such that it satisies certain quality standards. However,
software is not perfect. Developers writing and adapting
software make errors. Every code change committed to a
central repository may introduce defects, or degrade the soft-
ware structure. The software structure is degrading when
it progressively fails to meet the quality standards. Thus,
impairing changes may decrease the quality of the software,
and it is therefore important that these changes are detected
so that countermeasures can be taken. By measuring the in-
ternal attributes of a software system, such as size, coupling,
and cohesion, and the evolution of these attributes over time,
impairing changes can be detected.
Software metrics are used to measure the internal at-

tributes of software systems to derive external quality at-
tributes such as modularity, maintainability, and security.
The majority of these metrics measure attributes at the level
of modules, classes or functions. However, efectively moni-
toring the quality of an entire system during its development
requires information at system level. Information at system
level is often obtained by aggregating the results of lower
level metrics.

Popular metric aggregation methods include the mean and
median. These methods provide reliable central tendency
measures when the distribution of themetric values follows a
Gaussian distribution. However, software metrics are seldom
Gaussian distributed, but generally (highly) skewed [21, 22].
An aggregation method that provides reliable results for
a skewed distribution, is the Gini coeicient [21ś24]. The
Gini coeicient is a method to measure the inequality in
a distribution of values within a certain population. When

67

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3406088.3409014
https://doi.org/10.1145/3406088.3409014
https://doi.org/10.1145/3406088.3409014

Haskell ’20, August 27, 2020, Virtual Event, USA Sander Kamps, Bastiaan Heeren, and Johan Jeuring

applied to software metrics, the inequality of the metric
distribution is measured. By applying the Gini coeicient to
evolving software systems, the inequality coeicient can be
tracked over time, for instance to identify structural changes.
Measuring internal attributes of evolving software sys-

tems has been, and still is, the subject of much research.
Through the years many metrics for measuring the structure
of software systems have been proposed and used. The ma-
jority of these software systems are written in imperative or
object-oriented languages. The research into the structural
quality of functional languages, and in particular Haskell, is
rather limited [18ś20]. We are not aware of any research on
the evolution of software structure with respect to software
quality and, consequently, defect proneness of Haskell sys-
tems. In particular, the efect of structural inequality on the
quality of Haskell systems is unknown.
To determine whether structural degradation in Haskell

systems is related to decreasing software quality, we develop
amethod to track the evolution of these systems. Themethod
provides system-level information about three internal at-
tributes: intra-modular complexity (cohesion), inter-modular
complexity (coupling), and module size of multiple subse-
quent releases. To determine the value of these attributes we
have used three popular metrics that have been adapted to
the Haskell language by van den Hoven [20]: these metrics
are Lack of Cohesion of Methods (LCOM), Coupling Be-
tween Objects (CBO), and the Lines of Code (LOC) metrics,
respectively. For each subsequent release, the distribution in-
equality of each internal attribute is obtained by calculating
the Gini coeicient of its corresponding metric values.

In addition to the distribution inequality measure, we have
developed a method that compares the system’s central ten-
dency, for each of the three metrics, to an empirically es-
tablished baseline. This method thus presents system-level
information that represents the system’s deviation to this
baseline. To deine this baseline, we have analysed 135 popu-
lar Haskell systems for each of the threemetrics. In particular,
we want to test whether combining the inequality measure
with the central tendency measure increases the strength of
the correlation with the number of post-release defects. We
are not aware of any research to determine this baseline for
Haskell systems.

To ascertain that the system-level information accurately
relects the external quality attributes, the correlation with
post-release defects of three popular Haskell systems is cal-
culated. By observing the distribution inequality measure
over multiple subsequent releases it is possible to reveal
substantial changes in the system. Because change can be
responsible for new defects, the detection of signiicant shifts
in the structure of the system can be helpful as an indicator
to investigate the cause of these shifts.
This paper makes the following contributions:

• We have developed an ideal value deviation function
that can be used as a benchmark for Haskell systems.
We elaborate on the method we use to deine the func-
tion for three structural metrics in Section 4.1.
• Section 5.2 validates the relation between the distribu-
tion characteristics of intra-modular complexity (co-
hesion), inter-modular complexity (coupling), module
size, and post-release defects.
• Section 5.3 shows that the distribution inequality mea-
sure can serve as an indicator of structural shifts in
the evolution of Haskell systems.

Developers can use the two methods to monitor the efect
of code changes on the software structure, and to compare
the central tendency with a baseline. If a system deviates,
the reason for this may be further investigated. The Gini co-
eicient can be used to detect whether shifts in the software
structure occur, both on the short and long term. This might
help in detecting the introduction of atypical modules.

The next section discusses related work on software qual-
ity during the lifetime of software systems and how this
quality is measured. Section 3 describes the objectives and
hypotheses of our study. Section 4 discusses the research
design, and Section 5 presents the results. Section 6 covers
the threats to validity. Section 7 discusses our research in
relation to preceding work and suggests areas for future
research. Section 8 concludes.

2 Related Work

There is a long history of research into deining software
quality, inding the particular software characteristics that
determine this quality, and investigating the consequences
software quality has on product behaviour. Here we present
an overview of work on assessing software quality, based
on historical data, and on aggregating lower-level metrics to
obtain system-level information.

2.1 The Relationship between Structural Quality

and Error Proneness

As low quality design increases the chance that faults en-
ter the source code, several empirical studies have assessed
this relationship. Nikora and Munson [15] investigated the
relationship between software structural evolution and the
error count for applications written in C/C++. Their results
show that structural complexity and error count increase
simultaneously. This implies that structural measurements
could serve as predictors of the fault proneness of the whole
system. Dagpinar and Jahnke’s research [7] involved difer-
ent structural metrics that were used with the purpose of
measuring maintainability of software systems written in
Java. They report that good predictors of future maintenance
activity are class size and three coupling measures. Nagap-
pan et al. [14] looked at the post-release error history of ive
Microsoft software systems, written in C++ or C#, and found

68

Assessing theuality of Evolving Haskell Systems ... Haskell ’20, August 27, 2020, Virtual Event, USA

CBO(A) = 2, CBO(B) = 2,

CBO(C) = 1, CBO(D) = 0

A

B

C D

(a)

LCOM = 3

x y

a

h

д

f

(b)

Figure 1. Module coupling and module cohesion metrics.

that fault-prone software modules are statistically correlated
with software complexity measures.

2.2 Measuring Structural Quality of Haskell

Systems

Van den Hoven [20] studied which metrics could be useful
for determining the maintainability of Haskell programs. He
deined several structural metrics for the Haskell language by
adapting similar metrics from object-oriented languages. The
coupling metric is based on the CBO metric, as deined by
Chidamber and Kemerer [5]. The adapted CBOmetric counts
the number of other modules a Haskell module imports. For
instance, module A imports module B and module C (see
Figure 1a), and the CBO value is therefore 2. The cohesion
metric is based on the LCOM4 metric, as deined by Hitz
and Montazeri [11]. This fourth version of the LCOM metric
counts the number of disjoint sets of functions contained
within a single module. Figure 1b depicts a module with an
LCOMvalue of 3.When amodule does not contain a function
the LCOM value is 0. Module size is measured by the LOC
metric and is deined as the number of lines of source code,
excluding comments, white space, and empty lines.

2.3 Aggregation from Lower-Level Metrics to

System Level

There are several methods for aggregating metric values [13,
23, 24], each with its own advantages and drawbacks. The
mean is deined as 1

n

∑n
i=1 xi , with x1, ...,xn the multiset of

metric values. The median is the value in the middle of
an ordered list and is deined as x n+1

2
when n is odd, and

1
2 (x n

2
+ x n

2 +1
) when n is even, where n is the number of or-

dered metric values. Both methods are simple, and give a
reliable central tendency when the metric population follows
a Gaussian distribution. However, the more the population
deviates from the Gaussian distribution, the more unreliable
these methods are.
Distribution itting compares a metric value distribution

to known distributions, such as lognormal, exponential, or
power law. The parameters of known distributions are it-
ted to approximate the observed metric values [6]. A disad-
vantage of this method is that there is no widely accepted

distribution available to reliably relect software metric val-
ues [21]. Moreover, the itting process is metric dependent,
and should be repeated for every new metric [13, 23].
Software metric values and econometric values such as

income inequality show similar skewed distributions. To
provide more reliable and metric independent aggregation
methods for software metrics, recent research has focused
on using aggregation methods from econometrics.

Vasa et al. [21] irst applied the Gini coeicient [9] to aggre-
gate values from software metrics. This coeicient originates
from economics and was developed for measuring income in-
equality. It is deined as 1

2n2x̄

∑n
i=1

∑n
j=1 |xi−x j |with x1, ...,xn

the multiset of metric values and x̄ its mean [24]. Note, how-
ever, that the Gini function is undeined for x̄ = 0. There are
several reasons why the Gini coeicient can be applied to
software metrics [23]. Its domain covers both positive and
negative values, IRnx,0, meaning that metrics with positive
and negative values can also be aggregated using the Gini
coeicient. The output range is bounded by [0,1] for all posi-
tive metric values, with 0 representing minimum inequality
and 1 representing maximum inequality. The inverse is true
for all negative metric values. This characteristic provides a
way to easily compare multiple systems or system versions.
For example, the Gini coeicient G ({50, 50, 50, 60}) = 0.036
and G ({10, 30, 100, 20}) = 0.438, meaning that the distri-
bution in the irst set is more equal than the second. The
population size has no inluence on the outcome of the Gini
coeicient, which also makes it more suitable for system
comparison. A main disadvantage of the Gini coeicient is
that it is invariant with respect to addition andmultiplication
(e.g., G ({5, 5, 5, 6}) is also 0.036). As a result, it is unable to
provide an indication of the absolute quality of a software
system. Therefore, it is incapable of distinguishing between
systemswith all equally low quality components and systems
with all equally high quality components. To compensate for
this behaviour, the outcome should be combined with more
traditional aggregation methods [23].
Bouwers et al. [3] combine the Gini coeicient with a

bounded value representing the deviation from an ideal num-
ber (in their study, the ideal number of software components).
They use the Gini coeicient to measure how uniformly the
volume of a system is distributed over its components. The re-
sulting value can then be used as an indicator of the system’s
analysability. Vasa et al. [21] have used the Gini coeicient to
assess structural shifts in the distribution of class-level met-
ric values in the evolution of several object-oriented systems.
Their results show that the Gini coeicient can be used to
indicate large structural shifts in software systems. Vasilescu
et al. [23] applied four aggregation methods to one snapshot
of a Java system to determine whether there is a correlation
between class size and the prediction of defects. The result
indicates a signiicant, but weak, correlation between three
econometric aggregation methods (Gini, Theil, and Atkinson

69

Haskell ’20, August 27, 2020, Virtual Event, USA Sander Kamps, Bastiaan Heeren, and Johan Jeuring

indices) and the number of defects. They also found a signif-
icant correlation between these three methods, that is, they
convey the same information. In a follow-up study [24], four
aggregation methods (the three methods from their earlier
work and the econometric Hoover index) were applied to
two additional Java systems, showing a correlation between
defects and these methods.
In our study, we also apply the Gini coeicient to ag-

gregate module-level metrics to obtain a reliable igure for
system-level information about software quality. Diferent
from previous work, we derive the quality of software by
using historical metric data and measure its correlation with
post-release defects. To compensate for the invariance of the
Gini coeicient under addition and multiplication, we com-
bine it with the deviation of a system’s central tendency from
an ideal value. The ideal value deviation function calculates
the degree to which a system’s central tendency deviates
from an empirically established ideal value. Our method for
determining this ideal value and its upper and lower bounds
is based on the approach of Bouwers et al. [3], and we elabo-
rate on this method in Section 4.1.

3 Objectives

We want to study the evolution of software structure with
respect to software quality and, consequently, defect prone-
ness of Haskell systems. In particular, we want to study the
question how structural inequality inluences the quality of
Haskell systems.

The Gini distribution inequality measure is combined with
amore traditional aggregationmethod. Since the range of the
Gini coeicient is bounded by [0,1], the combined measure
should also lie in this range and be measured on the same
scale [13]. An aggregation method that satisies the scale
and range criteria is the ideal value deviation method [3].
We deine two research objectives. The irst objective is

to determine the values of the ideal value, lower and up-
per bound parameters for the ideal value deviation function.
These values are determined empirically from a represen-
tative sample set of 135 Haskell systems, for each of the
metrics. The second objective is to study whether structural
degradation in Haskell systems is related to decreasing soft-
ware quality. This is achieved by deriving system-level in-
formation from the distribution of the three metrics related
to software structure, and calculating the correlation with
post-release defects.
We postulate the following three hypotheses:

H1. The distribution inequality of each of the software
structure related metrics (LCOM, CBO, and LOC) is
correlated with the number of post-release defects.

H2. Combining distribution inequality with the ideal value
deviation function increases the strength of the corre-
lation with the number of post-release defects.

H3. The distribution inequality measure can serve as an
indicator of structural shifts.

4 Empirical Research Design

The Haskell community has produced a considerable amount
of source code over the years. The development and evolu-
tion of Haskell systems can be followed by looking at the
commits of source code to software repositories. These com-
mits are accompanied by meta data that provide valuable
additional information such as commit dates and comments.
By mining repositories, rich data sets that contain the history
of software systems can be obtained.
We take the following steps to verify our hypotheses:

(1) we mine the repositories of 135 open source Haskell
projects (see section 4.2.1) to obtain the dataset from which
we can determine the ideal value deviation function, (2) we
parametrise the ideal value deviation function for the three
structural metrics, (3) we mine the source code repositories
of three open source Haskell projects to obtain snapshots of
multiple releases; in addition, we mine their issue tracking
systems for defect information, (4) we measure the corre-
lation between the distribution inequality and post-release
defects, and the distribution inequality combined with the
ideal value deviation and post-release defects, and (5) we
determine whether the distribution inequality measure is
capable of indicating structural shifts1.

4.1 Ideal Value Deviation Function

A key concept within software engineering is modularity.
Dividing a complex system into smaller, less complex mod-
ules makes the system easier to maintain. Furthermore, each
module should focus on one speciic task (high cohesion)
and be as independent as possible (low coupling). In general,
increasing the system’s modularity will adversely afect mod-
ule coupling and positively afect module cohesion, and vice
versa. Therefore, a trade-of must be made between the cou-
pling between modules and the cohesion of these modules to
achieve an optimal modular system [2]. Because this trade-
of depends on many project-speciic factors, a universal
ideal value for coupling and cohesion is not available.
Also, there is no golden standard for module size. Both

too large iles as well as too small iles have been related to
the number of defects [2, 10]. Furthermore, these values may
difer between programming languages [8].
As an alternative, we determine these ideal values by

analysing the metric distribution of empirically obtained
data from 135 Haskell repositories. Each ideal value forms
a baseline to which other Haskell systems are compared.
Haskell systems with a central tendency equal to the ideal
value obtain the highest score of 1, while systems with a
central tendency that increasingly deviates from the ideal
value obtain lower scores, down to 0. Thus, besides the ideal

1The dataset is available at https://doi.org/10.5281/zenodo.3930143

70

Assessing theuality of Evolving Haskell Systems ... Haskell ’20, August 27, 2020, Virtual Event, USA

0
µθ ω

θ < m ≤ µ µ < m < ωm ≤ θ m ≥ ω

1

Figure 2. Plot of the ideal value deviation function.

value, we have established bounds between which a system
scores positive.
Similar to the method described by Bouwers et al. [3],

the ideal value deviation is calculated by the function IVD
(IVD : IR+ → (0, 1)) deined by:

IVD(m) =





m − θ

µ − θ
if θ < m ≤ µ

1 −
m − µ

ω − µ
if µ < m < ω

0 if m ≤ θ ∨m ≥ ω

(1)

where parameter µ ∈ IR+ is the ideal value, θ ∈ IR is
the lower bound, and ω ∈ IR+ is the upper bound. Figure 2
shows a graphical representation of the IVD function. Given
an input value in the interval (θ ,ω), the function returns a
value in the interval (0, 1). When the input value is smaller
than the lower bound (≤ θ) or larger than the upperbound
(≥ ω), the output value is 0. Thus, the output of the IVD
function will gradually decrease from 1 to 0 when the input
increasingly deviates from the ideal value.

4.1.1 Determining the IVD Parameters. Since the met-
ric distributions are not Gaussian, we cannot apply the usual
methods to determine the IVD function’s upper and lower
bounds for these distributions. Doing so would result in a
function that returns an incorrect score for systems with a
central tendency deviating from the ideal value. In other
words, the IVD function would not it the shape of the
Haskell system’s distribution very well.

For this reason we have developed an alternative method
to determine the bounds, which is based on a solid under-
standing of the metric distribution of the baseline sample
set. The empirical cumulative distribution function (ECDF)
provides a clear proportional view of a metric distribution,
and is a good candidate to determine the IVD parameter
values [1].

To illustrate our method, Figure 3 depicts the cumulative
distribution plot of the baseline sample set’s LOC metric. In
this igure, the irst quartile (25th percentile), the median
(50th percentile), and the 85th percentile are annotated. It
shows that 25% of the modules have a LOC up to 27, the

0.25 0.5 0.85

27
69

269

0

250

500

750

1000

0.00 0.25 0.50 0.75 1.00

Quantiles (% of modules)

L
O

C
 v

a
lu

e

Figure 3. ECDF plot of the baseline sample set’s LOCmetric.

median is at 69 LOC, and 15% of the modules have a LOC
above 269. The IVD parameter values are then chosen such
that the IVD function evaluates to a positive value (> 0), when
the function’s input falls within a range of values that has a
considerable number of occurrences in the baseline sample
set. In addition, the IVD function has discriminative power
(i.e., applied to systems with central tendencies that are close
together, returns distinguishable scores) and outliers are
discarded.

Ideal Value (µ). We choose the median as the central
tendency measure of a system. The median is resistant to
outliers and is easily calculated. The median of the sample
set is used to instantiate the ideal value µ.

Lower Bound (θ). For the lower bound θ , we choose a
value such that the result of the IVD function is 0.5 when the
irst quartile of the sample set is used as the function’s input.
This means that a system of which the median is equal to
the irst quartile of the sample set receives a score of 0.5. The
lower bound is then calculated by:

IVD(fqs) = 0.5 =⇒
fqs − θ

µ − θ
= 0.5 (2)

where fqs ∈ IR+ is the irst quartile of the sample set. By
calculating this threshold, the IVD function will evaluate to
a result that is in accordance with the shape of the baseline
sample set’s distribution. In efect it will temper the decline
of the IVD score for systems that fall within the lower range
of the IVD function. Note that this can result in a negative
value for the lower bound.

Upper Bound (ω). For the upper bound ω, we choose a
value such that the IVD function covers a large percentage
of the metric population while remaining discriminative. A
trade-of must be made between these two requirements,
because increased discriminative power leads to a smaller
function domain. Therefore, we choose a metric value delta
such that the IVD function’s result is distinguishable with 1
decimal precision. For instance, a delta of 20 LOC between
two systems leads to a 0.1 diference in the IVD scores. We
use equation 3 to calculate the upper bound for any given

71

Haskell ’20, August 27, 2020, Virtual Event, USA Sander Kamps, Bastiaan Heeren, and Johan Jeuring

delta (∆) and decimal precision (dp):

dp =
∆

ω − µ
(3)

The upper bound for an IVD function that is discriminative
to one decimal place is obtained from the following equation:

0.1 =
∆

ω − µ
(4)

4.1.2 Data Acquisition. To support our empirical resea-
rch, we have developed an application to analyse Haskell
source code2. It automatically mines source code reposito-
ries and analyses the obtained Haskell source code. Next to
the actual package source code, Haskell repositories often
contain additional code for unit testing and Haskell iles for
project coniguration. Because we want to focus on the core
source code of Haskell systems (i.e., both end-user programs
and libraries), we exclude these iles from the analysis. Be-
fore analysing each package, it is purged of the occurrence of
Haskell iles in the project root folder and inside test folders
identiied by the various naming of these folders. We have
checked out the master branch of each Haskell repository.
The application enables us to obtain and analyse many code
bases in a limited amount of time, in a consistent way.

To determine the values for θ , µ, and ω, we use a baseline
sample set consisting of popular Haskell systems. Because
we use the sample set to derive a benchmark against which
a system will be evaluated, it is imperative that the included
Haskell systems are proven to be reliable. The selected sys-
tems are publicly available and much depended upon by the
Haskell community. To acquire such Haskell systems, we use
the criterion that each system is a dependency for at least
100 other Haskell projects. By applying this criterion to the
Haskell reverse dependency list3, the inal dataset contains
the metric information of 3356 modules originating from 135
Haskell system. Due to the nature of the reverse dependency
list, the set contains for a large part open source libraries.

4.2 Metric Distribution and Post-Release Defects

To ascertain whether structural degradation in Haskell sys-
tems is related to decreasing software quality, we have de-
veloped a method to track the evolution of Haskell systems.
This method provides system-level information about the
module size, module cohesion, and module coupling of mul-
tiple source code snapshots. Parallel to this calculation, we
retrieve defect information from issue repositories.

4.2.1 Data Acquisition. We mine the repository of each
system to obtain the snapshots of releases. We determine the
aggregated metric values of each snapshot and map them to
the number of defects submitted after a speciic snapshot.

We select three systems that satisfy the following criteria:

2http://hackage.haskell.org/package/HaskellAnalysisProgram
3https://packdeps.haskellers.com/reverse | February 2019

Table 1. Dataset used in the evolution research.
System Total nr.

of snapshots

Nr. of snapshots

mapped to

post-release defects

Measurement

period

Cabal 35 18
2012-08-14/

2019-01-24

GHC compiler 27 21
2011-11-11/

2019-02-05

Pandoc 124 29
2010-07-24/

2019-04-01

1. The system is mature, which means that the system is
past the (early) development stage and has had a irst
public release.

2. The system is actively maintained. This means that
there are several releases available over a period of
more than one year.

3. The complete source code revision history is available
in the revision control system Git.

4. The complete issue tracking information is available.
5. The system must be non-trivial and contain at least

ten parsable modules and twenty functions.

We have chosen the following three Haskell systems that sat-
isfy these criteria: Cabal4, the GHC compiler5, and Pandoc6.
To determine the number of defects reported, and subse-

quently map those to speciic release snapshots, we acquired
commit meta data and issue submission history. The snap-
shot meta information is available in the revision control
system (Git). All three selected Haskell systems use issue
tracking systems to manage issues.
To perform a comparison of post-release defects, a time

frame of 60 days is applied after a release date: this time frame
is long enough to collect a signiicant amount of issues per
release, while still obtaining a large enough set of release
snapshots. Issues falling outside this time frame are excluded
from the measurements. Consecutive releases that fall within
the time frame are also excluded from the measurements.

The inal dataset contains 35 snapshots of Cabal, 27 snap-
shots of the GHC compiler, and 124 snapshots of Pandoc.
Post-release defects are included for 18 snapshots of Cabal,
21 snapshots of the GHC compiler, and 29 snapshots of Pan-
doc. The content of the dataset is summarised in Table 1.

4.2.2 Combining the Gini Coeicient with the Ideal

Value Deviation Function. The result of the IVD function
decreases when the deviation from the ideal increases, see
Figure 2. Thus, a lower result indicates a gradually less ideal
metric value, and hence lower quality. This is diferent from
the Gini coeicient, for which a lower result indicates grad-
ually less inequality, and hence better quality. To align both
methods, we use the complement of the Gini coeicient.

4https://github.com/haskell/cabal
5https://gitlab.haskell.org/ghc/ghc
6https://github.com/jgm/pandoc

72

Assessing theuality of Evolving Haskell Systems ... Haskell ’20, August 27, 2020, Virtual Event, USA

Table 2. Six variable pairs.
Independent Dependent

CG(LOC) Post-release defects

CG(LCOM) Post-release defects

CG(CBO) Post-release defects

CG(LOC) * IVD(LOC) Post-release defects

CG(LCOM) * IVD(LCOM) Post-release defects

CG(CBO) * IVD(CBO) Post-release defects

We calculate this complement by means of the function CG,
deined by:

CG (M) = 1 −Gini (M) (5)

The input M is the multiset of observed metric values.
We can combine CG in several ways with the ideal value

deviation function (e.g. average, minimum, maximum, pro-
duct, etc.). The combined value should preserve the discrim-
inative power and accurately relect the individual method’s
results. We aim for a conservative score when combining
the two methods. This means that the lowest score of the
two prevails over the higher score. In the extreme, for in-
stance, CG=1 and IVD=0 will result in 0. So, the system gets
the lowest possible score, although it has a perfect equality.
Therefore, we choose to multiply the two values.

4.2.3 Variables. We measure the correlation between six
pairs of variables. We determine structural quality based on
three metrics: LOC, LCOM, and CBO. We apply the CG func-
tion, and the CG function combined with the IVD function,
to these metric values. In total, this adds up to six variables,
which we consider to be the independent variables. The post-
release defect count is the dependent variable. Both the in-
dependent and dependent variables are expressed on a ratio
scale. The independent variable is a real number, bounded by
[0,1], and the dependent variable is a whole number. Table 2
gives an overview of the variable pairs.

4.3 Structural Shifts

To determine whether the distribution inequality measure
can serve as an indicator of structural shifts, we plot the
progression of the distribution inequality of each metric. To
conirm the measurements, we manually inspect source code
to determine signiicant structural shifts on module level.
Additionally, we have examined the release notes and commit
comments to ind the rationales for signiicant changes. We
consider a shift to be signiicant if there is a diference of at
least 4% between consecutive snapshots [21].

5 Results

In this section we present the results from the empirical re-
search. First, we determine the IVD parameter values for the
LOC, LCOM, and CBO metrics in Section 5.1. We then apply
the CG and IVD functions to determine the relation between
the metric distribution and post-release defects for the three

Table 3. IVD parameter values per metric.
Metric Lower bound θ Ideal value µ Upper boud ω

LOC -15 69 269

LCOM 0 1 11

CBO 0 6 16

selected Haskell systems (Section 5.2). Finally, we analyse sig-
niicant shifts in the CG values between consecutive releases
(Section 5.3).

5.1 Parametrizing the IVD Function

Based on the metric information of 3356 modules originat-
ing from 135 Haskell systems, we have parametrised the
IVD function for module volume (LOC), module cohesion
(LCOM), and module coupling (CBO). The IVD parameter
values for these metrics are summarised in Table 3.

5.1.1 Parameter Values forModule Volume (LOC). Fi-
gure 4a depicts the ECDF plot of the sample set’s LOCmetric.
The median is 69, which is used as the metric’s ideal value
µ. The lower bound cannot be directly obtained from the
visual representation of the population, but is calculated by

equation 2, m−θ
µ−θ
= 0.5. When form the irst quartile is used,

this evaluates to 27−θ
69−θ = 0.5 =⇒ θ = −15. An acceptable

trade-of for the upper bound is a delta of 20 LOC (for a
0.1 diference in the IVD score). Hence, the upper bound is
calculated by equation 4: 20

ω−69 = 0.1 =⇒ ω = 269.
In Figure 4a we can observe that the upper bound of 269

corresponds to the 85th percentile of the sample set’s LOC
metric population. This means that if the system under test’s
median is within 85% of the sample set’s observed metric
values, it scores positive (> 0). We are thus able to compare
systems with central tendencies that fall within this range,
with 1 decimal precision. The resulting IVD function for the
LOC metric is depicted graphically in Figure 4b.

5.1.2 ParameterValues forModuleCohesion (LCOM).

Figure 4c depicts the ECDF plot of the sample set’s LCOM
metric. Both the median and the irst quartile are 1. As a
consequence, calculating the lower bound with equation 2 is
impossible. Therefore, we choose the lowest observed value.

Thus, the lower bound θ is set to 0. The median is 1, which
we use for the ideal value µ. We choose the metric delta to be
1. Consequently, the upper bound is 1

ω−1 = 0.1 =⇒ ω = 11.

This leads to an upper bound that is at the 94th percentile of
the sample set’s observed values. The resulting IVD function
for module cohesion is depicted graphically in Figure 4d.

5.1.3 Parameter Values for Module Coupling (CBO).

Figure 4e depicts the ECDF plot of the sample set’s CBO
metric. The median and the metric’s ideal value µ is 6. The

lower bound is calculated by 3−θ
6−θ = 0.5 =⇒ θ = 0. The

upper bound is found by 1
ω−6 = 0.1 =⇒ ω = 16. When

selecting a delta of 1 for the upper bound, the bound is at the

73

Haskell ’20, August 27, 2020, Virtual Event, USA Sander Kamps, Bastiaan Heeren, and Johan Jeuring

0.25 0.5 0.85

27
69

269

0

250

500

750

1000

0.00 0.25 0.50 0.75 1.00

Quantiles (% of modules)

L
O

C
 v

a
lu

e

(a)

θ = − 15 µ = 69 ω = 2690.00

0.25

0.50

0.75

1.00

−20 30 80 130 180 230 280

LOC value

IV
D

 s
c
o
re

(b)

0.25 0.5 0.94

11

11

0

10

20

30

0.25 0.50 0.75 1.00

Quantiles (% of modules)

L
C

O
M

 v
a
lu

e

(c)

θ = 0 µ = 1 ω = 110.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10 11 12

LCOM value

IV
D

 s
c
o
re

(d)

0.25 0.5 0.87

3

6

16

0

10

20

30

40

50

0.00 0.25 0.50 0.75 1.00

Quantiles (% of modules)

C
B

O
 v

a
lu

e

(e)

θ = 0 µ = 6 ω = 160.00

0.25

0.50

0.75

1.00

0 2 4 6 8 10 12 14 16

CBO value

IV
D

 s
c
o
re

(f)

Figure 4. Cumulative distribution plot and the IVD function’s graphical representation of the sample set’s LOC (a and b),
LCOM (c and d), and CBO (e and f) metrics.

87th percentile of the sample set’s observed metric values.
The resulting IVD function for module coupling is depicted
graphically in Figure 4f.

5.1.4 Validation of the Chosen Parameter Values. To
validate whether the chosen parameter values result in a rea-
sonable IVD score for each of the three metrics, we randomly
pick and analyse ifteen systems from the sample system list
(11% of the total number of systems). We plot the boxplot of
each system’s metric distribution to compare it to the distri-
bution of the baseline sample set. We expect that systems
with a similar shape and range as the sample set score close
to 1. The boxplots conirm this. To illustrate our method,
Figure 5 depicts the boxplots of these ifteen systems, plus
the baseline sample set, for the LOC metric.

All but one of the individual systems have a more or less
positively skewed distribution. The distribution of these sys-
tems thus has a similar general shape as the sample set dis-
tribution. Examples are the systems Cabal and Criterion. By
contrast, system Bytestring has a deviating shape, but an
interquartile range similar to the Criterion system. The me-
dian is thus further from the ideal value of 69, and as a result,
Bytestring scores lower.
We chose the parameters such that the result of the IVD

function, applied to a system under test, accurately relects
the degree towhich that system’smetric distribution deviates
from the distribution of the baseline sample set.

Ten of the systems have a median less than the ideal value
of 69. The IVD scores range from 0.42 for Blaze.html up
to 0.94 for Criterion. Five systems have a median greater

74

Assessing theuality of Evolving Haskell Systems ... Haskell ’20, August 27, 2020, Virtual Event, USA

LOC 69

IVD

scores 1.00

0.59

0.95

0.84

0.64

0.42

0.66

0.97

0.94

0.88

0.80

0.82

0.74

0.87

0.69

0.88
0

100

200

300

sa
m

pl
es

et

ae
so

n

am
az

on
ka

.c
or

e

at
to

pa
rs

ec

bi
fu

nc
to

rs

bl
az

e.
ht

m
l

by
te

st
rin

g

ca
ba

l

cr
ite

rio
n

do
ct
es

t
gh

c

hs
lo
gg

er

m
is
si
ng

h

pa
ck

ag
e.

ba
se

tim
e

w
ar

p

L
O

C
 v

a
lu

e

Figure 5. Boxplots of the validation set’s LOC metric, show-
ing the irst quartile, median and third quartile.

than the ideal value. Their IVD scores range from 0.66 for
Bytestring up to 0.97 for Cabal. We observe a more progres-
sive decrease of the IVD scores for inputs less than the ideal
value compared to inputs greater than the ideal value. How-
ever, the chosen lower bound of -15 restrains the level of
decline enough to avoid disproportionately low IVD scores.
On the upper half from the system median, the IVD function
evaluates to a positive score (> 0) for a range of observed
values that covers a substantial part of the sample sets distri-
butions long tail, while remaining discriminative.

The discriminative power of the IVD function, in the range
between the ideal value of 69 and the upper bound of 269, is
20 LOC measuring to 1 decimal place precision. For instance,
Cabal and Warp have a median of 75 and 93, with an IVD
score of 0.97 and 0.88, respectively.

5.2 The Relationship between Metric Distribution

and Post-Release Defects

We have investigated the relationship between six pairs of
variables (Table 2) for three Haskell systems. Observing the
independent variables during the evolution of the three cases,
we detected that there is no variance in the IVD score of the
LCOM metric. It persistently stays 1. As a result of this,
the CG(LCOM) and CG(LCOM) * IVD(LCOM) are identical.
For this reason, we have omitted the statistical results for
CG(LCOM) * IVD(LCOM).

5.2.1 Measuring the Correlation. Due to the relatively
small sample sizes of the three Haskell systems, and because
there is no normal distribution for any of the independent
variables, we opted for using Kendall’s τ correlation index
for the measurement of the six variable pairs. Since we have
investigated whether a structural degradation of Haskell
systems is related to an increase in post-release defects (i.e., a
directional relation), the correlation is tested for one-tail. The
level of signiicance is α = 0.05. Table 4 shows the results of

the measurements of the correlation between the aggregated
values and post-release defects.

5.2.2 Hypothesis 1. We accept H1 for the LOC metric.
In all three Haskell systems we observe a signiicant nega-
tive correlation between CG(LOC) and post-release defects.
This means that as the mutual diference in size of Haskell
modules increases (CG decreases), the number of reported
defects also increases. We measure the strongest correlation
for the GHC compiler compared to the other two. To put
this in perspective, there is a 10% increase of the CG value,
parallel to a decrease of approximately 40% of the number
of post-release defects for the GHC compiler. For Cabal we
measure the weakest correlation, 10% increase of the CG
value, parallel to a decrease of approximately 20% of the
number of post-release defects.
For two out of three systems (Cabal and GHC compiler),

we observe a correlation betweenCG(LCOM) and post-release
defects. Thus, in those two cases we can conirm that, when
there is an increasing disparity between module’s cohesion,
more defects are reported.

There is no signiicant correlation found for the CG(CBO)
variable and post-release defects for the systems Cabal and
Pandoc. Only the GHC compiler system shows a signiicant
correlation between the inequality of the module coupling
distribution and post-release defects.

5.2.3 Hypothesis 2. By combining the CG function and
the IVD function, the strength of the correlation between
CG(CBO) * IVD(CBO) and post-release defects has increased
from -.15 to -.45 for the Cabal system and from -.03 to -.62 for
the Pandoc system. The variable CG(LOC) * IVD(LOC) has
increased from -.34 to -.41 for the Cabal system. Although an
increase is measured in these cases, we cannot acceptH2 for
any of the metrics, as none of the metrics show an increase
in the strength of the correlation for all three systems.

5.3 Structural Shifts

We have analysed signiicant shifts in the CG values between
consecutive releases to test whether the distribution inequal-
ity measure can serve as an indicator of signiicant changes
to the source code. In Figure 6 the structural shifts that ex-
ceed the 4% threshold are annotated with the delta of the CG
value between consecutive releases.

We have observed that the introduction or removal of
modules with characteristics that deviate from the main pop-
ulation clearly stand out. For instance, a signiicant shift
of 8% and 9% for respectively the LOC and CBO values oc-
curred at release v2.0.0.2 of the Cabal system (Figure 6a). The
revision history combined with root cause analysis reveals
that release v2.0.0.2 introduced many new features, improve-
ments, and bug ixes. In this release, 166 new modules were
introduced, almost doubling the number of modules. The
decline for the LOC and CBO value can be explained by the

75

Haskell ’20, August 27, 2020, Virtual Event, USA Sander Kamps, Bastiaan Heeren, and Johan Jeuring

Table 4. Measurements of the correlation between the aggregated values and post-release defects.
**. Correlation is signiicant at the 0.01 level (1-tailed). *. Correlation is signiicant at the 0.05 level (1-tailed).
Cabal GHC compiler Pandoc

Independent

variable

Post-release

defects

Independent

variable

Post-release

defects

Independent

variable

Post-release

defects

CG for

LOC metric

Correlation

Coeicient

-.336* CG for

LOC metric

Correlation

Coeicient

-.571** CG for

LOC metric

Correlation

Coeicient

-.486**

Sig. (1-tailed) .027 Sig. (1-tailed) .000 Sig. (1-tailed) .000

N 18 N 21 N 29

CG * IVD for

LOC metric

Correlation

Coeicient

-.414** CG * IVD for

LOC metric

Correlation

Coeicient

-.369** CG * IVD for

LOC metric

Correlation

Coeicient

.373**

Sig. (1-tailed) .008 Sig. (1-tailed) .010 Sig. (1-tailed) .004

N 18 N 21 N 29

CG for

LCOM metric

Correlation

Coeicient

-.336* CG for

LCOM metric

Correlation

Coeicient

-.441** CG for

LCOM metric

Correlation

Coeicient

.062

Sig. (1-tailed) .030 Sig. (1-tailed) .003 Sig. (1-tailed) .325

N 18 N 21 N 29

CG for

CBO metric

Correlation

Coeicient

-.146 CG for

CBO metric

Correlation

Coeicient

-.544** CG for

CBO metric

Correlation

Coeicient

-.029

Sig. (1-tailed) .201 Sig. (1-tailed) .000 Sig. (1-tailed) .417

N 18 N 21 N 29

CG * IVD for

CBO metric

Correlation

Coeicient

-.452** CG * IVD for

CBO metric

Correlation

Coeicient

.223 CG * IVD for

CBO metric

Correlation

Coeicient

-.617**

Sig. (1-tailed) .005 Sig. (1-tailed) .082 Sig. (1-tailed) .000

N 18 N 21 N 29

introduction of smaller and less coupled modules together
with an increase in size and coupling of existing modules.

At v2.2.0.0 of the Cabal system, v7.8.1 of the GHC com-
piler system (Figure 6b), and v1.15.1 of the Pandoc system
(Figure 6c), modules with an exceptionally high LCOM value
(thus, a very low cohesion) were introduced. For instance,
during the development of release v7.8.1, two large mod-
ules were added to the GHC compiler with LCOM values 36
and 42. To put this in perspective, 96% of the modules had a
value of less than 10. This addition caused a decline of 9%.
Because the majority of the modules have a low LCOM value,
the CG function is very sensitive to changes on the higher
end of the scale.

The opposite, removing atypical modules from the project,
is visible in the evolution of Pandoc at v1.10. In this case, two
large modules were removed from the source code, causing a
positive shift of 26%. At v2 they were reintroduced, causing
a decrease of 6%. The impact on the degree of inequality that
the reintroduction caused is less than the removal because
the overall LCOM value had already increased.

We also observed improvements as a result of refactoring
activities. For instance, the LCOMvalue at release v1.6 of Pan-
doc increased with 5%. This is mainly due to the refactoring
of one large module, named Text.Pandoc.Shared. The release
note speciically states: łMoved parsing code and Parser-
State from Text.Pandoc.Shared to a new module, Text.Pan-
doc.Parsingž, thus presenting the rationale for this shift.

Another observation is the occurrences of relatively large
shifts between major releases, and the relative stability in
between. Major releases are recognisable by the increment

of the second number, e.g., from v1.18 to v1.20. This is not
entirely surprising because signiicant structural changes are
to be expected when transitioning to the next major release.
In general, the CG values remain within a compact value
space. This shows that there is a bounded inequality in the
metric distribution of these Haskell systems. Cabal and the
GHC compiler are very similar in that respect: they both
remain between 0.33 and 0.60. Pandoc shows a more volatile
history, showing more frequent and larger variation in the
CG values, varying between 0.40 and 0.80. Finally, we can
observe a declining trend of the CG value for Cabal and
the GHC compiler over their lifetime. This reveals that the
metric distribution inequality grows over time.

5.3.1 Hypothesis 3. We accept H3: for all three Haskell
systems, signiicant shifts in the value of the CG function
are traceable to changes in the structure of the source code.
By measuring the structural inequality of Haskell systems
over multiple snapshots, structural changes to the source
code are revealed.

6 Threats to Validity

We identify several threats to validity of this research, and
describe our mitigation eforts.

Construct Validity. Selecting the appropriatemetrics for
measuring structural quality is paramount. Metrics for mod-
ule size, module cohesion, and module coupling are used
to measure the structural quality of Haskell source code.
Parnas [16], Card and Agresti [4], Blundell et al. [2], and

76

Assessing theuality of Evolving Haskell Systems ... Haskell ’20, August 27, 2020, Virtual Event, USA

−0.08

−0.07
−0.09

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1
.1

6
.0

1
.1

6
.0

.1

1
.1

6
.0

.2

1
.1

6
.0

.3

1
.1

8
.0

1
.1

8
.1

1
.1

8
.1

.1

1
.1

8
.1

.2

1
.2

0
.0

.0

1
.2

0
.0

.1

1
.2

0
.0

.2

1
.2

0
.0

.3

1
.2

2
.0

.0

1
.2

2
.1

.0

1
.2

2
.1

.1

1
.2

2
.2

.0

1
.2

2
.3

.0

1
.2

2
.4

.0

1
.2

2
.5

.0

1
.2

2
.6

.0

1
.2

2
.7

.0

1
.2

2
.8

.0

1
.2

4
.0

.0

1
.2

4
.1

.0

1
.2

4
.2

.0

2
.0

.0
.2

2
.0

.1
.0

2
.0

.1
.1

2
.2

.0
.0

2
.2

.0
.1

2
.4

.0
.0

2
.4

.0
.1

2
.4

.1
.0

Release

C
G

Metric CBO LCOM LOC

(a) Cabal

−0.09

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

7
.2

.1

7
.2

.2

7
.4

.1

7
.4

.2

7
.6

.1

7
.6

.2

7
.6

.3

7
.8

.1

7
.8

.2

7
.8

.3

7
.8

.4

7
.1

0
.1

7
.1

0
.2

7
.1

0
.3

8
.0

.1

8
.0

.2

8
.2

.1

8
.2

.2

8
.4

.1

8
.4

.2

8
.4

.3

8
.6

.1

8
.4

.4

8
.6

.2

8
.6

.3

8
.6

.4

8
.6

.5

Release

C
G

Metric CBO LCOM LOC

(b) GHC compiler

−0.07

0.1

−0.05

0.05

0.26 −0.21

−0.06

0.08

−0.05 0.04

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1
1
.2

.1
1
.3

1
.5

1
.5

.1
1
.6

1
.8

1
.8

.2
1
.9

1
.9

.1
1
.1

0
1
.1

1
1
.1

1
.1

1
.1

2
1
.1

2
.1

1
.1

2
.2

1
.1

2
.3

1
.1

2
.4

1
.1

3
1
.1

3
.1

1
.1

3
.2

1
.1

4
1
.1

4
.1

1
.1

5
1
.1

5
.1

1
.1

5
.2

1
.1

6
1
.1

7
1
.1

8
1
.1

9
1
.1

9
.1

1
.1

9
.2 2

2
.0

.1
2
.0

.2
2
.0

.3
2
.0

.4
2
.0

.5
2
.0

.6
2
.1

2
.1

.1
2
.1

.2
2
.1

.3
2
.2

2
.2

.1
2
.2

.2
2
.2

.3
2
.3

2
.3

.1
2
.4

2
.5

2
.6

2
.7

2
.7

.1
2
.7

.2

Release

C
G

Metric CBO LCOM LOC

(c) Pandoc

Figure 6. The distribution inequality measurement during
the evolution of Cabal, the GHC compiler, and Pandoc.

Pressman [17] show that structural quality is, among oth-
ers, determined by these internal attributes. Chidamber and
Kemerer [5], Lorenz and Kidd [12], and Fenton and Neil [8]
show that LOC, LCOM, and CBO are adequate metrics to
measure these attributes. Although there are other metrics
available to measure the required internal attributes, there
exists a large scientiic basis for the selected metrics.

Internal Validity. Our analysis software is designed and
constructed to determine the value of the independent vari-
ables. Because this software is in its early experimental phase

and used sparingly, scrutiny of its correct functioning is lim-
ited. Incorrect behaviour could inluence the analysis results,
and as a consequence, the outcome of this research.
To determine the post-release defect count, data is col-

lected from public issue tracking systems. The use of these
systems has several drawbacks. One drawback is the ickle-
ness of issue submissions, which is hard to mitigate. Clear
submission guidelines often seem to be missing and, as a
consequence, submission data may provide little or incor-
rect information. In addition, a distinct mapping of issues
to the resolving commits (e.g., an issue id) is often absent.
This complicates the quantiication of post-release defects
as it is often unclear whether the issue actually involves a
defect. Similarly, a one-to-one mapping between issue sub-
missions and releases is often absent. Therefore, we use the
release date as a reference. Issues submitted within 60 days
after the release are included in the post-release defect count.
We acknowledge that there is no guarantee that the submis-
sion date corresponds to the preceding release. The releases
that are excluded from the measurements follow short after
the included releases and are very similar in regard to the
aggregated values.

Another drawback of using public issue tracking systems
is that the number of discovered and reported issues may
grow as a result of a growing popularity. The increase in
submitted issues could then be related to the increased use,
and not necessarily to the increase of implementation faults.
To mitigate this efect, we have collected issues from the
moment we deemed the system mature.
We have made choices for a number of variables within

our research, such as lower and upper bounds and time
frames. Although we have explained the rationale behind
these choices, we acknowledge that other choices may lead
to better results.

External Validity. To determine the relation between
structural inequality and post-release defects, we analyse
three popular, stable, and relatively large open source projects.
Because of the limited number of subjects, and their similar
characteristics, we are reluctant to claim that the results can
be generalised to code bases with diferent characteristics.

7 Discussion and Future Work

Bouwers et al. [3] and Alves et al. [1], amongst others, have
also investigated deining a benchmark, based on empirical
data, with the aim to evaluate source code at program level.
Although the internal quality attributes and target program-
ming languages used in their work difer from this research,
the derived benchmark thresholds are also based on the sta-
tistical properties of the underlying data. Similar to our work
they developed a method that can be employed to objectively
evaluate source code at system level.
We have chosen to use the system’s median as input for

the IVD function because of its robustness to outliers, and

77

Haskell ’20, August 27, 2020, Virtual Event, USA Sander Kamps, Bastiaan Heeren, and Johan Jeuring

because it is less afected by the skewness of the distribution
than the mean. This makes it a better indicator of the central
tendency of skewed distributions. However, by using the me-
dian, we only take a part of the total population into account,
and ignore information about the shape of the distribution.
For that reason we combine the IVD function with the CG
function, which does take the whole population into account.
Furthermore, the IVD function is parametrised such that it
respects the positively skewed shape of the representative
Haskell baseline sample set within a speciic domain of met-
ric values. Although we have shown for 15 systems that
deviating distributions receive an appropriate score, this can-
not be guaranteed for all cases. Further research is required
to determine whether the validity of the IVD function can
be improved by taking the entire population into account.

Deriving the ideal value from the baseline sample set of 135
Haskell systems has revealed that the majority of modules
has a very high cohesion (median LCOM value is 1). Fur-
ther research might explore the reason for this. Interesting
questions would then be how Haskell relates to other pro-
gramming languages, and whether this is due to the Haskell
language, programming style in the community, or inherent
to the functional programming paradigm.
Three Haskell projects with similar characteristics have

been included in the validation of the correlation between
structural quality attributes and post-release defects. The
reader should bear in mind that this is a fairly limited set
and, as a consequence, the generalisability of the results are
limited. The analysis of more Haskell projects, with a broader
range of characteristics, is required to assess our results in a
more general context. We leave this as future research.
The sample sizes of the three Haskell systems’ releases

were fairly small. This has consequences for the power of the
statistical tests we have performed. As the power decreases,
the chance of not observing an efect, although it actually
exists, grows (i.e., a false negative). Hence, it undermines the
reliability of the results. Therefore, we are very conservative
with regards to conclusions that can be distilled from these
results. Because of the small sample size, we accept hypothe-
ses 1 and 2 only if it holds for all three systems. We are less
certain about the efectiveness of the metrics for which this
is not the case. To increase the certainty, the sample size
should be increased. Since this research is based on histor-
ical release data, from the moment these Haskell systems
reached a mature state up until the present, increasing the
sample size is impossible. However, as systems age, more
data becomes available. This will enable future research to
include larger sample sets. Another possibility would be to
look at commits instead of releases, but it would be very
hard to connect defects to commits.
Several studies have looked at the correlation between

the change in structural quality attributes over time and
post-release defects, either based on traditional aggregation
methods [7, 14, 15] or based on the Gini coeicient [23, 24].

Our results conirm the conclusions of previous research
and indicate that for Haskell systems the number of defects
also increases directly with the increasing complexity of the
source code. However, source code complexity is derived
diferently in each of these studies. Nikora and Munson [15]
and Nagappan et al. [14] used principal component analysis
to derive a set of multi-correlated metrics for object-oriented
languages to measure structural quality attributes. Nagap-
pan et al. observed that no single structural metric could
be correlated with post-release defects. This inding con-
trasts with the results of Dagpinar and Jahnke [7], Vasilescu
et al. [23, 24], and our work. In these papers, the results
show a correlation with particular structural metrics and
post-release defects. Hence, we hesitate to draw a general
conclusion based on our indings. More research is neces-
sary to investigate the nature of structural complexity and
its relation to defect proneness of Haskell systems.
The Gini coeicient is employed to indicate structural

shifts in Haskell systems and the results are similar to those
obtained by Vasa et al. [21]. Our results support the idea that
the Gini coeicient can be used to manage the quality of
evolving software projects, since signiicant changes to the
source code are revealed. This could, for instance, be used as
a trigger to investigate the exact nature and rationale of these
changes. In the study of Vasa et al. [21] and in our study,
the Gini coeicient is used as the instigator to investigate
changes in the source code. Whether the Gini coeicient is
capable of revealing all major structural shifts still needs to
be veriied.

We see a declining trend of the CG values for Cabal and the
GHC compiler over their lifetime and an increasing trend in
the number of post-release defects. We have only measured
the correlation for a set of structural characteristics and post-
release defects. However, there could also be other variables
that inluence the increasing trend in the number of post-
release defects, such as an increase in popularity. Which
other variables inluence the number of post-release defects
remains to be determined.

8 Conclusion

This paper describes an empirical study aimed at assess-
ing the quality of evolving Haskell systems by measuring
their structural inequality. By analysing 135 representative
Haskell systems, we have built a dataset, which we used to
determine the ideal value, the lower bound, and the upper
bound of the intra-modular complexity (cohesion), inter-
modular complexity (coupling), and module size of Haskell
systems. We have deined an ideal value deviation function
parametrised with these results. By applying the ideal value
deviation function to a sample set of 15 Haskell systems we
found that the function’s output was similar to the metric
distribution of the 135 representative Haskell systems it was
based on. This means that systems with similar distributions

78

Assessing theuality of Evolving Haskell Systems ... Haskell ’20, August 27, 2020, Virtual Event, USA

receive a relatively high score, while deviating distributions
receive a relatively low score. The ideal deviation function
thus serves as a benchmark to evaluate the three structural
quality attributes of Haskell systems.

We have used the ideal value deviation function together
with a distribution inequality measure based on the Gini
coeicient to investigate the quality of Haskell source code
over multiple releases. Post-release defects of three Haskell
systems have been collected to assess whether structural
degradation is correlated with defect proneness. We found
that an inequality in the metric distribution of module size is
signiicantly correlated with post-release defects for all three
of the Haskell systems studied. For two systems, we found
a signiicant correlation with the inequality measurement
of module cohesion. A correlation between post-release de-
fects and the inequality in the metric distribution of module
coupling could not be established for two of the three sys-
tems. Therefore, employing the inequality measure as an
indicator of defect proneness of Haskell systems can only be
veriied for module size. We did not ind that combining the
inequality measure with the ideal value deviation function
increases the strength of the correlation with post-release
defects, because none of the metrics shows an increase in the
strength of the correlation for all three systems. However,
for two out of three systems, the strength of the correlation
increased for the module coupling metric. For one system
we found an increase for the module size metric.

We can use the inequality measure as an indicator of struc-
tural shifts during the evolution of Haskell systems. Signii-
cant changes to the source code have been revealed by shifts
in the value of the inequality measure for all three structural
metrics. Thus, the inequality measure can be employed to
reveal large structural shifts and can thereby serve as an
indicator of defect proneness with respect to module size.

Acknowledgments

We like to thank the anonymous reviewers for their thorough
evaluation of our work and their helpful suggestions.We also
thank Henrie Vos for his work on the conception and initial
development of the Haskell source code analysis software
we have used for our research.

References
[1] Tiago L. Alves, Christiaan Ypma, and Joost Visser. 2010. Deriving

metric thresholds from benchmark data. In 2010 IEEE International

Conference on Software Maintenance. IEEE, 1ś10.

[2] James Kenneth Blundell, Mary Lou Hines, and Jerrold Stach. 1997.

The measurement of software design quality. Annals of Software

Engineering 4 (1997), 235.

[3] Eric Bouwers, Jose Pedro Correia, Arie van Deursen, and Joost Visser.

2011. Quantifying the analyzability of software architectures. In 2011

Ninth Working IEEE/IFIP Conference on Software Architecture. IEEE,

83ś92.

[4] David Noel Card and William W. Agresti. 1988. Measuring software

design complexity. Journal of Systems and Software 8, 3 (1988), 185ś

197.

[5] Shyam R. Chidamber and Chris F. Kemerer. 1994. A metrics suite for

object oriented design. IEEE Transactions on Software Engineering 20,

6 (1994), 476ś493.

[6] Giulio Concas, Michele Marchesi, Sandro Pinna, and Nicola Serra.

2007. Power laws in a large object-oriented software system. IEEE

Transactions on Software Engineering 33, 10 (2007), 687ś708.

[7] Melis Dagpinar and Jens H. Jahnke. 2003. Predicting maintainability

with object-oriented metrics an empirical comparison. In 10th Working

Conference on Reverse Engineering (WCRE 2003). IEEE, 155ś164.

[8] Norman Fenton and Martin Neil. 1999. Software metrics: Successes,

failures and new directions. Journal of Systems and Software 47, 2

(1999), 149ś157.

[9] Corrado Gini. 1921. Measurement of inequality of incomes. The

Economic Journal 31, 121 (1921), 124ś126.

[10] Les Hatton. 1997. Reexamining the fault density component size

connection. IEEE Software 14, 2 (1997), 89ś97.

[11] Martin Hitz and Behzad Montazeri. 1995. Measuring coupling and

cohesion in object-oriented systems. In Proceedings of International

Symposium on Applied Corporate Computing (Sorrento, Italy) (ISAAC

’95). ISAAC, 25ś27.

[12] Mark Lorenz and Jef Kidd. 1994. Object-oriented software metrics : a

practical guide. Englewood Clifs, NJ : PTR Prentice Hall.

[13] Karine Mordal, Nicolas Anquetil, Jannik Laval, Alexander Serebrenik,

Bogdan Vasilescu, and Stephane Ducasse. 2013. Software quality

metrics aggregation in industry. Journal of Software: Evolution and

Process 25, 10 (2013), 1117ś1135.

[14] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. 2006. Mining

metrics to predict component failures. In Proceedings of the 28th Inter-

national Conference on Software Engineering (ICSE ’06). ACM, 452ś461.

[15] Allen P. Nikora and John C. Munson. 2003. Understanding the na-

ture of software evolution. In International Conference on Software

Maintenance (ICSM ’03). IEEE, 83ś93.

[16] David Lorge Parnas. 1972. On the criteria to be used in decomposing

systems into modules. Commun. ACM 15 (1972), 1053ś1058.

[17] Roger S. Pressman. 2005. Software engineering: a practitioner’s approach.

Palgrave Macmillan.

[18] Chris Ryder and Simon J. Thompson. 2005. Softwaremetrics measuring

Haskell. In Trends in Functional Programming. 31ś46.

[19] K. van den Berg. 1995. Software Measurement and Functional Program-

ming. Ph.D. Dissertation. University of Twente.

[20] H. van den Hoven. 2015. Invloed van structuur en samenhang op de

onderhoudbaarheid vanHaskell programma’s (in Dutch). Master’s thesis.

Open Universiteit Nederland. htp://dspace.ou.nl/handle/1820/6205

[21] Rajesh Vasa, Markus Lumpe, Philip Branch, and Oscar Nierstrasz.

2009. Comparative analysis of evolving software systems using the

Gini coeicient. In 2009 IEEE International Conference on Software

Maintenance. IEEE, 179ś188.

[22] Rajesh Vasa, Jean-Guy Schneider, and Oscar Nierstrasz. 2007. The

inevitable stability of software change. In 2007 IEEE International Con-

ference on Software Maintenance (ICSM 2007). IEEE, 4ś13.

[23] Bogdan Vasilescu, Alexander Serebrenik, and Mark van den Brand.

2010. Comparative study of software metrics’ aggregation techniques.

In BENEVOL 2010 (9th Belgian-Netherlands Software Evolution Seminar,

Lille, France, December 16, 2010. Proceedings of Short Papers). Université

Lille 1, 1ś5.

[24] Bogdan Vasilescu, Alexander Serebrenik, and Mark van den Brand.

2011. By No Means: A Study on Aggregating Software Metrics. In

Proceedings of the 2Nd International Workshop on Emerging Trends in

Software Metrics (WETSoM ’11). ACM, 23ś26.

79

http://dspace.ou.nl/handle/1820/6205

	Abstract
	1 Introduction
	2 Related work
	2.1 The relationship between structural quality and error proneness
	2.2 Measuring structural quality of Haskell systems
	2.3 Aggregation from lower-level metrics to system level

	3 Objectives
	4 Empirical research design
	4.1 Ideal value deviation function
	4.2 Metric distribution and post-release defects
	4.3 Structural shifts

	5 Results
	5.1 Parametrizing the IVD function
	5.2 The relationship between metric distribution and post-release defects
	5.3 Structural shifts

	6 Threats to validity
	7 Discussion and future work
	8 Conclusion
	Acknowledgments
	References

